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1 Introduction

1.1 Backgrounds

In this paper, we mainly study the H?— H? estimates of the solution for the following
Cauchy problem of dispersive equation:

{i@tu(t,x):Q(D)u(t,x), (t,z) eRxR",
u(0,2) =up(z), rzeR™.

(1.1)

Here Q:R—R is a phase function, D=—i(0,,,---,0,, ) with n>2 and H? (0<p<o0)
are Hardy space, The operator Q(D) is defined by

QD) f=FQE)Tf,

where .# denotes Fourier transform and . ! is its inverse. For uy€ S(R™) (the
Schwartz space), the solution of (1.1) is given by

u(t, ) =e 1Py = F-1 (R0 ). (1.2)

When Q(£)=1£|?, it is well known that (1.1) represents free Schrodinger equation
and the solution operator e 2 satisfies with the following sharp L”? —L*" estimates

e Ao <CIE ™, (13)
where t£0, p€[1,2] and %4—1%:1 (see e.g., [28]). Notice that H?=LP when 1<p<oo
and H' (resp. L™) is a subspace of L' (resp. BMO), then one can rewrite (1.3) as

e g <Cle 777, (14)

where H” = BMO when p=1. Thus it is of interest to study the H?— H? estimates
of QD) for p< 1, which are natural extensions of the decay estimates for p>1.

Generally speaking, one can study the H? — HY estimates for generalized propa-
gator e"#Q(P) in terms of the estimates of fundamental solution .~ (e*@)) (+£0),
which is depending on the geometry of the level set

L={¢: 1Q()[=1}.

Here X is usually a compact connected smooth hypersurface of R” with certain ge-
ometric assumptions. In particular, Miyachi [26] considered the singular multipliers

v(E)le| e,
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where (&) is smooth and vanishes around origin, a >0 and b€ R, and established
in [26, Theorem 4.1] the boundedness for multipliers between the Hardy spaces H?,
BMO and Lipschitz spaces A, under certain restrictions on a and b. Notice that in
this case Q(&)=£|* and the hypersurface X is exactly the spherical surface S"7!,
which has constant Gaussian curvature. The author also mentioned in [26, Remark
4.2] that the argument can also be applied to the multipliers

P(E) (€9 O™ hy () +e PO hy(¢)),

where h; (i=1,2) are smooth homogeneous functions of degree —b and Q; (i=1,2)
are smooth positive homogeneous functions of degree one such that

i={¢: Qi) =1}, =12,

have nonvanishing Gaussian curvature. Notice that the phase function both [£|*
and Q;(&)% (i=1,2) are homogeneous. For the propagator operator Q) (t+£0)
with Q satisfying the condition in [26] one can use scaling £ —t<& (££0) to get the
optimal H?— HY estimates. We remark that 3 has nonvanishing Gaussian curvature
is equivalent to the so-called nondegenerate condition on ), based on which the
HP — H9 estimates with 1 <p<gq of propagator @) have also been extensively
studied for inhomogeneous @, (see e.g., [1-4,11,22,23]). Among them all, we would
like to emphasize the work of Cui [11], where the following decay estimates have
been established

[P o <O ™+G70), 0< [t <T, (1.5)
where T'>0, () is a inhomogeneous elliptic polynomial with the principal @),, being

nondegenerate and (+,-) €0 565, Digep is a closed quadrangle by the four vertex
points

11
p’q

(33 5(h). e, 0=(La)

where & +2 =1 and py=2""Y with m>2.
Py po m

If the level set ¥ has zero Gaussian curvature at some points of X, it would
become more difficult to estimate the oscillatory integral F~!(e?@©) (t+£0) due
to the failure of the principle of stationary phase (see e.g., [27]). In fact, there
exist elliptic polynomials such that their level sets have zero Gaussian curvature at
some points, for instance &' +---+&™ (m=4,6,---) and &} +6£3&5+E&5. Motivated by
these examples, based on [5, Theorem BJ, Zheng et al. [30] established the LP— L4
estimates by assuming () is a homogeneous elliptic polynomial of order m >2 and
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Figure 2: The LP — L9 estimates for e**Q(”) of Zheng et al. [30].

¥ is a convex hypersurface of finite type k>2 (k€N). Indeed, they proved that
(see [30, Theorem 2.4])

9P| o <CJ|m G, ££0, (1.6)

where (%,%) €0u,B,cy0, \{B1,D1} and 04, g, o, p, is a closed quadrangle by the four

vertex points (see Fig. 2). Here A1 =(3,3), Bi=(1,1), C1=(1,0) and D, =(%,0),
where 7/ is the conjugate index of 7 with

_ 2kn(m—1)
T m(2n+k—2)—2kn’

(1.7)
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Figure 3: The H? — H estimates for ¢*2(P) of Ding and Yao [12].

Such result has been generalized to the inhomogeneous setting, see [12]. Notice
that when k=2, Oa,5,0,p, is exactly the same as Oj;35p in [11]. However the
author did not mention whether the domain of ( Il), 1) for LP— L7 estimates is optimal
as k> 2. This optimality problem was partially answered in the work of Ding and
Yao [12], where the authors obtained the H? — H? estimates

1€ go_gra SR, 520,

where @ satisfies the same assumptions as in [30] and (%,%) €Aa,B,p, (see Fig. 3).
Here Ay =(3,5),B2=(,;,0) and Dy =(5-,0) with 2<k <m and

q0’

1 m@2n+k-2) 1 1

Do 2kn g 2—po

When @ is a polynomial, Deng and Yao [14] considered the case of Q(§)=
P(#(£)), where P is a real polynomial of order m >2, ¢(£) is a homogeneous
smooth function, and the level set > is a smooth convex hypersurface, then the
authors obtained the following attenuation estimates

||etP D))

cpMavl 1<) <T
Li’—L‘,’Zé n 1 1’ N ’
Clt=G), 0<|t|<1,

where (%,%) €0a,B,04D; 18 a closed quadrangle by the four vertex points A3=(3,3),
B;=(1,1), C3=(1,0), D3=(=5,0) (see Fig. 4), 1/ is the conjugate index of v, 2<k<
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El

Figure 4: The LY — LY estimates for ¢?*7(?(P)) of Deng and Yao [14].

h(m,n, k)
—2 —k)(n—1) 1
h(m,n,k)= = ‘f‘(m £)n ), —:M,
11 1
L1 [0 2= (1.2
7 <p7q> ( ’T)’
wsey e, () -(Lo
) paq 7_/, ,
LP—L1, else.

