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Abstract. We investigate the numerical approximation for stabilizing the
semidiscrete linearized Boussinesq system around an unstable stationary state.
Stabilization is attained through internal feedback controls applied to the veloc-
ity and temperature equations, localized within an arbitrary open subset. This
study follows the framework presented in [14], considering the continuous lin-
earized Boussinesq system. The primary objective is to explore the penalization-
based approximation of the free divergence condition in the semidiscrete case
and provide a numerical validation of these results in a two-dimensional setting.
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1 Introduction

The optimal control of the Boussinesq system and its linearization around a station-
ary state are topics of significant interest across various application fields, including
the design and operation of energy-efficient buildings (see, for instance, [4,6,17,21]).

In the recent paper [14], the authors examine the penalization-based approxi-
mation of the free divergence condition for the Linear Quadratic Regulator (LQR)
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optimal control problem associated with the continuous linearized Boussinesq sys-
tem around a stationary state, considering an infinite time horizon. The primary
theoretical motivation for such an approximation is to represent the system as a
well-posed control system in the sense of Salomon-Weiss (as described, for instance,
in Curtain and Weiss [9]). From a numerical standpoint, the secondary advantage is
the avoidance of projection methods for handling the free divergence condition. It’s
worth noting that efficient projection-based numerical methods have been developed
in recent literature, as seen in [3, 12,18] and more recently [2].

This article focuses on the numerical stabilization of the linearized Boussinesq
system through localized feedback controls. Specifically, we explore the penalty
approach for the semidiscrete linearized Boussinesq system.

Let’s begin by introducing the model under consideration. Suppose Ω is a smooth
domain contained in Rd where d= 2,3. Let O be a nonempty open subset within
Ω, Γ := ∂Ω, and n represents the outer unit normal vector. The incompressible
Boussinesq system with Neumann boundary conditions writes as follows:



∂tv−div σ(v,p)+(v ·∇)v=yed+f in (0,∞)×Ω,

∂ty−α∆y+v ·∇y=g in (0,∞)×Ω,

div v=0 in (0,∞)×Ω,

σ(v,p)n= t, ∂ny=k on (0,∞)×Γ,

v(0,·)=v0, y(0,·)=y0 in Ω.

(1.1)

In (1.1), v denotes the fluid velocity, p is the fluid pressure, y is the temperature
of the fluid, σ(v,p) =ν((∇v)+(∇v)tr)−pI is the Cauchy stress tensor, ν >0 is the
kinematic viscosity of the fluid, α>0 is the heat conductivity of the fluid, ed is the
last vector of the canonical basis of Rd. The terms f : Ω→Rd, g : Ω→R describe
respectively the influence of internal field forces and heat sources. The boundary
term t:Γ→Rd is a traction boundary condition which is an example of non-reflecting
outlet boundary, it is known to be efficient for low Reynolds number, see [15]. The
Neumann boundary condition k :Γ→R prescribes the heat flux.

We assume that (vs,ps,ys)∈W 1,∞(Ω;R)d+2 is a real-valued solution to the sta-
tionary Boussinesq system


−div σ(vs,ps)+(vs ·∇)vs=ysed+f in Ω,

−α∆y+vs ·∇ys=g in Ω,

div vs=0 in Ω,

σ(v,p)n=h, ∂ny=k on Γ.

(1.2)


