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Abstract. In this paper, we develop the method of fundamental solutions
(MFS) for solving boundary value problems in the field of optical fluorescence.
The governing system of diffusion—absorption equations for the excitation and
emission fluences is transformed into a single fourth—order partial differential
equation whose fundamental solution can be expressed as the difference of two
fundamental solutions of the complex Helmholtz equation. The numerically ob-
tained results confirm the accuracy of the MFS when compared with an available
analytical solution. Numerical results are also provided for a physical applica-
tion in optical fluorescence. Furthermore, extensions to three dimensions along
with numerical verification are performed.
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1 Introduction

Based on the fact that near-infrared light at wavelengths between 700 to 900nm can
travel several centimeters into a biological tissue, fluorescence optical tomography
has emerged as a suitable molecular imaging tool for anomaly detection, see e.g., [1,
12-14,18]. In the iterative process of inverse retrieval of a concealed defect in a
tissue, a direct solver has to be called repeatedly many times until convergence of a
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nonlinear minimization algorithm is achieved. Prior to this study, the finite element
method (FEM) has been utilized and applied adaptively with some success [1, 11,
13,14]. The FEM has the advantage of dealing with inhomogeneous media, but in
many cases the biological properties of tissues as well as the fluorescent properties
of contrasting agents employed in molecular imaging are piecewise constant across
various layers of material. In these situations it is then possible to apply simpler and
faster approximation methods such as the method of fundamental solutions (MFS),
which is a versatile meshless boundary collocation technique for solving both direct
and inverse boundary value problems [6,16] without the need of internal domain
discretisation. This method, like the boundary element method (BEM) [7,10], is
applicable to problems governed by equations, the partial differential operators of
which possess explicitly available fundamental solutions.

The paper is organized as follows. In Section 2 we describe the mathematical
model of optical fluorescence and the details of its approximation by the MFS are
provided in Section 3. Numerical experiments are presented and analyzed in Sec-
tion 4 with the three-dimensional extension provided in Section 5. Finally, Section 6
highlights the conclusions of the present study.

2 Mathematical model

The governing equations of photon propagation in a bounded tissue {2, in the fre-
quency domain, can be obtained as the scattering limit of the full radiative transfer
equations [2] and are given by [1,11]

—V-(DxVu)+ru=0 in Q, (

2.1a)
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where wu is the excitation (incident) light fluence, v is the emission (fluorescence)
light fluence, k, and k,, are the total photon absorption coefficients at excitation
(subscript x) and emission (subscript m) wavelengths, respectively, Dy and D,, are
the photon diffusion coefficients at excitation and emission wavelengths, respectively,
and [y is a coupling coefficient defined below in Eq. (2.3). The boundary conditions
associated to (2.1a) and (2.1b) are of Robin type and given by

2ng—u+7u+820 on 0%, (2.2a)
n
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2Dy —+~yv=0 on 0, (2.2b)
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where n is the outward unit normal to 02, v is a constant depending on the optical
refractive index mismatch at the boundary [8] and S is an excitation source.