When @ is non-polynomial and satisfies (H1) and (H2), Deng et al. [15] obtained
the following H? — H? decay estimate for e®QUVD
itQ(|V

n (1 1)

e Nep—pa S[Em 573,

where V is the gradient, m; >2,my >0, m=max{m,ms}, and ( ,%)EAA4B4D4 is a

1
p
triangle with vertices Ay:(3,3), Ba:(%4,0), D4:(2m—11),0) (see Fig. 5).

Now by restricting A4, p,p, With p,g>1 we ob(7snelrved that the range for LP— L4
estimates of e*@(") is larger than (04, 5,¢, p, when k>2. That is, by studying H? — H¢
estimates of €@(?) | one can actually improve the range for LP — L? estimates, which
also reveals that it is meaningful to consider the H? —HY estimates of €@ for

general ().

1.2 Main result

Let n>2 and ¢(&) be a homogeneous function of degree one on R" that is smooth
and positive away from the origin. X:={€R"|¢(£) =1} is the level set. Note that
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Figure 5: The H? — H estimates for ¢'*?UVD) of Deng et al. [15].

V(€)#0 for any £ €3 by homogeneity, hence 3 is a smooth compact hypersurface
of R". Let keN and k>2, we say X is of finite type if there exist k and C} >0 such
that

k

> I VYe(©)|=Cr, (€T, nes ™, (1.8)

Jj=1

where (7, V)=>""1;0/0x;. The least integer k such that (1.8) holds is called the
type order of . Also, we call ¥ is convex if for any £ € X such that

NC{neR" | (n=£Vo(£) =0} or  XC{neR"[{n—¢,Ve(§)) <0}

In this work, we assume Q(§)=P(4(§)), where P:RT™ —R is a smooth function
satisfying
(H1): There exists mj >0, such that for any a>2, a« €N,

[P/(€)|~Emt, [P(E)|~E™m2 PO SEmTe, €21,
(H2): There exists my >0, such that for any a>2, a« €N,
[P(&)[~emt, |PI(E)|~eEm™ 2 [P SEm T, 0<é<],

and ¢(§) is a positive homogeneous function smooth away from the origin, and of
degree one with n>2 which satisfies

(Hx): Y={¢cR"|¢({)=1} is a smooth convex and of finite type, k>2.
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Figure 6: When v>0, HP — HY estimate of I7S(t).

Notice that these conditions were also introduced in references [9,17], where the
authors considered the dispersive estimates of e*F(¢(P) and PV respectively,
and in [13], where the authors studied pointwise convergence of eIV Denote by
S(t)=e*@P)) the linear propagator of Eq. (1.1) and I7=¢(D)” (y€R), where the
definition of S(t) is given by (1.2) and

o(D) f=F o) F ).
The main result is stated as follows.

Theorem 1.1. Assume that (H1) and (H2) are satisfied with my >2 and mq > 0.
Let m=max{mi,my},7>0 and %> —1>1. Then for any (i’%)egmm (see Fig. 6),
we have

11,9

1S (@) fllara S 5730 | o (1.9)

Here J,,, , denotes the triangle with vertices

A5'<2+2n(m1—k)’2 2n(m1—k)>’ B5.<k n,O) and  Ds:(n,0)

with

1 k~y m_ 3 1
=1—(=— k__n . 1.1
K (2 2n(m1—k;)> (1.10)

The next result is concerning the estimates for v=0 in Theorem 1.1. We note
that in this case we can choose m;>2, which is slightly different from the assumption
in Theorem 1.1.
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Corollary 1.1. Assume that (H1) and (H2) are satisfied with my; >max{2,k} and
mo>0. Then for any (I%,%)E‘?ml (see Fig. 7), we have

_nl_1
1S @) fllrra SIS f Lo (1.11)
Here J,,, denotes the triangle with vertices Ag:(3,3) and Bg: (Z2,0).

Remark 1.1. (i) Now by restricting As,p,p, With p,g >1 we observed that the
range for LP— L9 estimates of @) is larger than (a,p,c,p, Wwhen k>2. For the
non-homogeneous (), we obtain the decay estimate of HP— HY for all time t¢+#0,
while Cui [11] and Deng-Yao [14] obtained the estimate of LP—L9 for any finite
time t#£0.

(ii) When we take ¢(&) =], this corresponds to the result in [15] for k=2.
Futhermore, the range of J,,, , is the same as that of Ay,p,p,, as well as the decay
estimates are also the same.

The proof of main theorem is based on the phase space analysis. Notice that the
lower frequency and the higher frequency enjoy different scalings, we make suitable
decomposition in phase space and then Theorem 1.1 can be reduce to the estimates
for different types of oscillatory integrals. Therefore, the standard stationary phase
argument and the Van der corput lemma shall be involved. We note that since the
symbols P(¢(&)) can be inhomogeneous in Theorem 1.1, our method is quiet different
from the work of Ding-Yao [12], where the authors used scaling to transfer the time-
dependent multiplier €€ to time independent one ¢, On the other hand,
Cui [11] obtained the LP— L% estimates locally in time for inhomogeneous symbols

|
|
|
l
Al BL c1 DI FI E1

Figure 7. When v=0, H? — H? estimate of S(t).
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(see (1.5)), in terms of the pointwise estimate for the kernel of e”(¢). However, the
argument used in [11] can not be applied in our work, since we actually obtained
the H? — H? estimates globally in time for the propagator S(t).

