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1 Introduction

1.1 Backgrounds

In this paper, we mainly study the Hp−Hq estimates of the solution for the following
Cauchy problem of dispersive equation:{

i∂tu(t,x)=Q(D)u(t,x), (t,x)∈R×Rn,

u(0,x)=u0(x), x∈Rn.
(1.1)

Here Q:R→R is a phase function, D=−i(∂x1 ,··· ,∂xn) with n≥2 and Hp (0<p<∞)
are Hardy space, The operator Q(D) is defined by

Q(D)f=FQ(ξ)F−1f,

where F denotes Fourier transform and F−1 is its inverse. For u0 ∈S(Rn) (the
Schwartz space), the solution of (1.1) is given by

u(t,·) :=e−itQ(D)u0 =F−1(e−itQ(ξ)û0). (1.2)

When Q(ξ) = |ξ|2, it is well known that (1.1) represents free Schrödinger equation
and the solution operator e−it∆ satisfies with the following sharp Lp−Lp′ estimates

||e−it∆||Lp−Lp′ ≤C|t|
n
2

( 1
p′−

1
p

)
, (1.3)

where t 6=0, p∈[1,2] and 1
p
+ 1
p′

=1 (see e.g., [28]). Notice that Hp=Lp when 1<p<∞
and H1 (resp. L∞) is a subspace of L1 (resp. BMO), then one can rewrite (1.3) as

||e−it∆||Hp−Hp′ ≤C|t|
n
2

( 1
p′−

1
p

)
, (1.4)

where Hp′=BMO when p=1. Thus it is of interest to study the Hp−Hq estimates
of eitQ(D) for p<1, which are natural extensions of the decay estimates for p≥1.

Generally speaking, one can study the Hp−Hq estimates for generalized propa-
gator e−itQ(D) in terms of the estimates of fundamental solution F−1(eitQ(ξ)) (t 6=0),
which is depending on the geometry of the level set

Σ={ξ : |Q(ξ)|=1}.

Here Σ is usually a compact connected smooth hypersurface of Rn with certain ge-
ometric assumptions. In particular, Miyachi [26] considered the singular multipliers

ψ(ξ)|ξ|−bei|ξ|a ,
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where ψ(ξ) is smooth and vanishes around origin, a>0 and b∈R, and established
in [26, Theorem 4.1] the boundedness for multipliers between the Hardy spaces Hp,
BMO and Lipschitz spaces Λs under certain restrictions on a and b. Notice that in
this case Q(ξ) = |ξ|a and the hypersurface Σ is exactly the spherical surface Sn−1,
which has constant Gaussian curvature. The author also mentioned in [26, Remark
4.2] that the argument can also be applied to the multipliers

ψ(ξ)(eiQ1(ξ)α1h1(ξ)+eiQ2(ξ)α2h2(ξ)),

where hi (i=1,2) are smooth homogeneous functions of degree −b and Qi (i=1,2)
are smooth positive homogeneous functions of degree one such that

Σi={ξ : |Qi(ξ)|=1}, i=1,2,

have nonvanishing Gaussian curvature. Notice that the phase function both |ξ|a
and Qi(ξ)

ai (i= 1,2) are homogeneous. For the propagator operator eitQ(D) (t 6= 0)

with Q satisfying the condition in [26] one can use scaling ξ→t
1
a ξ (t 6=0) to get the

optimal Hp−Hq estimates. We remark that Σ has nonvanishing Gaussian curvature
is equivalent to the so-called nondegenerate condition on Q, based on which the
Hp−Hq estimates with 1≤ p≤ q of propagator eitQ(D) have also been extensively
studied for inhomogeneous Q, (see e.g., [1–4,11,22,23]). Among them all, we would
like to emphasize the work of Cui [11], where the following decay estimates have
been established

‖eitQ(D)‖Lp−Lq≤C(T )|t|−
n
m

( 1
p
− 1
q

), 0< |t|<T, (1.5)

where T >0, Q is a inhomogeneous elliptic polynomial with the principal Qm being
nondegenerate and (1

p
, 1
q
)∈�ÃB̃C̃D̃, �ÃB̃C̃D̃ is a closed quadrangle by the four vertex

points

Ã=
(1

2
,
1

2

)
, B̃=

(
1,

1

p′0

)
, C̃=(1,0), D̃=

( 1

p0

,0
)
,

where 1
p′0

+ 1
p0

=1 and p0 = 2(m−1)
m

with m≥2.

If the level set Σ has zero Gaussian curvature at some points of Σ, it would
become more difficult to estimate the oscillatory integral F−1(eitQ(ξ)) (t 6= 0) due
to the failure of the principle of stationary phase (see e.g., [27]). In fact, there
exist elliptic polynomials such that their level sets have zero Gaussian curvature at
some points, for instance ξm1 +···+ξmn (m=4,6,···) and ξ4

1 +6ξ2
1ξ

2
2 +ξ4

2 . Motivated by
these examples, based on [5, Theorem B], Zheng et al. [30] established the Lp−Lq
estimates by assuming Q is a homogeneous elliptic polynomial of order m≥2 and
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Figure 1: The Hp−Hq estimates for eitQ(D) of Cui [11].
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Figure 2: The Lp−Lq estimates for eitQ(D) of Zheng et al. [30].

Σ is a convex hypersurface of finite type k≥ 2 (k∈N). Indeed, they proved that
(see [30, Theorem 2.4])

‖eitQ(D)‖Lp−Lq≤C|t|
n
m

( 1
q
− 1
p

), t 6=0, (1.6)

where (1
p
, 1
q
)∈�A1B1C1D1\{B1,D1} and �A1B1C1D1 is a closed quadrangle by the four

vertex points (see Fig. 2). Here A1 = (1
2
, 1

2
), B1 = (1, 1

τ
), C1 = (1,0) and D1 = ( 1

τ ′
,0),

where τ ′ is the conjugate index of τ with

τ=
2kn(m−1)

m(2n+k−2)−2kn
. (1.7)
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Figure 3: The Hp−Hq estimates for eitQ(D) of Ding and Yao [12].

Such result has been generalized to the inhomogeneous setting, see [12]. Notice
that when k= 2, �A1B1C1D1 is exactly the same as �ÃB̃C̃D̃ in [11]. However the
author did not mention whether the domain of (1

p
, 1
q
) for Lp−Lq estimates is optimal

as k>2. This optimality problem was partially answered in the work of Ding and
Yao [12], where the authors obtained the Hp−Hq estimates

‖eitQ(D)‖Hp−Hq. |t|−
n
m

( 1
p
− 1
q

), t 6=0,

where Q satisfies the same assumptions as in [30] and (1
p
, 1
q
)∈∆A2B2D2 (see Fig. 3).

Here A2 =(1
2
, 1

2
),B2 =( 1

q0
,0) and D2 =( 1

p0
,0) with 2≤k≤m and

1

p0

=
m(2n+k−2)

2kn
,

1

q0

=
1

2−p0

.

When Q is a polynomial, Deng and Yao [14] considered the case of Q(ξ) =
P (φ(ξ)), where P is a real polynomial of order m≥ 2, φ(ξ) is a homogeneous
smooth function, and the level set Σ is a smooth convex hypersurface, then the
authors obtained the following attenuation estimates

‖eitP (φ(D))‖Lp∗−Lq∗≤

{
C|t|n|

1
q
− 1
p′ |, 1≤|t|<T,

C|t|
n
m

( 1
q
− 1
p

), 0< |t|<1,

where (1
p
, 1
q
)∈�A3B3C3D3 is a closed quadrangle by the four vertex points A3 =(1

2
, 1

2
),

B3 =(1, 1
ν
), C3 =(1,0), D3 =( 1

ν′
,0) (see Fig. 4), ν ′ is the conjugate index of ν, 2≤k≤
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Figure 4: The Lp∗−Lq∗ estimates for eitP (φ(D)) of Deng and Yao [14].

h(m,n,k)

h(m,n,k)=
m−2

2(m−1)
+

(m−k)(n−1)

k(m−1)
,

1

ν
=
h(m,n,k)

n
,

Lp∗−Lq∗=


L1−Lτ,∞,

(1

p
,
1

q
)=
(

1,
1

τ

)
,

Lτ
′,1−L∞,

(1

p
,
1

q

)
=
( 1

τ ′
,0
)
,

Lp−Lq, else.

When Q is non-polynomial and satisfies (H1) and (H2), Deng et al. [15] obtained
the following Hp−Hq decay estimate for eitQ(|∇|)

||eitQ(|∇|)||Hp−Hq. |t|−
n
m

( 1
p
− 1
q

),

where ∇ is the gradient, m1≥2,m2>0, m=max{m1,m2}, and (1
p
, 1
q
)∈∆A4B4D4 is a

triangle with vertices A4 : (1
2
, 1

2
), B4 : (m1

2
,0), D4 : ( m1

2(m1−1)
,0) (see Fig. 5).

