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Abstract. This paper studies the H? — HY estimates of a class of oscillatory

integrals related to dispersive equations

iwu(t,x)=Q(D)u(t,x), (t,x)ERxR",
u(0,2) =wup(x), reR"?,

under the assumption that the level hypersurfaces are convex and of finite type.
As applications, we obtain the decay estimates for the solutions of higher order

homogeneous and inhomogeneous Schrédinger equations.
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1 Introduction

1.1 Backgrounds

In this paper, we mainly study the H?— H? estimates of the solution for the following
Cauchy problem of dispersive equation:

{i@tu(t,x):Q(D)u(t,x), (t,z) eRxR",
u(0,2) =up(z), rzeR™.

(1.1)

Here Q:R—R is a phase function, D=—i(0,,,---,0,, ) with n>2 and H? (0<p<o0)
are Hardy space, The operator Q(D) is defined by

QD) f=FQE)Tf,

where .# denotes Fourier transform and . ! is its inverse. For uy€ S(R™) (the
Schwartz space), the solution of (1.1) is given by

u(t, ) =e 1Py = F-1 (R0 ). (1.2)

When Q(£)=1£|?, it is well known that (1.1) represents free Schrodinger equation
and the solution operator e 2 satisfies with the following sharp L”? —L*" estimates

e Ao <CIE ™, (13)
where t£0, p€[1,2] and %4—1%:1 (see e.g., [28]). Notice that H?=LP when 1<p<oo
and H' (resp. L™) is a subspace of L' (resp. BMO), then one can rewrite (1.3) as

e g <Cle 777, (14)

where H” = BMO when p=1. Thus it is of interest to study the H?— H? estimates
of QD) for p< 1, which are natural extensions of the decay estimates for p>1.

Generally speaking, one can study the H? — HY estimates for generalized propa-
gator e"#Q(P) in terms of the estimates of fundamental solution .~ (e*@)) (+£0),
which is depending on the geometry of the level set

L={¢: 1Q()[=1}.

Here X is usually a compact connected smooth hypersurface of R” with certain ge-
ometric assumptions. In particular, Miyachi [26] considered the singular multipliers

v(E)le| e,