The paper is organized as follows. In Section 2, we introduce some notations and
basic lemmas. Section 3 is devoted to the proof of Theorem 1.1 and Corollary 1.1.
In Section 4, we apply Theorem 1.1 to specific linear Schrédinger equations with
both homogeneous and inhomogeneous symbols.

2 Preliminaries

2.1 Some notations

Throughout this work, we write X <Y to indicate there exists some constant C' >0
independent of X and Y such that X <CY. Let 01 be a C* function satisfying

o1(§)=1  for [¢|<1, suppo;C{|{|<2} and 0<o;<1.
We choose V is of the same type of o; and set
o9=1—01, &=1-V.
Next, we introduce some function spaces. The LP(R"™) based homogeneous

Sobolev spaces LZ(R”) is the set of tempered distribution f satisfying (—A)zf €

LP(R™). We denote by H?(R") (0<p<1) the real Hardy spaces and A*(R") the
homogeneous Hélder space. We refer to the books [18,24,29] et al. for the defi-
nitions and their equivalent characterizations. One of the equivalent norms of the
homogeneous Holder space A*(R™) will be given here. To do so, let I' be a C®
function supported in {¢: % <€ <2} satisfying

> TN =1, 0. (2.1)
jez
Denote by I';(&)=T'(277|¢|) and I'; ,(§) =T(277p|¢]) (p>0), then it follows from the
results of [18,29] and [16] that for s>0

11l 4o emy ~ Suﬂgﬁjslﬁ’l(ﬂf)(xﬂ-
?%Z

Furthermore, by using the same argument of [10], we have an equivalent norm of
A*(R™) with an extra parameter. Precisely, for any p>0
esup 27°p~* | F Ny, f) (@) || < f s gy <C sup 20| F T Ly N@)], (22)
TeR™

zeR™
JEZ JEZ
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where s >0 and the positive constants ¢ and C are independent of p.
Since ¢(&) is a positive smooth homogeneous function degree one that is bounded
on sphere S"~!, there exist constant 0<C; <1 and Cy > 1 that satisfy

C1[§]<9(§) < o€l

Let
Le(©)=T(27%¢(€) and Ty, (&)=T(2 " pp(€)),

by simple calculation, we have I';(€)T(€)=0 for |j—k| > Cj, where

ngmax{ [log2 C’il] +1, [logQ%CJ —i—l}.

Then one has

sup 2°|.Z ~Y(T; ) (z)| = sup 27°

() VGIMGHIE]

Jj+Cs o
< sup 2ks+(j*k)s y*l <FJ Z Fkaf) (QJ)‘
zeR™ o
JEL =j=Cs
J+C3 o
<sup2® Ny 28 F (D) ()]
zeR"™ -
JEL k=j—Cs
<2990 sup 29°|.Z 1T, f) (x)].
@
Similarly, we have
sup 27| F (T f)(@)] S sup 2°p|F Ly ) (@) (2.3)
"en "en

In the rest of the paper, we would use X instead of X (R™) for simplicity when
X (R™) are certain function spaces.

2.2 Some lemmas

Before proving Theorem 1.1, we need some lemmas. The following one is related to
the Fourier transform of a measure carried on a smooth hypersurface (see [5]).
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Lemma 2.1. Suppose ¥ is a compact smooth convex hyper-surface of finite type
k in R™. For each n€ S™ 1, let &4 be the two points of ¥ whose outward normal
directions are £n. If v € C®(X) and define

Jdo (M) = / I(E)do (€),

by

then
bdo(An) =e T H  (\)+eMED H (A +Hoo(N),  A>0,

where Hy ,Ho € C*((0,00)), and for every j €eNog=NU{0}, there exist constants C;
and C; n depending on ¥ such that

’Hf)()\)’ <N
and
|HD (N[ <C;nA™N for N2>0.

We also need the Van der Corput lemma, which is a basic tool to deal with
oscillatory integrals, one can see for example [27] and [18].

Lemma 2.2. Suppose ¢ is real-valued and smooth in (a,b) satisfying |¢*(x)|>1 for
all x € (a,b). Then for any function v on (a,b) with an integrable derivative, there
exist constant ¢y independent of ¢, ¥ and X such that

/abeim(x)?ﬂ(x)dx) <OATE [W(b)\—i—/ab\w’(x)]dx}

holds when:
(). k>2, or

(ii). k=1 and ¢'(z) is monotonic.

The theorem of Mihlin multiplier and the interpolation for function spaces will
be needed, see [7] and [19], respectively.

Lemma 2.3. Let 0<p<oo and l=[n|1/p—1/2|]+1. If ac C*(R™"\{0}) and satisfies
with

D a(©)| < Culel ™ for |ul <L,

then a € M(H?,HP).



Q. Deng and X. Meng / Ann. Appl. Math., 41 (2025), pp. 77-111 89

Lemma 2.4. Assume that o, a1 €R, agFar, 0<pg,p1,90,q1 <00 and either po+qo<
00 or p1+¢q; <oo and 0<O<1. Let sg, 51, po, 4, P1, @1 Satisfy

1 1-6 6 1 1-6 6
a=(1-0)ay+ba;, —-=—+— and -=—+—.
p Po D1 q do 4

One has

[Fr @), Fm R o= F9(RY),

sy

where Fspoo’qo denotes the homogeneous Triebel-Lizorkin space.

3 The proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. Let the smooth functions oy, g9, ® and
U be defined in Section 2, notice that e**(?(€) is the symbol of linear propagator
S(),

tP(29) = 5, (¢(5))eitP(¢(€)) +02(¢(§))€itP(¢>(£)).

Accordingly, we have

S(t) =S (t)+Ss(2).
For ¢ >0, denote by
O, (&)=D(tm2¢) and Y, (&) =W (t"2¢),
where my is given in assumption (H2), and then
S1(t) =S (t)+S1a(2),

where S1;1(t) has symbol .
i(6(€))r1 (6(€) )

and S12(t) has symbol |
U (6(€)) o1 (p(€))e P OED.