Now by restricting ∆A2B2D2 with p,q≥1 we observed that the range for Lp−Lq
estimates of eitQ(D) is larger than �A1B1C1D1 when k>2. That is, by studying Hp−Hq

estimates of eitQ(D), one can actually improve the range for Lp−Lq estimates, which
also reveals that it is meaningful to consider the Hp−Hq estimates of eitQ(D) for
general Q.

1.2 Main result

Let n≥2 and φ(ξ) be a homogeneous function of degree one on Rn that is smooth
and positive away from the origin. Σ:={ξ∈Rn |φ(ξ)=1} is the level set. Note that
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Figure 5: The Hp−Hq estimates for eitQ(|∇|) of Deng et al. [15].

∇φ(ξ) 6=0 for any ξ∈Σ by homogeneity, hence Σ is a smooth compact hypersurface
of Rn. Let k∈N and k≥2, we say Σ is of finite type if there exist k and Ck>0 such
that

k∑
j=1

|〈η,∇〉jφ(ξ)|≥Ck, ξ∈Σ, η∈Sn−1, (1.8)

where 〈η,∇〉=
∑n

i=1ηi∂/∂xi. The least integer k such that (1.8) holds is called the
type order of Σ. Also, we call Σ is convex if for any ξ∈Σ such that

Σ⊂{η∈Rn | 〈η−ξ,∇φ(ξ)〉≥0} or Σ⊂{η∈Rn | 〈η−ξ,∇φ(ξ)〉≤0}.

In this work, we assume Q(ξ)=P (φ(ξ)), where P :R+→R is a smooth function
satisfying

(H1) : There exists m1>0, such that for any α>2, α∈N,

|P ′(ξ)|∼ξm1−1, |P ′′(ξ)|∼ξm1−2, |P (α)(ξ)|.ξm1−α, ξ≥1.

(H2) : There exists m2>0, such that for any α>2, α∈N,

|P ′(ξ)|∼ξm2−1, |P ′′(ξ)|∼ξm2−2, |P (α)(ξ)|.ξm2−α, 0<ξ<1,

and φ(ξ) is a positive homogeneous function smooth away from the origin, and of
degree one with n≥2 which satisfies

(HΣ) : Σ={ξ∈Rn |φ(ξ)=1} is a smooth convex and of finite type, k≥2.
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Figure 6: When γ≥0, Hp−Hq estimate of IγS(t).

Notice that these conditions were also introduced in references [9,17], where the
authors considered the dispersive estimates of eitP (φ(D)) and eitP (|∇|) respectively,
and in [13], where the authors studied pointwise convergence of eitP (|∇|). Denote by
S(t)=eitP (φ(D)) the linear propagator of Eq. (1.1) and Iγ=φ(D)γ (γ∈R), where the
definition of S(t) is given by (1.2) and

φ(D)γf=F−1(φ(·))γFf).

The main result is stated as follows.

Theorem 1.1. Assume that (H1) and (H2) are satisfied with m1>2 and m2>0.
Let m=max{m1,m2},γ≥0 and m1

k
− γ

n
≥1. Then for any (1

p
, 1
q
)∈Jm1,γ (see Fig. 6),

we have

‖IγS(t)f‖Hq. |t|−
n
m

( 1
p
− 1
q

+ γ
n

)‖f‖Hp . (1.9)

Here Jm1,γ denotes the triangle with vertices

A5 :
(1

2
+

kγ

2n(m1−k)
,
1

2
− kγ

2n(m1−k)

)
, B5 :

(m1

k
− γ
n
,0
)

and D5:(η,0)

with

η=1−
(1

2
− kγ

2n(m1−k)

) m1

k
− γ

n
−1

m1

k
− γ

n
− 1

2
− kγ

n(m1−k)

. (1.10)

The next result is concerning the estimates for γ= 0 in Theorem 1.1. We note
that in this case we can choose m1≥2, which is slightly different from the assumption
in Theorem 1.1.
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Corollary 1.1. Assume that (H1) and (H2) are satisfied with m1≥max{2,k} and
m2>0. Then for any (1

p
, 1
q
)∈Jm1 (see Fig. 7), we have

‖S(t)f‖Hq. |t|−
n
m

( 1
p
− 1
q

)‖f‖Hp . (1.11)

Here Im1 denotes the triangle with vertices A6 : (1
2
, 1

2
) and B6 : (m1

k
,0).

Remark 1.1. (i) Now by restricting ∆A6B6D6 with p,q≥ 1 we observed that the
range for Lp−Lq estimates of eitQ(D) is larger than �A3B3C3D3 when k>2. For the
non-homogeneous Q, we obtain the decay estimate of Hp−Hq for all time t 6= 0,
while Cui [11] and Deng-Yao [14] obtained the estimate of Lp−Lq for any finite
time t 6=0.

(ii) When we take φ(ξ) = |ξ|, this corresponds to the result in [15] for k = 2.
Futhermore, the range of Jm1,γ is the same as that of ∆A4B4D4 , as well as the decay
estimates are also the same.

The proof of main theorem is based on the phase space analysis. Notice that the
lower frequency and the higher frequency enjoy different scalings, we make suitable
decomposition in phase space and then Theorem 1.1 can be reduce to the estimates
for different types of oscillatory integrals. Therefore, the standard stationary phase
argument and the Van der corput lemma shall be involved. We note that since the
symbols P (φ(ξ)) can be inhomogeneous in Theorem 1.1, our method is quiet different
from the work of Ding-Yao [12], where the authors used scaling to transfer the time-
dependent multiplier eitP (ξ) to time independent one eiP (ξ). On the other hand,
Cui [11] obtained the Lp−Lq estimates locally in time for inhomogeneous symbols

A1 B1 C1 D1 E1

A2
B2

C2

A3

F1

A4

Figure 7: When γ=0, Hp−Hq estimate of S(t).
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(see (1.5)), in terms of the pointwise estimate for the kernel of eitP (ξ). However, the
argument used in [11] can not be applied in our work, since we actually obtained
the Hp−Hq estimates globally in time for the propagator S(t).

The paper is organized as follows. In Section 2, we introduce some notations and
basic lemmas. Section 3 is devoted to the proof of Theorem 1.1 and Corollary 1.1.
In Section 4, we apply Theorem 1.1 to specific linear Schrödinger equations with
both homogeneous and inhomogeneous symbols.

2 Preliminaries

2.1 Some notations

Throughout this work, we write X.Y to indicate there exists some constant C>0
independent of X and Y such that X≤CY . Let σ1 be a C∞ function satisfying

σ1(ξ)≡1 for |ξ|≤1, suppσ1⊂{|ξ|≤2} and 0≤σ1≤1.

We choose Ψ is of the same type of σ1 and set

σ2 =1−σ1, Φ=1−Ψ.

Next, we introduce some function spaces. The Lp(Rn) based homogeneous
Sobolev spaces L̇sp(Rn) is the set of tempered distribution f satisfying (−∆)

s
2f ∈

Lp(Rn). We denote by Hp(Rn) (0<p≤ 1) the real Hardy spaces and Λ̇s(Rn) the
homogeneous Hölder space. We refer to the books [18, 24, 29] et al. for the defi-
nitions and their equivalent characterizations. One of the equivalent norms of the
homogeneous Hölder space Λ̇s(Rn) will be given here. To do so, let Γ be a C∞

function supported in {ξ : 1
2
≤|ξ|≤2} satisfying∑

j∈Z

Γ(2−j|ξ|)=1, ξ 6=0. (2.1)

Denote by Γj(ξ)=Γ(2−j|ξ|) and Γj,ρ(ξ)=Γ(2−jρ|ξ|) (ρ>0), then it follows from the
results of [18,29] and [16] that for s≥0

‖f‖Λ̇s(Rn)∼ sup
x∈Rn
j∈Z

2js|F−1(Γj f̂)(x)|.

Furthermore, by using the same argument of [10], we have an equivalent norm of
Λ̇s(Rn) with an extra parameter. Precisely, for any ρ≥0

c sup
x∈Rn
j∈Z

2jsρ−s|F−1(Γj,ρf̂)(x)‖≤‖f‖Λ̇s(Rn)≤C sup
x∈Rn
j∈Z

2jsρ−s|F−1(Γj,ρf̂)(x)|, (2.2)
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where s≥0 and the positive constants c and C are independent of ρ.

Since φ(ξ) is a positive smooth homogeneous function degree one that is bounded
on sphere Sn−1, there exist constant 0<C1<1 and C2>1 that satisfy

C1|ξ|≤φ(ξ)≤C2|ξ|.

