Limit Cycles of the Generalized Polynomial Liénard Differential Systems
Keywords:
limit cycle, periodic orbit, Liénard differential system, averaging theory.Abstract
Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Liénard differential systems $$\begin{cases} \dot{x}= y + ϵh^1_l (x) + ϵ^2h^2_l (x), \\ \dot{y}= −x − ϵ(f^1_n (x)y^{2p+1}+ g^1_m(x)) + ϵ^2 (f^2_n(x)y^{2p+1}+ g^2_m(x)), \end{cases}$$ which bifurcate from the periodic orbits of the linear center $\dot{x} = y,$ $\dot{y}= −x,$ where $ϵ$ is a small parameter. The polynomials $h^1_l$ and $h^2_l$ have degree $l;$ $f^1_n$ and $f^2_n$ have degree $n;$ and $g^1_m,$ $g^2_m$ have degree $m.$ $p ∈ \mathbb{N}$ and [·] denotes the integer part function.
Downloads
Published
2022-06-21
Issue
Section
Articles