It follows from Plancherel’s identity that

1750 @) fll2 SNeD) fllzzs [17S12(8) fllz S (D) fllzz,

and similarly,

11751 (8) fll2 SNeD) fllzz, [T S2() fllze SA(D) £l 2
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3.1 Decay estimates for low frequency

Lemma 3.1. Let v>0 and my>0 be defined in assumption (H2). Then we have
for 0<p<1,

1T7S11(8) fll oo S (1 JE) 7252 Lo, (3.1)

and for p=1,

117801 () fll e S (14 1E) 72 0 £l o (3.2)

Proof. We only prove the inequality (3.1), since the proof for (3.2) shares exactly
the same procedures. To this end, notice that

(Hp)*:Aﬁa

where (3 :n(llj—l) and A’ is the Holder space, we may assume that 3 is a positive
integer for simplicity. Denote by K(t,-) the kernel of I7.5;(¢) and write

Qx,l(tvy) :Kl (t,x—y)

For any fe H?,

7 S1(E)f [ zoe =sup[{Qe 1 (E,1), /) < 5P [y (8, 51/ [0 (3:3)

For any r€R",

sup||Se.a(t, )30 5' /R IO (6(€)on(6(€)0(€)[¢] e
[W(D(6))on(6(€))] ()" €] de

R’I’L

|w<¢<s>)al<t‘%¢<s>>|t‘m%s|%<t‘%5>vt‘%|d5

R?’L
—jt R o / () (7 6(6)) | 6(6)7 €] de
$(£)<2

_n (1 1)

Sp T, (3.4)

which combined with (3.3) lead to (3.1) for ¢>1. Moreover, since oy is compactly
supported it is easy to see from (3.4) that sup,||21(¢,-)|| s is uniformly bounded
in t. Thus we finish the proof of (3.1). O
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Lemma 3.2. Let v>0 and ms>0 be defined in assumption (H2). Then we have
for 0<p<1,

max{—2,— -2 (142
117S1a() fl] 2o S (14 [) "B 7w G ), (3.5)

and for p=1,

n

max{—2, — -2 X
117812 (8) fll oo S (L]t 7m0} £ 4

~Y

Proof. Similarly to the proof of Lemma 3.1, we only need to prove (3.5) for ¢ >0
The proof will be split into short time 0 <t <42 and large time ¢ >4™2.

For 0 <t <4™2, the same argument used in in the proof of Lemma 3.1 can be
applied. Notice that (H?)*=A® with ﬂ:n(%—l), we may also assume that (3 is a
positive integer. Thus

117512(t) fl| e = sup [(Qe 2 (), )] < sup || 2| s [ ] (3.6)

where , o(t,y) = Ks(t,z—y) with Ks(t,-) being the kernel of I7S5(¢). By changing
of variable, we obtain

[ rensenooenoler e oag

Sup|[ €z 2| 5 Ssup
x

T

< [ @ioenm@(eoer el |as

:/n

S [ (0@ ole s

<2ma Ty

B(H(E)oa (7 GE)NH € H(t ) s | dg

<t ),

which combined with (3.6) imply (3.5) for 0 <t <4™2. We note that sup||€2, o is is
also uniformly bounded in ¢. We hence finish the proof for (3.5) with 0<t<4™2.

It remains to prove (3.5) for ¢ >4™. By using the equivalent norm of A? (see
(2.3)), we have

sup [2z2] 4
x

| etz (€)@ o) or((€)oey e dg
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uniformly in ¢>0. Then by changing of variable, it follows

sup 19222/ i

<supt ntf;W 2236 / ez’tP(t_m%¢(£))F(2*j¢(€))¢(¢(§))al(t—m%(b(g))(ﬁ(g),yei(w@t—m%dg
JEL R

_supt ntf;” Z2J n+B+v) / ei”(g’t"”)H(g)dg 7 .
JEZ n

where the phase function ¢(§,t,2) and H (&) are defined by

P(&,t,2) =tP(21 73 §(€)) +(w,£) 2t 73,
and
H(&)=T(4(€))®(24(€))or (27t 72 $(€)) (€))7, (3.8)

respectively. Note that ®(¢(£)) =0 if ¢(§) <1 and oy is compactly supported, we
obtain

1
logq 2t ™2
ntB+ty
n+p+
sup|(|Qg2l| 15 Ssupt ™2 g 23 (n+B+7)
x T

/ i (&) H(g)d§’ - (39)

For any fixed |z|#0, we define sets
By ={0< j <log,2tm :200m~ D10 > =7z |}
Fy={0<j <log,2t73 : Man2/(m=D+10 < ¢~ [},
and
E;={0<;< 10g22t"%2 Qi(ma=1)=10 45y 7| < Man2i(m2=1H0
where M is a sufficiently large number. Then we have
{j:0<j <log,2tm } = E,UE,UE;. (3.10)

If jeEq, let £=r& and £ € X, we use polar coordinates to write

/ 60 B (£)
/ / B(@r)o (2t ) PO V()] do ()

93 (n+6+7)

J(n+B+7)

Jj(n+pB+7) 2] 01(2115 mQr,,) iPu(r) g

Vo(e)| o (s),  (3.11)
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where do (') is the Lebesgue measure induced surface on X,
Pu(r) =t P(27t mar) £ 29t mar(z,€"),
and

G(r)=T(r)r"t1 (3.12)

is a C* function supported in the interval [%,2]. Noting that 0 <j <log, 2tm: and
re [%,2}, we obtain
27 t_m%r <4.