Let

Γ̃k(ξ)=Γ(2−kφ(ξ)) and Γ̃k,ρ(ξ)=Γ(2−kρφ(ξ)),

by simple calculation, we have Γ̃j(ξ)Γk(ξ)=0 for |j−k|>C3, where

C3 =max

{[
log2

4

C1

]
+1,

[
log2

1

4C2

]
+1

}
.

Then one has

sup
x∈Rn
j∈Z

2js|F−1(Γj f̂)(x)|= sup
x∈Rn
j∈Z

2js
∣∣∣F−1

(
Γj
∑
k∈Z

Γ̃k(ξ)Γ̃k(ξ)f̂
)

(x)
∣∣∣

≤ sup
x∈Rn
j∈Z

2ks+(j−k)s
∣∣∣F−1

(
Γj

j+C3∑
k=j−C3

Γ̃kΓ̃kf̂
)

(x)
∣∣∣

≤ sup
x∈Rn
j∈Z

2C3s

j+C3∑
k=j−C3

2ks|F−1(Γ̃kf̂)(x)|

≤2C3s2C3 sup
x∈Rn
j∈Z

2js|F−1(Γ̃j f̂)(x)|.

Similarly, we have

sup
x∈Rn
j∈Z

2jsρ−s|F−1(Γj,ρf̂)(x)|. sup
x∈Rn
j∈Z

2jsρ−s|F−1(Γ̃j,ρf̂)(x)|. (2.3)

In the rest of the paper, we would use X instead of X(Rn) for simplicity when
X(Rn) are certain function spaces.

2.2 Some lemmas

Before proving Theorem 1.1, we need some lemmas. The following one is related to
the Fourier transform of a measure carried on a smooth hypersurface (see [5]).
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Lemma 2.1. Suppose Σ is a compact smooth convex hyper-surface of finite type
k in Rn. For each η∈Sn−1, let ξ± be the two points of Σ whose outward normal
directions are ±η. If ψ∈C∞(Σ) and define

ψ̂dσ(λη)=

∫
Σ

eiλ〈η,ξ〉ψ(ξ)dσ(ξ),

then

ψ̂dσ(λη)=eiλ〈η,ξ+〉H+(λ)+eiλ〈η,ξ−〉H−(λ)+H∞(λ), λ>0,

where H±,H∞∈C∞((0,∞)), and for every j∈N0 =N∪{0}, there exist constants Cj
and Cj,N depending on Σ such that∣∣∣H(j)

± (λ)
∣∣∣≤Cjλ−j−n−1

k ,

and ∣∣H(j)
∞ (λ)

∣∣≤Cj,Nλ−N for N≥0.

We also need the Van der Corput lemma, which is a basic tool to deal with
oscillatory integrals, one can see for example [27] and [18].

Lemma 2.2. Suppose φ is real-valued and smooth in (a,b) satisfying |φk(x)|≥1 for
all x∈ (a,b).Then for any function ψ on (a,b) with an integrable derivative, there
exist constant ck independent of φ, ψ and λ such that∣∣∣∫ b

a

eiλφ(x)ψ(x)dx
∣∣∣≤ckλ− 1

k

[
|ψ(b)|+

∫ b

a

|ψ′(x)|dx
]

holds when:

(i). k≥2, or

(ii). k=1 and φ′(x) is monotonic.

The theorem of Mihlin multiplier and the interpolation for function spaces will
be needed, see [7] and [19], respectively.

Lemma 2.3. Let 0<p≤∞ and l=[n|1/p−1/2|]+1. If a∈Ck(Rn\{0}) and satisfies
with

|Dµa(ξ)|≤Cµ|ξ|−|µ| for |µ|≤ l,

then a∈M(Hp,Hp).
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Lemma 2.4. Assume that α0, α1∈R, α0 6=α1, 0<p0,p1,q0,q1≤∞ and either p0+q0<
∞ or p1+q1<∞ and 0<θ<1. Let s0, s1, p0, q, p1, q1 satisfy

α=(1−θ)α0+θα1,
1

p
=

1−θ
p0

+
θ

p1

and
1

q
=

1−θ
q0

+
θ

q1

.

One has

[Ḟ p0,q0
s0

(Rn),Ḟ p1,q1
s1

(Rn)]θ= Ḟ p,q
s (Rn),

where Ḟ p0,q0
s0

denotes the homogeneous Triebel-Lizorkin space.

3 The proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. Let the smooth functions σ1, σ2, Φ and
Ψ be defined in Section 2, notice that eiP (φ(ξ)) is the symbol of linear propagator
S(t),

eitP ((φ(ξ))) =σ1(φ(ξ))eitP (φ(ξ))+σ2(φ(ξ))eitP (φ(ξ)).

Accordingly, we have
S(t)=S1(t)+S2(t).

For t>0, denote by

Φt(ξ)=Φ(t
1
m2 ξ) and Ψt(ξ)=Ψ(t

1
w2 ξ),

where m2 is given in assumption (H2), and then

S1(t)=S11(t)+S12(t),

where S11(t) has symbol
Φt(φ(ξ))σ1(φ(ξ))eitP (φ(ξ))

and S12(t) has symbol
Ψt(φ(ξ))σ1(φ(ξ))eitP (φ(ξ)).

It follows from Plancherel’s identity that

‖IγS11(t)f‖L2.‖φ(D)γf‖L2 , ‖IγS12(t)f‖L2.‖φ(D)γf‖L2 ,

and similarly,

‖IγS1(t)f‖L2.‖φ(D)γf‖L2 , ‖IγS2(t)f‖L2.‖φ(D)γf‖L2 .
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3.1 Decay estimates for low frequency

Lemma 3.1. Let γ≥0 and m2>0 be defined in assumption (H2). Then we have
for 0<p<1,

‖IγS11(t)f‖L∞.(1+|t|)−
n
m2

( 1
p

+ γ
n

)‖f‖Hp , (3.1)

and for p=1,

‖IγS11(t)f‖L∞.(1+|t|)−
n
m2

(1+ γ
n

)‖f‖L1 . (3.2)

Proof. We only prove the inequality (3.1), since the proof for (3.2) shares exactly
the same procedures. To this end, notice that

(Hp)∗=Λ̇β,

where β=n(1
p
−1) and Λ̇β is the Hölder space, we may assume that β is a positive

integer for simplicity. Denote by K1(t,·) the kernel of IγS11(t) and write

Ωx,1(t,y)=K1(t,x−y).

For any f ∈Hp,

‖IγS11(t)f‖L∞=sup
x
|〈Ωx,1(t,·),f〉|≤sup

x
‖Ωx,1(t,·)‖Λ̇β‖f‖Hp . (3.3)

For any x∈Rn,

sup
x
‖Ωx,1(t,·)‖Λ̇β.

∣∣∣∣∫
Rn
eitP (φ(ξ))Ψt(φ(ξ))σ1(φ(ξ))φ(ξ)γ|ξ|βei〈x,ξ〉dξ

∣∣∣∣
≤
∫
Rn
|Ψt(φ(ξ))σ1(φ(ξ))|φ(ξ)γ|ξ|βdξ

=

∫
Rn
|Ψ(φ(ξ))σ1(t

− 1
m2 φ(ξ))|t−

1
m2 ξ|βφ(t

− 1
m2 ξ)γt

− n
m2 |dξ

=|t|−
n
m2

( 1
p
−1)|t|−

γ
m2 |t|−

n
m2

∫
φ(ξ)≤2

∣∣Ψ(φ(ξ))σ1(t
− 1
m2 φ(ξ))

∣∣φ(ξ)γ|ξ|αdξ

.|t|−
n
m2

( 1
p

+ γ
n

)
, (3.4)

which combined with (3.3) lead to (3.1) for t>1. Moreover, since σ1 is compactly
supported it is easy to see from (3.4) that supx‖Ωx,1(t,·)‖Λ̇β is uniformly bounded
in t. Thus we finish the proof of (3.1).
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Lemma 3.2. Let γ≥0 and m2>0 be defined in assumption (H2). Then we have
for 0<p<1,

‖IγS12(t)f‖L∞.(1+|t|)max{−n
k
,− n

m2
( 1
p

+ γ
n

)}‖f‖Hp , (3.5)

and for p=1,

‖IγS12(t)f‖L∞.(1+|t|)max{−n
k
,− n

m2
(1+ γ

n
)}‖f‖L1 .

Proof. Similarly to the proof of Lemma 3.1, we only need to prove (3.5) for t> 0
The proof will be split into short time 0<t≤4m2 and large time t>4m2 .

