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Abstract. The efficiency of three Krylov subspace methods with their ILU0-
preconditioned version in solving the systems with the nondiagonal sparse ma-
trix is examined. The systems have arisen from the discretization of Poisson’s 

equation using the 4th and 6th-order compact schemes. Four matrix-vector 

multiplication techniques based on four sparse matrix storage schemes are con-
sidered in the algorithm of the Krylov subspace methods and their effects are 

explored. The convergence history, error reduction, iteration-resolution rela-
tion and CPU-time are addressed. The efficacy of various methods is evaluated 

against a benchmark scenario in which the conventional second-order central 

difference scheme is employed to discretize Poisson’s equation. The Krylov sub-
space methods, paired with four distinct matrix-vector multiplication strategies 

across three discretization approaches, are tested and implemented within an in-
compressible fluid flow solver to solve the elliptic segment of the equations. The 

resulting solution process CPU-time surface gives a new vision regarding speed-
ing up a CFD code with proper selection of discretization stencil and matrix-
vector multiplication technique.
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1 Introduction

In the last three decades, many attempts have been made to develop high-order
compact (HOC) difference schemes for solving Navier-Stokes equations [1,2]. Wang
et al. [3] developed a fourth-order compact difference scheme for the steady stream
function-vorticity formulation of the 2D incompressible Navier-Stokes equations on
non-uniform grids. The Maple software package was employed for this purpose. To
address boundary layers, grid transformation techniques were applied, facilitating
the mapping of a non-uniform grid to a uniform one suitable for the fourth-order
compact difference scheme. Additionally, they utilized a Krylov subspace method
along with an ILUT preconditioning technique to effectively solve the ensuing lin-
ear system. Li et al. [4] also proposed a compact fourth-order finite difference
scheme for steady incompressible Navier-Stokes equations, focusing on achieving
high accuracy for steady-state solutions with structured grids. Their work empha-
sizes the efficiency of compact schemes in handling incompressible flow problems,
which complements the developments discussed in this study. Pandit et al. [5]
proposed an implicit high-order compact (HOC) finite-difference scheme for solv-
ing the two-dimensional unsteady Navier–Stokes equations on irregular geometries
on orthogonal grids. In addition to incorporating the favorable aspects of HOC
schemes, their formulation possesses the added benefit of effectively representing
transient viscous flows that encompass free and wall-bounded shear layers. These
flows inherently exhibit variations in spatial scales. Tian and Dai [6] proposed a
class of high-order compact (HOC) exponential finite difference (FD) methods for
solving one- and two-dimensional steady-state convection-diffusion problems. They
demonstrated the non-oscillatory property and high accuracy approximation solu-
tion of their scheme as well as its suitability for convection-dominated problems.
For the application of HOC finite difference scheme for solving the unsteady two-
dimensional (2-D) convection-diffusion equations, one can also refer to Kalita et
al. [7] and Kalita, Chhabra [8]. Boersma [9] developed a staggered compact high
order (up to 12th-order) numerical method to solve the compressible Navier-Stokes
equations and extended his work in the case of incompressible Navier-Stokes equa-
tions [10]. Ray [11] used a higher-order compact (HOC) finite difference scheme
for capturing the very complex flow phenomenon of unsteady flow past a rotat-
ing and translating circular cylinder. He considered the stream function-vorticity