Thus if j € Fy, one has

|P{(r) | =|t(27™ ) P (29t mar) 427t 73 (. €')]
>[4(2t ) P/(2E )|~ 20t gl
> (2t 3 )2 — 20t g g
>9imz,

Moreover,

PY(r)| =t(27t 72 )2 P! (27t 73y
1
<29t (204 ma ) ma
<2,

and similarly,

PP ()| <20m2, k>3,

Then for any integer m >0 and r € [%,2}, we have

/ al a? m amtl
gL | R P By
Pll (7“) Pl/ (T)m+1
<27Ime2 (3.13)

where af +a2+--+a) M =m, aj+2a2+---+(m+1)a) ' =2m and Cy is constant for
each /.
Denote by

F(r)=G(r)®(2'r) 01(2jt7mi27“).
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Notice that r lies in the support of I' and 0 <7 <log, Qt’"%. It follows that
0,®(2r)=279'(27r)=0, j>3,
and
0o (291 ma )| =] (298 72 Y ||o O (20t map)| < |27t T2 ' <1, LEN,.
Thus thus for arbitrary integer N >0

07 F ()] :‘ > CROY T ()o@ (D)o (P r))

=0

N ¢
<Y CRION T (Yo G lo @) 107 (2 ) )
=0 m=0

N

<D CRION T T ()T S (3.14)
=0

~Y

Now by integration by parts, we have for any N €N, |

o0 . .1 )
/ G(r)®(2/r)o (27t mw)e’PI(r)dr‘
0

:/OooezPl F(r)r]
_ / h PO DY (F(r))dr| (3.15)

where D, is an operator defined by

D, F=0, (P,l( )F) and DiVF:DT<P1,1(T) D,{V—1F>. (3.16)
It follows from (3.13) and (3.14) that
DNF\—)(_-) Z 3 cmNHa’ )0 E(r)
m=0{; .- IyeAN
<9 mimaN (3.17)

where AN ={l,--- In€ZT:0<l;<--<Iy<N, l;+--Ixy=m} and N enough large.
Combined with (3.15) and (3.17), we obtain

)/ Yo (27t m27“) Dy | < 27ImeN
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which combined with (3.11) implies

t*%ﬁ;w Z 9 (n+6+7) / ei@(g’t’x)H(f)dé
jEE "
<t~ ntnﬁ;w Z 9i(n+B+y)9—jm2N
JEEL
<t e =g ma (R, (3.18)

Let us turn to the case j € Fy. For any fixed |x|#0, without loss of generality, we
assume || > % Noting that ¢ is a smooth positive homogeneous function and
o(&) esuppl’, it follows |8§1gb(§)| <1 (8>0). Since M is a large constant, we have

for j € Es,
Oeyo(&:ts0)| =[H27E 72 P/ (27 0(6)) 06, 6(€) + 012t 72|
||

> 1T oiy=my _gima > gima (3.19)
n

Moreover,

|02, 0(€.t,2) | = |0, (427472 P/(298 72 §(€)) Dy () +1 27t 72|

— [t P(297 73 §(€))O2 B(€) +H(27t ™2 )2 P! (2473 3(£)) (D, H(€))?

ST 7 (278 72 (€))L G(€) (2T 72 (20 73 6(€)™ (0, 0(6)))

= (3.20)
and similarly,

|02 (6 ,t,0)[ S22, a>3.

Then similarly to (3.13), we have for arbitrary integer m >0 and ¢(§) € [5,1]
L || EeCet @O G

¥, (€) e, (E)m
<gim2, (3.21)

where af +a2+-+a) ' =m, aj+2a2+---+(m+1)a] "' =2m and Cy is constant for
each ¢. Similarly to (3.14), we have for any k€N,

0o, B(X6(€)=0 with j>3, [0k (21 2 ¢(€)) <1,
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and

98 H ()| =| D ChoN (D (6(€))0(€))0%, (@(2T6(€))on (27t 72 6(€))
£=0

<1

~o )

(3.22)

where H is defined by (3.8). Then by integration by parts, for each integral in (3.7),

we have
/eww e [ / AL F (€)dErdey - dE,
Rn— 1

= / / e DY H (€)déydéy - d&y, (3.23)
Rn-1JR

where 1
De, H= a&< H) and DYH= Dgl( ~DY ).
(‘051 B3
Notice that by (3.21) and (3.22), one has

(<)Y ¥ OmNHaz

m=0[y .. SIneAN

<oime N (3.24)

UH(E)

where AN ={l;,--- IneZT:0<l;<-+-<IN<N, l1+--Iy=m} and NeN,. Com-
bined with (3.23) and (3.24), we have

. . o1
/elw(f’t’x)r(cﬁ(f))‘1’(2%(5))01(2” m2 §(£))p(£)7dE | 27N
R
and
t_%zﬂ ZQJ'(?HBH) / e(&t.a) iy dﬁ‘

jEE> "

< 7 9049 (gma) =N
JEES

<t = TR, (3.25)

We finally consider the estimate for j € F3. Notice that

1
(1 o] 10)5;’5

1
1 ) 1
m—1 %2 1 ian (logyt™ ™2 |z|+10),

m2—1
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which means that E3 has finite elements, that is |F3| < K; with K depending on
me, M. For each j€ E3, we write each integral in (3.9) in terms of polar coordinates,

R(t.5)i= | SR ()66 on(HE 5 0(0)0(6)de

> o i do (&)
_ G+ (r eth(2 t ™Mm2r) /612 t 2rs (w,&") dT’,
J G ( o)

where
Gy (r) =T (r)r" 1 (20r) oy (208 72 7).

Since Y is a compact smooth convex hypersurface in R", the Gaussian map given
by I1:¢' € ¥— ‘gz(g,; €S" ! is a homeomorphism from ¥ to S*~!. Thus for given
weS™ ! there exist ¢, €3 such that +w is the outward unit normal direction and

by Euler’s homogeneous formula

V¢(£i) 5 > *1
Vo)™ V(&)

Hence let s=|z| and x=sw, by Lemma 2.1, we have

(w.gt)=(+

CMw,E)
= [Vo(&)]
where Hy € C*°((0,00)), and there exist constants C; depending on ¥ such that

do (€)= N8 H () +eX @8 H () +Hoo(N), A=27t 7ars, (3.26)

‘Hf)(A)‘ngA‘j‘(”‘l)/’“ for jEN,, (3.27)
and
HD V)| <CA™  for jeEN,.