For 0<t≤ 4m2 , the same argument used in in the proof of Lemma 3.1 can be
applied. Notice that (Hp)∗=Λ̇β with β=n(1

p
−1), we may also assume that β is a

positive integer. Thus

‖IγS12(t)f‖L∞=sup
x
|〈Ωx,2(t,·),f〉|≤sup

x
‖Ωx,2‖Λ̇β ‖f‖Hp , (3.6)

where Ωx,2(t,y)=K2(t,x−y) with K2(t,·) being the kernel of IγS12(t). By changing
of variable, we obtain

sup
x
‖Ωx,2‖Λ̇β.sup

x

∣∣∣∣∫
Rn
eitP (φ(ξ))Φt(φ(ξ))σ1(φ(ξ))φ(ξ)γ|ξ|βei〈x,ξ〉dξ

∣∣∣∣
≤
∫
Rn

∣∣Φt(φ(ξ))σ1(φ(ξ))φ(ξ)γ|ξ|β
∣∣dξ

=

∫
Rn

∣∣∣Φ(φ(ξ))σ1(t
− 1
m2 φ(ξ))|t−

1
m2 ξ|βφ(t

− 1
m2 ξ)γt

− n
m2

∣∣∣dξ
=|t|−

β
m2 |t|−

γ
m2 |t|−

n
m2

∫
{ξ:1<φ(ξ)<2

2m1
m2

+1}

∣∣Φ(ξ)σ1(t
− 1
m2 ξ)

∣∣φ(ξ)γ|ξ|βdξ

.|t|−
n
m2

( 1
p

+ γ
n

)
,

which combined with (3.6) imply (3.5) for 0<t≤4m2 . We note that sup‖Ωx,2‖Λ̇β is
also uniformly bounded in t. We hence finish the proof for (3.5) with 0<t≤4m2 .

It remains to prove (3.5) for t> 4m2 . By using the equivalent norm of Λ̇β (see
(2.3)), we have

sup
x
‖Ωx,2‖Λ̇β

. sup
j∈Z
x∈Rn

( 2j

t1/m2

)β ∣∣∣∣∫
Rn
eitP (φ(ξ))Γ(t

1
m2 2−jφ(ξ))Φt(φ(ξ))σ1(φ(ξ))φ(ξ)γei〈x,ξ〉dξ

∣∣∣∣
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uniformly in t>0. Then by changing of variable, it follows

sup
x
‖Ωx,2‖Λ̇β

.sup
x
t
−n+β+γ

m2

∑
j∈Z

2jβ
∣∣∣∣∫

Rn
eitP (t

− 1
m2 φ(ξ))Γ(2−jφ(ξ))Φ(φ(ξ))σ1(t

− 1
m2 φ(ξ))φ(ξ)γei〈x,ξ〉t

− 1
m2 dξ

∣∣∣∣
=sup

x
t
−n+β+γ

m2

∑
j∈Z

2j(n+β+γ)

∣∣∣∣∫
Rn
eiϕ(ξ,t,x)H(ξ)dξ

∣∣∣∣, (3.7)

where the phase function ϕ(ξ,t,x) and H(ξ) are defined by

ϕ(ξ,t,x)= tP (2jt
− 1
m2 φ(ξ))+〈x,ξ〉2jt−

1
m2 ,

and

H(ξ)=Γ(φ(ξ))Φ(2jφ(ξ))σ1(2jt
− 1
m2 φ(ξ))φ(ξ)γ, (3.8)

respectively. Note that Φ(φ(ξ)) = 0 if φ(ξ)< 1 and σ1 is compactly supported, we
obtain

sup
x
‖Ωx,2‖Λ̇β.sup

x
t
−n+β+γ

m2

log22t
1
m2∑

j=0

2j(n+β+γ)

∣∣∣∣∫
Rn
eiϕ(ξ,t,x)H(ξ)dξ

∣∣∣∣. (3.9)

For any fixed |x| 6=0, we define sets

E1 =
{

0≤j≤ log22t
1
m2 :2j(m2−1)−10≥ t−

1
m2 |x|

}
,

E2 =
{

0≤j≤ log22t
1
m2 :Mαn2j(m2−1)+10≤ t−

1
m2 |x|

}
,

and

E3 =
{

0≤j≤ log22t
1
m2 :2j(m2−1)−10<t

− 1
m2 |x|<Mαn2j(m2−1)+10

}
,

where M is a sufficiently large number. Then we have

{j :0≤j≤ log22t
1
m2 }=E1∪E2∪E3. (3.10)

If j∈E1, let ξ=rξ′ and ξ′∈Σ, we use polar coordinates to write

2j(n+β+γ)

∣∣∣∣∫
Rn
eϕ(ξ,t,x)H(ξ)dξ

∣∣∣∣
=2j(n+β+γ)

∣∣∣∣∫
Σ

∫ ∞
0

G(r)Φ(2jr)σ1(2jt
− 1
m2 r)eiP1(r)dr|∇φ(ξ′)|−1dσ(ξ′)

∣∣∣∣
≤2j(n+β+γ)

∫
Σ

∣∣∣∣∫ ∞
0

G(r)Φ(2jr)σ1(2jt
− 1
m2 r)eiP1(r)dr

∣∣∣∣|∇φ(ξ′)|−1dσ(ξ′), (3.11)
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where dσ(ξ′) is the Lebesgue measure induced surface on Σ,

P1(r)= tP (2jt
− 1
m2 r)+2jt

− 1
m2 r〈x,ξ′〉,

and

G(r)=Γ(r)rn+γ−1 (3.12)

is a C∞ function supported in the interval [1
2
,2]. Noting that 0≤ j≤ log22t

1
m2 and

r∈
[

1
2
,2
]
, we obtain

2jt
− 1
m2 r≤4.

Thus if j∈E1, one has

|P ′1(r)|=|t(2jt−
1
m2 )P ′(2jt

− 1
m2 r)+2jt

− 1
m2 〈x,ξ′〉|

≥|t(2jt−
1
m2 )P ′(2jt

− 1
m2 r)|−2jt

− 1
m2 |x|

&t(2jt−
1
m2 )m2−2jt

− 1
m2 |x|

&2jm2 .

Moreover,

|P ′′1 (r)|=|t(2jt−
1
m2 )2P ′′(2jt

− 1
m2 r)|

≤t(2jt−
1
m2 )2(2jt

− 1
m2 r)m2−2

≤2jm2 ,

and similarly,

|P (k)
1 (r)|.2jm2 , k≥3.

Then for any integer m≥0 and r∈
[

1
2
,2
]
, we have

∣∣∣∂mr 1

P
′
1(r)

∣∣∣=∣∣∣∑`C`P
′
1(r)α

1
`P
′′
1 (r)α

2
` ···P (m+1)

1 (r)α
m+1
`

P
′
1(r)m+1

∣∣∣
.2−jm2 , (3.13)

where α1
`+α

2
`+···+αm+1

` =m, α1
`+2α2

`+···+(m+1)αm+1
` =2m and C` is constant for

each `.
Denote by

F (r)=G(r)Φ
(
2jr
)
σ1(2jt

− 1
m2 r).
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Notice that r lies in the support of Γ and 0≤j≤ log22t
1
m2 . It follows that

∂rΦ(2jr)=2jΦ′(2jr)=0, j≥3,

and

|∂`rσ1(2jt
− 1
m2 r)|= |(2jt−

1
m2 )`||σ(`)

1 (2jt
− 1
m2 r)|≤|2jt−

1
m2 |`.1, `∈N+.

Thus thus for arbitrary integer N≥0

∣∣∂Nr F (r)
∣∣=∣∣∣ N∑

`=0

C`
N∂

N−`
r (Γ(r)rn+γ−1)∂`r(Φ(2jr)σ1(2jt−

1
m r))

∣∣∣
≤

N∑
`=0

C`
N |∂N−`r (Γ(r)rn+γ−1)|

(∑̀
m=0

Cm
` |∂`−mr Φ(2jr)||∂mr σ1(2jt−

1
m r)|

)
.

N∑
`=0

C`
N |∂N−`r (Γ(r)rn+γ−1)|.1. (3.14)

Now by integration by parts, we have for any N ∈N+,∣∣∣∫ ∞
0

G(r)Φ(2jr)σ1(2jt
− 1
m2 r)eiP1(r)dr

∣∣∣
=
∣∣∣∫ ∞

0

eiP1(r)F (r)dr
∣∣∣

=
∣∣∣∫ ∞

0

eiP1(r)DN
r (F (r))dr

∣∣∣, (3.15)

where Dr is an operator defined by

DrF =∂r

( 1

P ′1(r)
F
)

and DN
r F =Dr

( 1

P ′1(r)
DN−1
r F

)
. (3.16)

It follows from (3.13) and (3.14) that

∣∣DN
r F
∣∣=∣∣∣(− 1

i

)N N∑
m=0

∑
l1,···lN∈ΛNm

Cm,N

N∏
i=1

∂lir (
1

P ′1(r)
)∂N−mr F (r)

∣∣∣
.2−jm2N , (3.17)

where ΛN
m ={l1,··· ,lN ∈Z+ :0≤ l1< ···<lN≤N, l1+···lN =m} and N enough large.

