Ann. Appl. Math. doi: 10.4208/aam.OA-2024-0010

Energy Equality for the Isentropic Compressible Navier-Stokes Equations Without Upper Bound of the Density

Yulin Ye¹, Yanqing Wang^{2,*} and Huan Yu³

Received 23 April 2024; Accepted (in revised version) 8 June 2024

Dedicated to the celebration of the 70th birthday of Professor Avy Soffer

Abstract. In this paper, we are concerned with the minimal regularity of both the density and the velocity for the weak solutions keeping energy equality in the isentropic compressible Navier-Stokes equations. The energy equality criteria without upper bound of the density are established for the first time. Our results imply that the lower integrability of the density ρ means that more integrability of the velocity v or the gradient of the velocity ∇v are necessary for energy conservation of the isentropic compressible fluid and the inverse is also true.

AMS subject classifications: 35Q30, 35Q35, 76N06, 76N10

Key words: Compressible Navier-Stokes equations, energy equality, vacuum.

 $\label{eq:mails:mails:wangyanqing200560gmail.com} Emails: \quad \mbox{ylye@vip.henu.edu.cn} \quad (Y. \quad Ye), \quad \mbox{wangyanqing200560gmail.com} \quad (Y. \quad Wang), \\ \mbox{yuhuandreamer@163.com} \quad (H. \quad Yu)$

¹ School of Mathematics and Statistics, Henan University, Kaifeng, Henan 475004, China

² College of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China

³ School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China

^{*}Corresponding author.

1 Introduction

The classical isentropic compressible Navier-Stokes equations can be described as

$$\begin{cases}
\rho_t + \nabla \cdot (\rho v) = 0, \\
(\rho v)_t + \operatorname{div}(\rho v \otimes v) + \nabla P(\rho) - \operatorname{div}(\mu \mathfrak{D} v) - \nabla(\lambda \operatorname{div} v) = 0,
\end{cases}$$
(1.1)

where ρ stands for the density of the flow, v represents the flow velocity field and $P(\rho) = \rho^{\gamma}$ is the scalar pressure with the adiabatic index $\gamma > 1$; The viscosity coefficients μ and λ satisfy $\mu \ge 0$ and $2\mu + d\lambda > 0$; $\mathfrak{D}v = \frac{1}{2}(\nabla v + \nabla v^T)$ is the strain tensor; We complement equations (1.1) with initial data

$$\rho(0,x) = \rho_0(x), \quad \rho v(0,x) = \rho_0 v_0(x), \quad x \in \Omega,$$
 (1.2)

where we define $v_0=0$ on the set $\{x \in \Omega : \rho_0=0\}$. In the present paper, we restrict our interest to the bounded domain with periodic boundary condition, that is, $\Omega = \mathbb{T}^d$ with dimension d > 2.

One of the celebrated results of the isentropic compressible Navier-Stokes equations (1.1) is the global existence of the finite energy weak solutions due to Lions [18] with $\gamma \ge \frac{3d}{d+2}$ for d=2 or 3. Subsequently, in [10], Feireisl-Novotny-Petzeltová further extended the Lions' work to $\gamma > \frac{3}{2}$ for d=3. In [13], Jiang and Zhang considered the global existence of weak solutions for the case $\gamma > 1$ with the spherical symmetric initial data. For the convenience of the reader, we recall the definition of the finite energy weak solution as follows:

Definition 1.1. A pair (ρ, v) is called a weak solution to (1.1) with initial data (1.2) if (ρ, v) satisfies

(i). Eq. (1.1) holds in $\mathcal{D}'(0,T;\mathbb{T}^d)$ and

$$P(\rho), \rho |v|^2 \in L^{\infty}(0, T; L^1(\mathbb{T}^d)), \quad \nabla v \in L^2(0, T; L^2(\mathbb{T}^d)),$$
 (1.3)

- (ii). the density ρ is a renormalized solution of (1.1) in the sense of [9].
- (iii). the energy inequality holds

$$\mathcal{E}(t) + \int_0^T \int_{\mathbb{T}^d} \left(\mu |\nabla v|^2 + (\mu + \lambda) |\operatorname{div} v|^2 \right) dx dt \le \mathcal{E}(0), \tag{1.4}$$

where

$$\mathcal{E}(t) = \int_{\mathbb{T}^d} \left(\frac{1}{2} \rho |v|^2 + \frac{\rho^{\gamma}}{\gamma - 1} \right) dx.$$