If follows from (3.26) that

= o i R vty o e
Rj (t,S) :/ Gy (,r,)eitP(QJt m2 )42t M2 T8<w’£+>H+(2]t ,,12 ’T‘S)d’l“
0
+/OO Gl (T>€itP(2jt_"+2r)+i2jt_%rs(w,é’_)Hi (th*%zrs)dr
0

o] o1 )
+/ Gl(r)eitP(%t '"2r)HOO(QJt—m%TS)dT
0

= jl(t,S)+Rj2(t,8)+Rj3<t,S). (328)
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To estimate Rji(t,s), we denote by
Ujl(t,r,s):tP(th_m%r)+2jt_"+2rs(w,§ﬁr>,
Vi1 (t,r,8) =Do(r)r™ 7 0(2r) oy (204 72 r) H , (29t 7ars).
It is easy to see from assumption (H2) that
(02U (t,r,5)| = |t(294 72 )2 P" (294 )| 2,20,

Since j € Es, it follows from (3.27) that for N >0

1

ON Vi (t,r,8)| < (20 m25) " (3.29)

Thus for j € E3, by Lemma 2.2, we obtain

R (t,8) <2772 ([Villoo+ 110, Vil 1)
S(me) k()
<(29m2)- %(2%—@%2]'(%1)*10)*%
<(27m2)~#

The same procedures as above can be applied to obtain
[Rja(t,5)|+ IRy (t,)] S (2772)
Hence,

IR;(t,8))| <|Rya(t,s)|+|Rya(t,s)|+|Hs(t,s)| S (27m2) %,

1
Notice that by the assumptions on the supports of I' and o1, one has 27 <tm2. Then
n+f3+"/ Z 2] n+ﬁ+’y)

if n+p+v—=2 >0,
/ {,t,z dé-‘
]€E3 n

n+f3+’Y 22] n+ﬁ+’y)|R (t S)|

JEE3

_ntB+
e Z 9d (n+f+y—"2%)

JEE3

n+p8 mon n
St S T <k (3.30)
JEE3
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and if n+ B+~ —"2* <0,

e S gis)
JEES

/ ew“mmf)df'
_ntpfty

my E :21 n+ﬂ+v)|73 (t,s)]
JjEEs
+8+
"TfQ = E :21 (n+B+y—"2%)
JjEES
+6+ . +B+7
<t*"m2 * E :21(n+ﬂ+v)2*"m2 ~jma
~Y
JEES
+6+ 1
_n ol _JL(; %)

<:t m2 ::t m2

~Y

which combined with (3.9), (3.18) and (3.25) lead to

(3.31)
_ n+B+y . .
sup|| Qo (t, )| 4o Ssupt ™ ™2 Z 9d (n+p+7) / 6z¢(§,t,z)H(£)d€’
r z JEFE1UESUES "

<o G (3.32)

Then we have

17 S12(t) f e <supl|€2e2 (8, 5 £l

n+B8+~y .
<supt™ m2 97 (n+B+7)
u >

[ s d&‘!\fHHp
5

JEE1UEQUES
S TG (3.33)
which finishes the proof of (3.5) for ¢ >4™2. O

3.2 Decay estimates for high frequency

Lemma 3.3. Let v>0 and my >2 be defined in assumption (H1). Assume that

%—1Zl>l. Then we have
n=p

_n (1,7
117So(8) fllzee <|t] ™1 fllaw,  t#0. (3.34)

Moreover, if %+ —1>1, we have
n

1178 (8) fll e <[t ) I, t5£0. (3.35)
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Proof. Since the proof of (3.34) and (3.35) shares exactly the same arguments, we
only establish (3.34) for t>0. Similarly to the proof of Lemmas 3.1 and 3.2, we have

[117S5(8) f1l o <sup|[€e (£, g [.f || v (3.36)
where 6:71(113—1) and

Qm(tjy):/n6itP(¢(§))o-2(qb(g))d)(g)ﬂ/ei(w—y,g)dg.

Let I' be a standard smooth bump function introduced in Section 2. By (2.3)
and changing of variable, we have

2 / F(Q_jcb(f))e”%(f”dz(¢(§))¢(§)”€i<m’5>d§‘

sup || (¢, || 40 < sup »
z€R™ zeR™ jez

oo

9d(n+B+7)

| reenmeo@oereea . @30

= sup E
reR”™ =0

where the phase function v is defined by
D(&t,x)=tP(2 $(€))+(2,6)2.
As in Lemma 3.2, for fixed |z|#0, we introduce the following sets

By ={0<j:¢2/m=D710> 9]},
Ey={0<j:tnaM2/m=D+0 < g1

and
Ey={0<j:12m=D=10 < 5| < tna M2/ m-D+101

where M is a large constant. Then the summation in (3.37) can be controlled by

st
§=0

< Z 94 (n+B+7)

JjeEE1UESUES

é nF(cb(é))az(2j¢(§))¢(g)vew<at,z)d§‘

| re@nm@oerecia. eas)
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If j€ Ey, each integral on RHS of (3.38) can be written as

| @@ a@)aereia
-/ / P)ou(2r)e PO dr V(e do(e), (3.39)
where G(r) is given by (3.12) and
Py(r)=tP (2r)+(x,&')2'r.
It follows from the assumption (H1) that for j€ E;,

|0, Py ()| =[t27 P (277) + (&) 27|
2627 P'(27r)|— ||| V(&) 712
>t — |z]| V(&)1 2 e,

and
|0 Py(r)| §t2jm1, a>2.