Combined with (3.15) and (3.17), we obtain∣∣∣∫ ∞
0

G(r)Φ(2jr)σ(2jt
− 1
m2 r)eiP (r)dr

∣∣∣.2−jm2N ,



Q. Deng and X. Meng / Ann. Appl. Math., 41 (2025), pp. 77-111 95

which combined with (3.11) implies

t
−n+β+γ

m2

∑
j∈E1

2j(n+β+γ)
∣∣∣∫

Rn
eiϕ(ξ,t,x)H(ξ)dξ

∣∣∣
.t−

n+β+γ
m2

∑
j∈E1

2j(n+β+γ)2−jm2N

.t−
n+β+γ
m2 = t

− n
m2

( 1
p

+ γ
n). (3.18)

Let us turn to the case j∈E2. For any fixed |x| 6=0, without loss of generality, we

assume |x1| ≥ |x|n . Noting that φ is a smooth positive homogeneous function and

φ(ξ)∈ suppΓ, it follows |∂βξ1φ(ξ)|.1 (β≥0). Since M is a large constant, we have
for j∈E2,

|∂ξ1ϕ(ξ,t,x)|=|t2jt−
1
m2P ′(2jt

− 1
m2 φ(ξ))∂ξ1φ(ξ)+x12jt

− 1
m2 |

≥|x1|2jt−
1
m2 −|t2jt−

1
m2P ′(2jt

− 1
m2 φ(ξ))∂ξ1φ(ξ)|

≥|x|
n

2jt
− 1
m2 −2jm2&2jm2 . (3.19)

Moreover,∣∣∂2
ξ1
ϕ(ξ,t,x)

∣∣= |∂ξ1(t2jt− 1
m2P ′(2jt

− 1
m2 φ(ξ))∂ξ1φ(ξ)+x12jt

− 1
m2 )|

=|t−
1
m2P ′(2jt

− 1
m2 φ(ξ))∂2

ξ1
φ(ξ)+t(2jt

− 1
m2 )2P ′′(2jt

− 1
m2 φ(ξ))(∂ξ1φ(ξ))2|

.|t2jt−
1
m2 (2jt

− 1
m2 φ(ξ))m2−1∂2

ξ1
φ(ξ)+t(2jt

− 1
m2 )2(2jt

− 1
m2 φ(ξ))m2−2(∂ξ1φ(ξ))2|

.2jm2 , (3.20)

and similarly, ∣∣∂αξ1ϕ(ξ,t,x)
∣∣.2jm2 , α≥3.

Then similarly to (3.13), we have for arbitrary integer m≥0 and φ(ξ)∈ [1
2
,1]

1

ϕ′ξ1(ξ)

∣∣∣=∣∣∣∑`C`ϕ
′
ξ1

(ξ)α
1
`ϕ′′ξ1(ξ)

α2
` ···ϕ(m+1)

ξ1
(ξ)α

m+1
`

ϕ′ξ1(ξ)
m+1

∣∣∣
.2−jm2 , (3.21)

where α1
`+α

2
`+···+αm+1

` =m, α1
`+2α2

`+···+(m+1)αm+1
` =2m and C` is constant for

each `. Similarly to (3.14), we have for any k∈N,

∂ξ1Φ(2jφ(ξ))=0 with j≥3, |∂kξ1σ1(2jt
− 1
m2 φ(ξ))|.1,
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and

|∂Nξ1H(ξ)
∣∣∣=∣∣∣ N∑

`=0

C`
N∂

N−`
ξ1

(Γ(φ(ξ))φ(ξ)γ)∂`ξ1(Φ(2jφ(ξ))σ1(2jt
− 1
m2 φ(ξ)))

∣∣∣
.1, (3.22)

where H is defined by (3.8). Then by integration by parts, for each integral in (3.7),
we have ∫

Rn
eϕ(ξ,t,x)H(ξ)dξ=

∫
Rn−1

∫
R
eiϕ(ξ,t,x)H(ξ)dξ1dξ2 ···dξn

=

∫
Rn−1

∫
R
eiϕ(ξ,t,x)DN

ξ1
H(ξ)dξ1dξ2 ···dξn, (3.23)

where

Dξ1H=∂ξ1

( 1

iϕ′ξ1
H
)

and DN
ξ1
H=Dξ1

( 1

iϕ′ξ1
DN−1
ξ1

H
)
.

Notice that by (3.21) and (3.22), one has

|DN
ξ1
H|=

∣∣∣(− 1

i

)N N∑
m=0

∑
l1,···,lN∈ΛNm

Cm,N

N∏
i=1

∂liξ1
1

ϕ′ξ1(ξ)
∂N−mξ1

H(ξ)
∣∣∣

.2−jm2N , (3.24)

where ΛN
m = {l1,··· ,lN ∈Z+ :0≤ l1< ···<lN≤N, l1+···lN =m} and N ∈N+. Com-

bined with (3.23) and (3.24), we have∣∣∣∣∫
R
eiϕ(ξ,t,x)Γ(φ(ξ))Φ(2jφ(ξ))σ1(2jt

− 1
m2 φ(ξ))φ(ξ)γdξ1

∣∣∣∣.2−jm2N

and

t
−n+β+γ

m2

∑
j∈E2

2j(n+β+γ)

∣∣∣∣∫
Rn
eiϕ(ξ,t,x)H(ξ)dξ

∣∣∣∣
.t−

n+β+γ
m2

∑
j∈E2

2j(n+β+γ)(2jm2)−N

.t−
n+β+γ
m2 = t

− n
m2

( 1
p

+ γ
n

)
. (3.25)

We finally consider the estimate for j∈E3. Notice that

1

m2−1

(
log2

|x|
Mαn

t
− 1
m2 −10

)
≤j≤ 1

m2−1
(log2t

− 1
m2 |x|+10),
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which means that E3 has finite elements, that is |E3|≤K1 with K1 depending on
m2,M . For each j∈E3, we write each integral in (3.9) in terms of polar coordinates,

Rj(t,s) :=

∫
Rn
eiϕ(ξ,t,x)Γ(φ(ξ))Φ(2jφ(ξ))σ1(2jt

− 1
m2 φ(ξ))φ(ξ)γdξ

=

∫ ∞
0

G1(r)eitP (2jt
− 1
m2 r)

(∫
Σ

ei2
jt
− 1
m2 rs〈ω,ξ′〉 dσ(ξ′)

|∇φ(ξ′)|

)
dr,

where

G1(r)=Γ(r)rn+γ−1Φ(2jr)σ1(2jt
− 1
m2 r).

Since Σ is a compact smooth convex hypersurface in Rn, the Gaussian map given
by Π:ξ′∈Σ 7−→ ∇φ(ξ′)

|∇φ(ξ′)| ∈S
n−1 is a homeomorphism from Σ to Sn−1. Thus for given

ω∈Sn−1, there exist ξ′±∈Σ such that ±ω is the outward unit normal direction and
by Euler’s homogeneous formula

〈ω,ξ′±〉=
〈
±
∇φ(ξ′±)

|∇φ(ξ′±)|
,ξ′±

〉
=

±1

|∇φ(ξ′±)|
.

Hence let s= |x| and x=sω, by Lemma 2.1, we have∫
Σ

eiλ〈ω,ξ
′〉

|∇φ(ξ′)|
dσ(ξ′)=eiλ〈ω,ξ

′
+〉H+(λ)+eiλ〈ω,ξ

′
−〉H−(λ)+H∞(λ), λ=2jt

− 1
m2 rs, (3.26)

where H±∈C∞((0,∞)), and there exist constants Cj depending on Σ such that∣∣∣H(j)
± (λ)

∣∣∣≤Cjλ−j−(n−1)/k for j∈N+, (3.27)

and ∣∣H(j)
∞ (λ)

∣∣≤Cjλ−N for j∈N+.

