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Abstract. In fluid mechanics and astrophysics, relativistic Euler equations can
be used to describe the effects of special relativity which are an extension of
the classical Euler equations. In this paper, we will consider the initial value
problem of relativistic Euler equations in an initial bounded region of RN . If
the initial velocity satisfies

max
~x0∈∂Ω(0)

N∑
i=1

v2
i (0,~x0)<

c2A1

2
,

where A1 is a positive constant depend on some sufficiently large T ∗, then we
can get the non-global existence of the regular solution for the N -dimensional
relativistic Euler equations.
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1 Introduction and main result

It is well-known that when macroscopic speed of the fluid is close to the speed of
light, or when the microscopic speed of the fluid particles is large, the motion of
the fluid no longer obeys the Newtonian laws [1]. Thus, we need to consider the
relativistic effect of the fluids. The relativistic Euler equations are used to explore
the effects of special relativity in fluid mechanics and astrophysics [2]. The isentropic
Euler equations in relativistic fluid dynamics can be written as following
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(1.1)

where n, ρ=ρ(t,~x)≥0 and ~v=v(t,~x)=(v1,v2,...,vN)∈RN denote the charge density,
the mass-energy density, the velocity of an electro-fluid and ~x=(x1,x2,··· ,xN)∈RN ,
respectively. Here c is the speed of light and p is the pressure, where γ > 1 is the
adiabatic index. In addition, n and ρ satisfy ρ=n(1+ e

c2
), where e≥0 is the special

internal energy. According to the first thermodynamics law [1], we have

θdS=de+pd

(
1

n

)
=
dρ

n
− p+ρc2

n2c2
dn, (1.2)

where the θ is the temperature and S is the entropy. In the isentropic case, we get

dn

nc2
=

dρ

p+ρc2
. (1.3)

If the pressure p depends only on the mass-energy density ρ, which satisfies p=ργ,
and the system of energy and momentum conservation laws is closed, system (1.1)
can be reduced to the following system (see [3])
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(1.4)

In the following, we consider the initial value problem of equations (1.4) with initial
data

t=0, ρ=ρ0(~x), ~v=~v0(~x). (1.5)