One the other hand, for any integer m >0, we obtain

m+1

SO0 B
) Py
N(t2]m1) 1’ (340)

m 1
T By

where aj+af+-+a;" " =m, aj+2af+--+(m+1)a;" T =2m and C; is constant for
each ¢. Moreover, for any integer k>0

|0FG (r)oo(297)| < 1. (3.41)

Let the operator D, be defined by (3.16). It follows from (3.40) and (3.41) that for
any integer N >0,

| DY (G(r)oa(2r))]

(G D SR | CIUR S

m= Oll lNEAN

~ (t2]m1 ) )
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where AN ={l,--+,IyeZ":0<l;<---<Iy<N, l;+---Iy=m}. Then by integration
by parts, we have for any N€Z,,

/ PG (1) oy (207 dr

0

/ e P2 DN(G(r) oy (277))dr
0

S(e2im) N, (3.42)
which implies that
Z 9d(n+B+7)
JEEL

(X X )2 [ N6(©)m(26()le(€) de

JEEIN{12mM1I <1} jeBN{t2m1i>1} R

< Z i (n+h+v) | Z 93 (n+B+7) (t2jml )—N

/RnF(¢<§))0'2(21¢(£))¢(§)76iw(£,t,z)dg‘

jeEEIN{t2mi<1} jeEEIN{t2m1Ii>1}
_ntB+y ,L(l 2)
St =t G (3.43)

where N is chosen to be a large constant. Similar argument as above can be applied
for j € F5 to obtain

Z 93 (n+8+7)

JEES
<< DY >2j(n+5+7)
JEEN{t2™1I<1}  jEEN{t2m1i>1}

. (3.44)

| re©moenoere g

| retenmooreea

gt‘mil(%ﬁ)

Now turning to j € Ej3, noticed that

2]

1 || . 1
1 —10>< <—(1 171 10),
m1—1<0g2tnaM J my—1 082 t +

we conclude that F3 has finite elements, that is |F3| < Ky with Ky depending on my
and M. It is easy to see that when $2717 <1,

Z 93 (n+B+7)

JEE3

<Y gilmoe) <t G, (3.45)

JEE3

| retenmooereea
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On the other hand, when ¢2™ > 1, we shall utilize the same procedure as the one
in the proof of Lemma 3.2. To do so, write

| reenmo)stere e

- /0 T lGmo (e ( /E Gl —’é‘;f ))‘>dr
—I,(L,s), (3.46)

where s=|z|, x=sw and do(¢’) is the Lebesgue induced surface measure on ¥. By
using the (3.26), we further have

> i N\ _itP(29 J d0<§ )
I:(t,s :/ G(r)oy(277)et @) /612”“’5— dr
:/ G(r)oo(2r) P @+ s i) [ (99 rg)dr
0

+/ G(T)UQ(er)eitP(er)er”(w’fQH_(2jrs)dr
0

+/ |G(r)oa(27r) e @ H (20rs)dr
0
=151 (t,s)+1ja(t,5)+ s (t, ). (3.47)

We denote ' ‘
Rji(t,r,s)=tP(2r)+2rs(w,&})
in [;1, it follows from the assumption (H1) and (3.27) that for j € E,
|02 Ry (t,1,5) | = [t2% P"(27r)| 2 127™
and for N >0,
O (G(r)oa(27r) Ho (2775))| S (275)7F
which further combined with Lemma 2.2 implies that
[T (t,5)[ <(#27) 73 (|G () (2r) Hoe (2775) [ o
+ 10 (G(r )02(2" VH(2'7s))|11)
S TR (2s) T
S(127m) k(27423 (M10) = < (i) (3.48)

Similarly,

|Lja(t,8)| 4| Ljs(t,8)] S (¢27™) 5.
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Then we obtain

|1;(t,8)| < L1 (t,8)| 4+ | Lo (t,5) |+ | Ljs (¢, 8)| S (£27™) 7%,

which further combined with (3.46) and the assumption that 1 —1> % > 1 implies
that
> 21043 [ T(o(©)or(Zo(e))o(e) e e g
j€Es R
< Z WA [ (t,5)| < Z 97 (n+849) (g95m )~
JEES JEES
<37 2 (i) TR <y A ), (3.49)
JEES

Similarly to the proof of Lemma 3.2, by (3.37), (3.38), (3.46) and (3.49), we obtain
117 S2() f [ o <sup|[Qa (L) 3 | fll v

<sup Z 93 (n+5+7)
z JEE1UEQUES

U i

| @@ o€)otere < e

Hence we finish the proof. O

3.3 The proof of the main theorem

In this subsection, we prove Theorem 1.1, i.e., the H?— H? estimate for " ((#())
for (I%,%) € Jm,~- The following result concerns the estimate at vertex Bj in Fig. 6.

Proposition 3.1. Let my and mso be defined by assumptions (H1) and (H2), re-
spectively. Assume that my;>2, m>0 and v>0. Denote by m=max{m,my}, then
we have for %—%Z}D>1

_mnl v
117S () fllpoe <[t %5 £l o,
and for %—121,

n

IS (t) f | oo <772 £l 1
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Proof. Recall that the operator S(t)=e*"(®(P) was rewritten as
S(t)=511(t)+S12(t)+52(t).
By Lemmas 3.1, 3.2 and 3.3, we obtain
1Sl <1813 Fllzo+11S12(t) Fle +11S2(8)f 1
(A D R i A F{ T
<t

G| f e
The L' — L™ estimate can be treated similarly as above, we omit the details here. [
Now we turn to prove Theorem 1.1.

Proof of Theorem 1.1. By assumptions, one has obviously m > k. Let

= (1)

and then we have %—%5 >1. It follows from Proposition 3.1 that
117S(t) f|l 2 =[1¢(D)° IS () (D)~ f | £oe
n S+~ _
S5 (D) | o
<[t|” % ||p(D) " fll .