If follows from (3.26) that

Rj(t,s)=

∫ ∞
0

G1(r)eitP (2jt
− 1
m2 r)+i2jt

− 1
m2 rs〈ω,ξ′+〉H+(2jt

− 1
m2 rs)dr

+

∫ ∞
0

G1(r)eitP (2jt
− 1
m2 r)+i2jt

− 1
m2 rs〈ω,ξ′−〉H−(2jt

− 1
m2 rs)dr

+

∫ ∞
0

G1(r)eitP (2jt
− 1
m2 r)H∞(2jt

− 1
m2 rs)dr

=Rj1(t,s)+Rj2(t,s)+Rj3(t,s). (3.28)
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To estimate Rj1(t,s), we denote by

Uj1(t,r,s)= tP (2jt
− 1
m2 r)+2jt

− 1
m2 rs〈ω,ξ′+〉,

Vj1(t,r,s)=Γ0(r)rn+γ−1Φ(2jr)σ1(2jt
− 1
m2 r)H+(2jt

− 1
m2 rs).

It is easy to see from assumption (H2) that

|∂2
rUj1(t,r,s)|= |t(2jt−

1
m2 r)2P ′′(2jt

− 1
m2 r)|&2jm2 .

Since j∈E3, it follows from (3.27) that for N≥0

|∂Nr Vj1(t,r,s)|.(2jt
− 1
m2 s)−

n−1
k . (3.29)

Thus for j∈E3, by Lemma 2.2, we obtain

|Rj1(t,s)|.(2jm2)−
1
2

(
‖Vj1‖∞+‖∂rVj1‖L1

)
.(2jm2)−

1
k (2jt

− 1
m2 s)−

n−1
k

.(2jm2)−
1
k (2jt

− 1
m2 t

1
m2 2j(m2−1)−10)−

n−1
k

.(2jm2)−
n
k .

The same procedures as above can be applied to obtain

|Rj2(t,s)|+|Rj3(t,s)|.(2jm2)−
n
k .

Hence,

|Rj(t,s))|≤|Rj2(t,s)|+|Rj2(t,s)|+|Hj3(t,s)|.(2jm2)−
n
k .

Notice that by the assumptions on the supports of Γ and σ1, one has 2j.t
1
m2 . Then

if n+β+γ−m2n
k
≥0,

t
−n+β+γ

m2

∑
j∈E3

2j(n+β+γ)

∣∣∣∣∫
Rn
eiϕ(ξ,t,x)H(ξ)dξ

∣∣∣∣
.t−

n+β+γ
m2

∑
j∈E3

2j(n+β+γ)|Rj(t,s)|

.t−
n+β+γ
m2

∑
j∈E3

2j(n+β+γ−m2n
k

)

.t−
n+β+γ
m2

∑
j∈E3

t
1
m2

(n+β+γ−m2n
k

). t−
n
k , (3.30)
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and if n+β+γ−m2n
k
<0,

t
−n+β+γ

m2

∑
j∈E3

2j(n+β+γ)

∣∣∣∣∫
Rn
eiϕ(ξ,t,x)H(ξ)dξ

∣∣∣∣
.t−

n+β+γ
m2

∑
j∈E3

2j(n+β+γ)|Rj(t,s)|

.t−
n+β+γ
m2

∑
j∈E3

2j(n+β+γ−m2n
k

)

.t−
n+β+γ
m2

∑
j∈E3

2j(n+β+γ)2
−n+β+γ

m2
jm2

.t−
n+β+γ
m2 = t

− n
m2

( 1
p

+ γ
n

)
, (3.31)

which combined with (3.9), (3.18) and (3.25) lead to

sup
x
‖Ωx,2(t,·)‖Λ̇β.sup

x
t
−n+β+γ

m2

∑
j∈E1∪E2∪E3

2j(n+β+γ)

∣∣∣∣∫
Rn
eiϕ(ξ,t,x)H(ξ)dξ

∣∣∣∣
.tmax{−n

k
,− n

m2
( 1
p

+ γ
n

)}
. (3.32)

Then we have

‖IγS12(t)f‖L∞≤sup
x
‖Ωx,2(t,·)‖Λ̇β‖f‖Hp

.sup
x
t
−n+β+γ

m2

∑
j∈E1∪E2∪E3

2j(n+β+γ)

∣∣∣∣∫
Rn
eiϕ(ξ,t,x)H(ξ)dξ

∣∣∣∣‖f‖Hp

.tmax{−n
k
,− n

m2
( 1
p

+ γ
n

)}‖f‖Hp , (3.33)

which finishes the proof of (3.5) for t>4m2 .

3.2 Decay estimates for high frequency

Lemma 3.3. Let γ≥ 0 and m1≥ 2 be defined in assumption (H1). Assume that
m1

k
− γ

n
≥ 1

p
>1. Then we have

‖IγS2(t)f‖L∞≤|t|−
n
m1

( 1
p

+ γ
n

)‖f‖Hp , t 6=0. (3.34)

Moreover, if m1

k
− γ

n
≥1, we have

‖IγS2(t)f‖L∞≤|t|−
n
m1

(1+ γ
n

)‖f‖L1 , t 6=0. (3.35)
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Proof. Since the proof of (3.34) and (3.35) shares exactly the same arguments, we
only establish (3.34) for t>0. Similarly to the proof of Lemmas 3.1 and 3.2, we have

‖IγS2(t)f‖L∞≤sup
x
‖Ωx(t,·)‖Λ̇β‖f‖Hp , (3.36)

where β=n(1
p
−1) and

Ωx(t,y)=

∫
Rn
eitP (φ(ξ))σ2(φ(ξ))φ(ξ)γei〈x−y,ξ〉dξ.

Let Γ be a standard smooth bump function introduced in Section 2. By (2.3)
and changing of variable, we have

sup
x∈Rn
‖Ωx(t,·)‖Λ̇β≤ sup

x∈Rn

∑
j∈Z

∣∣∣∣2jβ∫
Rn

Γ(2−jφ(ξ))eitP (φ(ξ))σ2(φ(ξ))φ(ξ)γei〈x,ξ〉dξ

∣∣∣∣
= sup
x∈Rn

∞∑
j=0

2j(n+β+γ)

∣∣∣∣∫
Rn

Γ(φ(ξ))σ2(2jφ(ξ))φ(ξ)γeiψ(ξ,t,x)dξ

∣∣∣∣, (3.37)

where the phase function ψ is defined by

ψ(ξ,t,x)= tP (2jφ(ξ))+〈x,ξ〉2j.

As in Lemma 3.2, for fixed |x| 6=0, we introduce the following sets

E1 ={0≤j : t2j(m1−1)−10≥|x|},
E2 ={0≤j : tnαM2j(m1−1)+10≤|x|},

and

E3 ={0≤j : t2j(m1−1)−10< |x|<tnαM2j(m1−1)+10},

where M is a large constant. Then the summation in (3.37) can be controlled by

∞∑
j=0

2j(n+β+γ)

∣∣∣∣∫
Rn

Γ(φ(ξ))σ2(2jφ(ξ))φ(ξ)γeiψ(ξ,t,x)dξ

∣∣∣∣
.

∑
j∈E1∪E2∪E2

2j(n+β+γ)

∣∣∣∣∫
Rn

Γ(φ(ξ))σ2(2jφ(ξ))φ(ξ)γeiψ(ξ,t,x)dξ

∣∣∣∣. (3.38)
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If j∈E1, each integral on RHS of (3.38) can be written as∫
Rn

Γ(φ(ξ))σ2(2jφ(ξ))φ(ξ)γeiψ(ξ,t,x)dξ

=

∫
Σ

∫ ∞
0

G(r)σ2(2jr)eiP2(r)dr|∇φ(ξ′)|−1dσ(ξ′), (3.39)

where G(r) is given by (3.12) and

P2(r)= tP
(
2jr
)
+〈x,ξ′〉2jr.

It follows from the assumption (H1) that for j∈E1,

|∂rP2(r)|=|t2jP ′(2jr)+〈x,ξ′〉2j|
&|t2jP ′(2jr)|−|x||∇φ(ξ′)|−12j

≥t2jm1−|x||∇φ(ξ′)|−12j& t2jm1 ,

and

|∂αr P2(r)|. t2jm1 , α≥2.

One the other hand, for any integer m≥0, we obtain∣∣∣∣∂mr 1

P ′2(r)

∣∣∣∣=∣∣∣∑`C`P
′
2(r)α

1
`P ′′2 (r)α

2
` ···P (m+1)

2 (r)α
m+1
`

P ′2(r)m+1

∣∣∣
.(t2jm1)−1, (3.40)

where α1
`+α

2
`+···+αm+1

` =m, α1
`+2α2

`+···+(m+1)αm+1
` =2m and C` is constant for

each `. Moreover, for any integer k≥0

|∂krG(r)σ2(2jr)|.1. (3.41)

Let the operator Dr be defined by (3.16). It follows from (3.40) and (3.41) that for
any integer N≥0,

|DN
r (G(r)σ2(2jr))|

=
∣∣∣(− 1

i

)N N∑
m=0

∑
l1,···lN∈ΛNm

Cm,N

N∏
i=1

∂lir
1

P ′2(r)
∂N−mr G(r)σ2(2jr)

∣∣∣
.(t2jm1)−N ,
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where ΛN
m={l1,··· ,lN ∈Z+ : 0≤ l1< ···<lN≤N, l1+···lN =m}. Then by integration

by parts, we have for any N ∈Z+,∣∣∣∣∫ ∞
0

eiP2(r)G(r)σ2(2jr)dr

∣∣∣∣=∣∣∣∣∫ ∞
0

eiP2(r)DN
r (G(r)σ2(2jr))dr

∣∣∣∣
.(t2jm1)−N , (3.42)

which implies that∑
j∈E1

2j(n+β+γ)

∣∣∣∣∫
Rn

Γ(φ(ξ))σ2(2jφ(ξ))φ(ξ)γeiψ(ξ,t,x)dξ

∣∣∣∣
≤
( ∑
j∈E1∩{t2m1j<1}

+
∑

j∈E1∩{t2m1j≥1}

)
2j(n+β+γ)

∫
Rn
|Γ(φ(ξ))σ2(2jφ(ξ))|φ(ξ)γdξ

.
∑

j∈E1∩{t2m1j<1}

2j(n+β+γ)+
∑

j∈E1∩{t2m1j≥1}

2j(n+β+γ)(t2jm1)−N

.t−
n+β+γ
m1 = t

− n
m1

( 1
p

+ γ
n

)
, (3.43)

where N is chosen to be a large constant. Similar argument as above can be applied
for j∈E2 to obtain∑

j∈E2

2j(n+β+γ)

∣∣∣∣∫
Rn

Γ(φ(ξ))σ2(2jφ(ξ))φ(ξ)γeiψ(ξ,t,x)dξ

∣∣∣∣
.
( ∑
j∈E2∩{t2m1j<1}

+
∑

j∈E2∩{t2m1j≥1}

)
2j(n+β+γ)

∣∣∣∣∫
Rn

Γ(φ(ξ))σ2(2jφ(ξ))φ(ξ)γeiψ(ξ,t,x)dξ

∣∣∣∣
.t−

n
m1

( 1
p

+ γ
n

)
. (3.44)

Now turning to j∈E3, noticed that

1

m1−1

(
log2

|x|
tnαM

−10
)
<j<

1

m1−1

(
log2

|x|
t

+10
)
,

we conclude that E3 has finite elements, that is |E3|≤K2 with K2 depending on m1

and M . It is easy to see that when t2m1j≤1,∑
j∈E3

2j(n+β+γ)

∣∣∣∣∫
Rn

Γ(φ(ξ))σ2(2jφ(ξ))φ(ξ)γeiψ(ξ,t,x)dξ

∣∣∣∣
.
∑
j∈E3

2j(n+β+γ). t−
n
m1

( 1
p

+ γ
n

)
. (3.45)
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On the other hand, when t2m1j>1, we shall utilize the same procedure as the one
in the proof of Lemma 3.2. To do so, write∫

Rn
Γ(φ(ξ))σ2(2jφ(ξ))φ(ξ)γeiψ(ξ,t,x)dξ

=

∫ ∞
0

|G(r)σ2(2jr)eitP (2jr)
(∫

Σ

ei2
jrs〈ω,ξ′〉 dσ(ξ′)

|∇φ(ξ′)|

)
dr

:=Ij(t,s), (3.46)

where s= |x|, x=sω and dσ(ξ′) is the Lebesgue induced surface measure on Σ. By
using the (3.26), we further have

Ij(t,s)=

∫ ∞
0

G(r)σ2(2jr)eitP (2jr)
(∫

Σ

ei2
jrs〈ω,ξ′〉 dσ(ξ′)

|∇φ(ξ′)|

)
dr

=

∫ ∞
0

G(r)σ2(2jr)eitP (2jr)+i2jrs〈ω,ξ′+〉H+(2jrs)dr

+

∫ ∞
0

G(r)σ2(2jr)eitP (2jr)+i2jrs〈ω,ξ′−〉H−(2jrs)dr

+

∫ ∞
0

|G(r)σ2(2jr)eitP (2jr)H∞(2jrs)dr

:=Ij1(t,s)+Ij2(t,s)+Ij3(t,s). (3.47)

We denote
Rj1(t,r,s)= tP (2jr)+2jrs〈ω,ξ′+〉

in Ij1, it follows from the assumption (H1) and (3.27) that for j∈E3,

|∂2
rRj1(t,r,s)|= |t22jP ′′(2jr)|& t2jm1

and for N≥0,

|∂Nr (G(r)σ2(2jr)H+(2jrs))|.(2js)−
n−1
k ,

which further combined with Lemma 2.2 implies that

|Ij1(t,s)|≤(t2jm1)−
1
2

(
‖G(r)σ2(2jr)H+(2jrs)‖∞

+‖∂r(G(r)σ2(2jr)H+(2jrs))‖L1

)
.(t2jm1)−

1
k (2js)−

n−1
k

.(t2jm1)−
1
k (2jt2j(m1−10))−

n−1
k .(t2jm1)−

n
k . (3.48)

Similarly,

|Ij2(t,s)|+|Ij3(t,s)|.(t2jm1)−
n
k .
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Then we obtain

|Ij(t,s)|≤|Ij1(t,s)|+|Ij2(t,s)|+|Ij3(t,s)|.(t2jm1)−
n
k ,

which further combined with (3.46) and the assumption that m1

k
− γ

n
≥ 1

p
>1 implies

that ∑
j∈E3

2j(n+β+γ)

∣∣∣∣∫
Rn

Γ(φ(ξ))σ2(2jφ(ξ))φ(ξ)γeiψ(ξ,t,x)dξ

∣∣∣∣
≤
∑
j∈E3

2j(n+β+γ)|Ij(t,s)|.
∑
j∈E3

2j(n+β+γ)(t2jm1)−
n
k

.
∑
j∈E3

2j(n+β+γ)(t2jm1)
−n+β+γ

m1 . t−
n+β+γ
m1 = t

− n
m1

( 1
p

+ γ
n

)
. (3.49)

Similarly to the proof of Lemma 3.2, by (3.37), (3.38), (3.46) and (3.49), we obtain

‖IγS2(t)f‖L∞≤sup
x
‖Ωx(t,·)‖Λ̇β‖f‖Hp

.sup
x

∑
j∈E1∪E2∪E3

2j(n+β+γ)

∣∣∣∣∫
Rn

Γ(φ(ξ))σ2(2jφ(ξ))φ(ξ)γeiψ(ξ,t,x)dξ

∣∣∣∣‖f‖Hp

≤|t|−
n
m1

( 1
p

+ γ
n

)‖f‖Hp .

Hence we finish the proof.

3.3 The proof of the main theorem

In this subsection, we prove Theorem 1.1, i.e., the Hp−Hq estimate for eitP ((φ(ξ)))

for (1
p
, 1
q
)∈Jm1,γ. The following result concerns the estimate at vertex B5 in Fig. 6.

Proposition 3.1. Let m1 and m2 be defined by assumptions (H1) and (H2), re-
spectively. Assume that m1≥2, m>0 and γ≥0. Denote by m=max{m1,m2}, then
we have for m1

k
− γ

n
≥ 1

p
>1

‖IγS(t)f‖L∞≤|t|−
n
m

( 1
p

+ γ
n

)‖f‖Hp ,

and for m1

k
− γ

n
≥1,

‖IγS(t)f‖L∞≤|t|−
n
m

(1+ γ
n

)‖f‖L1 .
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Proof. Recall that the operator S(t)=eitP (φ(D)) was rewritten as

S(t)=S11(t)+S12(t)+S2(t).

By Lemmas 3.1, 3.2 and 3.3, we obtain

‖S(t)f‖L∞≤‖S11(t)f‖L∞+‖S12(t)f‖L∞+‖S2(t)f‖L∞

≤((1+|t|)−
n
m2

( 1
p

+ γ
n

)
+(1+|t|)max{− n

m2
( 1
p

+ γ
n

),−n
k
}
+|t|−

n
m1

( 1
p

+ γ
n

)
)‖f‖Hp

≤|t|−
n
m

( 1
p

+ γ
n

)‖f‖Hp .

The L1−L∞ estimate can be treated similarly as above, we omit the details here.

Now we turn to prove Theorem 1.1.