Let m(€) := (%)5, it follows that m is a homogeneous function degree zero on R"

that is smooth and positive away from the origin. By Euler’s homogeneous formula,
D*m(€) is a homogeneous function degree —|u| that is bounded on sphere S*!,
then we have

el D) = | ()| <1

where Dt =0 0g?--0g" and pi+pig+-+++p, =|p|. By Lemma 2.3, we know that
(S)EM(Hl Hl) hence

117 () fll o S F | (D)0 o
|V|) i

(¢<D) VIS

[ V] f e

_nmj
[t | fll
_nmj
S 1P (3.50)

Hl
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On the other hand, since ¢ is a positive smooth homogeneous function of degree

one, my(§):= (%)7 is a bounded function and hence is a L? multiplier, then we

have

17S@) Fll2 SHoD) flle SIS llez SISl gg,- (3.51)
Let l:%—z M and 0<6<1 thus we obtain
q n(mi—k)

1 1—9+9

g oo 2
Then we obtain 6= 1—%,
n(mi—k)

1 1-6 6 1 k
_ 10,0 1 g

1 2T =Ry
and
(1-6)(—0)+6vy=0.
Noticed %t —1>1, then 7 —1>1 also. We obtain that p>1 and ¢>1. By lemma
2.4, we have [F1_,267F27,2]0:F£2:Hp~ By simple calculation, we obtain

ocn——i(-e2)

Interpolating (3.50) and (3.51), we have

nmj

1S (@) fll i SIH " OO f Lo
=t 5G|
Thus we obtain the estimate (1.9) at the vertex As. Also, Proposition 3.1 implies
that (1.9) holds at vertex Bs in Fig. 6. So an interpolation yields that (1.9) is true

on the line segment from As to Bs. Now notice that the equation for A;Bs is given
by

1 ky
lasBs Y= 2 2n{mi—k) <$—<@—1>)
- (m3) konl)
2 ' 2n(mi—k) k n

The line l4,p, and line =1 intersect at point Cs:(1,n) with

#Z(l— o e
2 2n(mi—k)/m 11— ky
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and n+n' =1, where 7 is given by (1.10). That is, we have

IPSOFI s SIHHC D] £l (3.52)
at vertex Bj in Fig. 6. by duality,

IS0 a0 S TED ) (359

which implies the estimate (1.9) at the vertex Ds. Then the theorem is completed
by interpolations. O

4 Applications

In this section, we shall apply Theorem 1.1 to some specific equations. Let us first
introduce the following free schrodinger equation

{i@tu: (—A)*u, a>1,

4.1
u(0) =wuyp. (1)

This reduces to the group K (t):=e (=% which corresponds to ¢(&)=|¢|, P(r) =
r2® k=2, that is, the solution has a low frequency enjoy the same scaling. By
simple calculation, we see that P(r) satisfies (H1) and (H2) with m;=my=2a. Let
|V|Y=17, then by using Theorem 1.1, we have the following result which has been
proved in [15].

Corollary 4.1. Let a>1, v>0 and m=max{m,mq}=2«. Then we have that for
any (ia%)esaﬁf
_n(l_1.7
10K )l S I3 G £ (42)

In particular, for any (%,%) EJa,

1K@ Fllas SI5 G0 fll o,
Moreover, we can also consider the following homogeneous dispersive equation,
10pu+¢™(D)u=0,
hu+¢™ (D) (4.3)
u(0) =wup.

This reduces to the group B(t):=e " (P) which corresponds to P(r)=7r" with
m>2. By simple calculation, we see that P(r) satisfies (H1) and (H2) with m;=
mo=T1.
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Corollary 4.2. Let m>2, v>0, 2 —2>1, we have that for any (%,é)ejmm

_n(l_ 1.7
1B f e SIS0 £l
In particular, if we take ¢(§)= /&N +---+Em™ (m=2,4,---), then
e 02 ], S5 G0 e

Notice that P(r) of schrodinger equation (4.1) and (4.3) is homogeneous. Our
results can also apply to P(r) that scales differently in high and low frequency. We
give here a simply equation

{i@tu: (—A)%u+(—A)by,

4.4
u(0) =wup. (44)

This reduce to the group
L(t) ::efit[(fA)‘”r(fA)b],

which corresponds to ¢(€)=|¢|, P(r)=r**+r?*. When a=1 and b=2, we should be
familiar with the fourth-order schrodinger equation. In [17], the authors obtained
that when the semigroup U (t):= ¢~ t(A*=8) gatisfies 2 <p<oo, 1<q¢<o00, 6= % — %,
—2n0 <s'—s and p’ is conjugate of p, the following estimate holds

1U) fll 55, SE)lg]

Bs; 9
p,q
where
|t|%min(s'—s—2n5,0)’ |t| <1,
k(t)= B
", {|>1.
In the following, we use the theorem 1.1 to obtain the H?— HY estimate of such

semigroups. By simple calculation, we see that S(r) satisfies (H1) and (H2) with
my=max{a,b},my=min{a,b}. Let |V|"=1", Then by Theorem 1.1, we have

Corollary 4.3. Let max{a,b} >2, >0 and m=max{my,ms}=max{a,b}. Then
we have that for any (%,é) € Tmax{a,b} 7

1 L) fll o S 11707 Gt £ (4.5)
In particular, for any (%,%) € Tmax{a,b}

1

. n (1 _1
L) £l e S [t 75020 Ga) | £
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We can also consider the following equation

{iatquPe(eb(D))UZO» (4.6)

u(0) =wuo,

where P,(§) :E§Z2C’j§j (¢>2) is a polynomial and ¢ satisfies (Hyx). The propagator
is given by E(t):=e () By simple calculation, we see that P,(¢) satisfies (H1)
and (H2) with m;=¢,my=2. Then by Theorem 1.1, we have

Corollary 4.4. Let v>0, %—% >1, m=max{{,2} ={, Then we have that for any
(%7%) Ej@,’y;

1_1

_n 1,
I E®) fll 0 S EGT0) ) £l o

In particular, for any (%,%) €Jy,

1

LE®) Flle S1EG=D ) £l
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