Proof of Theorem 1.1. By assumptions, one has obviously m>k. Let

δ=n
(m1

k
−1
)
−γ

and then we have m1

k
− γ+δ

n
≥1. It follows from Proposition 3.1 that

‖IγS(t)f‖L∞=‖φ(D)δIγS(t)φ(D)−δf‖L∞

.|t|−
n
m

(1+ δ+γ
n

)‖φ(D)−δf‖L1

≤|t|−
nm1
km ‖φ(D)−δf‖H1 .

Let m(ξ) :=( |ξ|
φ(ξ)

)δ, it follows that m is a homogeneous function degree zero on Rn

that is smooth and positive away from the origin. By Euler’s homogeneous formula,
Dµm(ξ) is a homogeneous function degree −|µ| that is bounded on sphere Sn−1,
then we have ∣∣|ξ|µDµm(ξ)

∣∣= ∣∣∣Dµm
( ξ
|ξ|

)∣∣∣.1,

where Dµ =∂µ1ξ1 ∂
µ2
ξ2
···∂µnξn and µ1+µ2+···+µn = |µ|. By Lemma 2.3, we know that

m(ξ)∈M(H1,H1), hence

‖IγS(t)f‖L∞.|t−
nm1
km ‖φ(D)−δf‖H1

=|t|−
nm1
km

∥∥∥∥( |∇|φ(D)

)δ
|∇|−δf

∥∥∥∥
H1

.|t|−
nm1
km ‖|∇|−δf‖H1

=|t|−
nm1
km ‖f‖H1

−δ

.|t|−
nm1
km ‖f‖Ḟ−δ1,2

. (3.50)
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On the other hand, since φ is a positive smooth homogeneous function of degree
one, m1(ξ) := (φ(ξ)

|ξ| )γ is a bounded function and hence is a L2 multiplier, then we
have

‖IγS(t)f‖L2.‖φ(D)γf‖L2.‖f‖L2
γ
.‖f‖Ḟ γ2,2 . (3.51)

Let 1
q

= 1
2
− kγ

2n(m1−k)
and 0<θ<1 thus we obtain

1

q
=

1−θ
∞

+
θ

2
.

Then we obtain θ=1− kγ
n(m1−k)

,

1

p
=

1−θ
1

+
θ

2
=

1

2
+

kγ

2n(m1−k)
,

and

(1−θ)(−δ)+θγ=0.

Noticed m1

k
− γ

n
≥1, then m

k
− γ

n
≥1 also. We obtain that p≥1 and q>1. By lemma

2.4, we have [Ḟ−δ1,2 ,Ḟ
γ
2,2]θ= Ḟ 0

p,2 =Hp. By simple calculation, we obtain

−nm1

km
(1−θ)=− n

m

(1

p
− 1

q
+
γ

n

)
.

Interpolating (3.50) and (3.51), we have

‖IγS(t)f‖Hq.|t|−
nm1
km

(1−θ)‖f‖Hp

=|t|−
n
m( 1

p
− 1
q

+ γ
n)‖f‖Hp .

Thus we obtain the estimate (1.9) at the vertex A5. Also, Proposition 3.1 implies
that (1.9) holds at vertex B5 in Fig. 6. So an interpolation yields that (1.9) is true
on the line segment from A5 to B5. Now notice that the equation for A5B5 is given
by

lA5B5 :y=

1
2
− kγ

2n(m1−k)

1
2
+ kγ

2n(m1−k)
−
(
m1

k
− γ

n

)(x−(m1

k
− γ
n

))
.

The line lA5B5 and line x=1 intersect at point C5 : (1,η′) with

η′=
(1

2
− kγ

2n(m1−k)

) m1

k
− γ

n
−1

m1

k
− γ

n
− 1

2
− kγ

n(m1−k)
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and η+η′=1, where η is given by (1.10). That is, we have

‖IγS(t)f‖
H

1
η′
. |t|−

n
m(1−η′+ γ

n)‖f‖H1 (3.52)

at vertex B5 in Fig. 6. by duality,

‖IγS(t)f‖BMO. |t|
− n
m(η+ γ

n)‖f‖
H

1
η
, (3.53)

which implies the estimate (1.9) at the vertex D5. Then the theorem is completed
by interpolations.

4 Applications

In this section, we shall apply Theorem 1.1 to some specific equations. Let us first
introduce the following free schrödinger equation{

i∂tu=(−∆)αu, α>1,

u(0)=u0.
(4.1)

This reduces to the group K(t) :=e−it(−∆)α , which corresponds to φ(ξ)= |ξ|, P (r)=
r2α, k= 2, that is, the solution has a low frequency enjoy the same scaling. By
simple calculation, we see that P (r) satisfies (H1) and (H2) with m1=m2=2α. Let
|∇|γ =Iγ, then by using Theorem 1.1, we have the following result which has been
proved in [15].

Corollary 4.1. Let α>1, γ≥0 and m=max{m1,m2}=2α. Then we have that for
any (1

p
, 1
q
)∈Jα,γ,

‖IγK(t)f‖Hq. |t|−
n
2a(

1
p
− 1
q

+ γ
n)‖f‖Hp . (4.2)

In particular, for any (1
p
, 1
q
)∈Jα,

‖K(t)f‖Hq. |t|−
n
2a(

1
p
− 1
q )‖f‖Hp .

Moreover, we can also consider the following homogeneous dispersive equation,{
i∂tu+φm(D)u=0,

u(0)=u0.
(4.3)

This reduces to the group B(t) := e−itφ
m(D), which corresponds to P (r) = rm with

m>2. By simple calculation, we see that P (r) satisfies (H1) and (H2) with m1 =
m2 =m.
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Corollary 4.2. Let m>2, γ≥0, m
k
− γ

n
≥1, we have that for any (1

p
, 1
q
)∈Im,γ,

‖IγB(t)f‖Hq. |t|−
n
m

( 1
p
− 1
q

+ γ
n

)‖f‖Hp .

In particular, if we take φ(ξ)= m
√
ξm1 +···+ξmn (m=2,4,···), then∥∥e−it(∂m1 +···+∂mn )f

∥∥
Hq. |t|−

n
m( 1

p
− 1
q )‖f‖Hp .

Notice that P (r) of schrödinger equation (4.1) and (4.3) is homogeneous. Our
results can also apply to P (r) that scales differently in high and low frequency. We
give here a simply equation{

i∂tu=(−∆)au+(−∆)bu,

u(0)=u0.
(4.4)

This reduce to the group

L(t) :=e−it[(−∆)a+(−∆)b],

which corresponds to φ(ξ)= |ξ|, P (r)=r2a+r2b. When a=1 and b=2, we should be
familiar with the fourth-order schrödinger equation. In [17], the authors obtained

that when the semigroup U(t) :=e−it(∆2−∆) satisfies 2≤p≤∞, 1≤q≤∞, δ= 1
2
− 1

p
,

−2nδ≤s′−s and p′ is conjugate of p, the following estimate holds

‖U(t)f‖Bsp,q.k(t)‖g‖Bs′
p′,q
,

where

k(t)=

{
|t| 14 min(s′−s−2nδ,0), |t|≤1,

|t|−nδ, |t|≥1.

In the following, we use the theorem 1.1 to obtain the Hp−Hq estimate of such
semigroups. By simple calculation, we see that S(r) satisfies (H1) and (H2) with
m1 =max{a,b},m2 =min{a,b}. Let |∇|γ =Iγ, Then by Theorem 1.1, we have

Corollary 4.3. Let max{a,b}>2, γ≥0 and m= max{m1,m2}= max{a,b}. Then
we have that for any (1

p
, 1
q
)∈Imax{a,b},γ,

‖IγL(t)f‖Hq. |t|−
n

max{a,b}(
1
p
− 1
q

+ γ
n)‖f‖Hp . (4.5)

In particular, for any (1
p
, 1
q
)∈Imax{a,b},

‖L(t)f‖Ha. |t|−
n

max{a,b}(
1
p
− 1
q )‖f‖Hp .
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We can also consider the following equation{
i∂tu+P`(φ(D))u=0,

u(0)=u0,
(4.6)

where P`(ξ)=Σ`
j=2Cjξ

j(`>2) is a polynomial and φ satisfies (HΣ). The propagator

is given by E(t):=e−itP`(φ(D)). By simple calculation, we see that P`(ξ) satisfies (H1)
and (H2) with m1 =`,m2 =2. Then by Theorem 1.1, we have

Corollary 4.4. Let γ≥0, `
k
− γ

n
≥1, m=max{`,2}= `, Then we have that for any

(1
p
, 1
q
)∈I`,γ,

‖IγE(t)f‖Hq. |t|−
n
` (

1
p
− 1
q

+ γ
n)‖f‖Hp .

In particular, for any (1
p
, 1
q
)∈I`,

‖E(t)f‖Hq. |t|−
n
` (

1
p
− 1
q )‖f‖Hp .
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