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Abstract. Towards the solution reconstruction, one of the main steps in Godunov type
finite volume scheme, a class of integrated linear reconstruction (ILR) methods has
been developed recently, from which the advantages such as parameters free and max-
imum principle preserving can be observed. It is noted that only time-dependent prob-
lems are considered in the previous study on ILR, while the steady state problems play
an important role in applications such as optimal design of vehicle shape. In this paper,
focusing on the steady Euler equations, we will extend the study of ILR to the steady
state problems. The numerical framework to solve the steady Euler equations consists
of a Newton iteration for the linearization, and a geometric multigrid solver for the
derived linear system. It is found that even for a shock free problem, the convergence
of residual towards the machine precision can not be obtained by directly using the
ILR. With the lack of the differentiability of reconstructed solution as a partial explana-
tion, a simple Laplacian smoothing procedure is introduced in the method as a post-
processing technique, which dramatically improves the convergence to steady state.
To prevent the numerical oscillations around the discontinuity, an efficient WENO re-
construction based on secondary reconstruction is employed. It is shown that the extra
two operations for ILR are very efficient. Several numerical examples are presented to
show the effectiveness of the proposed scheme for the steady state problems.
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1 Introduction

Steady Euler equations play an important role in aerodynamic shape optimization prob-
lems [1,14], and have been viewed as a benchmark problem to evaluate the performance
of various numerical schemes in computational fluid dynamics (CFD), see [4,24,37,44,45]
among others. A lot of numerical methods have been developed to solve the unsteady
and steady Euler equations, e.g., the discontinuous Galerkin method [4, 33, 50, 51], the fi-
nite volume method [3,22,36,44], the spectral volume method [47], and the fast sweeping
method [11, 12].

Nowadays, the second-order finite volume scheme is one of the most popular schemes
to solve conservation laws. The second-order finite volume method is a generalization
of the classical first-order Godunov’s method [24] and mainly includes three steps, i.e.,
first a piecewise linear polynomial is reconstructed in each cell by using cell averages
in the reconstruction patch, then the governing equation is evolved, and finally the cell
average is updated in each cell. When the solutions of conservation laws contain discon-
tinuities, how to effectively reduce or prevent spurious oscillations around the discon-
tinuities needs special attention in the reconstruction step. To date, several pioneering
works are available in the literature to prevent the numerical oscillations. For exam-
ple, the total variation diminishing (TVD) [16] limiters have been successfully used for
one-dimensional problems to prevent spurious oscillations and to achieve second-order
accuracy. However, the implementation of TVD limiter for multi-dimensional problems
on unstructured meshes is non-trivial. Moreover, the TVD schemes have been proved
to be at most first-order accurate for 2D scalar conservation laws [15]. To overcome
these drawbacks, the slope limiters have been introduced to make the numerical solu-
tion monotone. The process of slope limiting usually consists of two components, i.e.,
given the cell averages in the related reconstruction patch of a target cell, the unlimited
gradient in this cell is determined by Green-Gauss method [3] or least-squares recon-
struction (also known as k-exact reconstruction) [2], and the unlimited gradient is then
limited by a certain process to prevent numerical oscillations. On structured meshes,
limiters such as the minmod limiter, the Superbee limiter and the van Leer limiter are
routinely used to prevent numerical oscillations, and we refer to [24] for the details. On
the other hand, the pioneering work of slope limiter on unstructured meshes was due
to Barth and Jespersen [3]. It is well known that the non-differentiability of Barth and
Jespersen limiter hampers the convergence to steady state [44]. To resolve this issue, the
Venkatakrishnan limiter [44] was proposed. However, since the limiter does not preserve
strict monotonicity [19, 44], slight oscillations can be observed near strong shocks when
using this limiter. In order to obtain high-order numerical accuracy and to effectively pre-
vent spurious oscillations, the essentially non-oscillatory (ENO) and the weighted ENO
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(WENO) type methods have been successfully implemented on both structured and un-
structured meshes, see [17,21,32,41,42,49,54] and the references therein. Compared with
ENO schemes, WENO schemes are more robust and are more effective to reach steady
states.

Motivated by the work of May and Berger [34], Chen and Li [7] proposed an inte-
grated linear reconstruction (ILR) method, in which the limited gradient in each cell can
be directly obtained by solving a linear programming (LP) problem. The advantages of
ILR include (i). the reconstruction is completely parameter-free, and (ii). the discrete
local maximum principle can be theoretically proved under some mild constraints on
grids, and therefore the spurious oscillations around discontinuities can be effectively
prevented. However, the geometrical constraints on the grids limit the application of
ILR to more general meshes, e.g., the locally refined and highly distorted meshes. To
get rid of the constraints on meshes, Chen et al. [6] proposed an improved ILR by im-
posing constraints on the quadrature points. It is successfully shown in [6] that the im-
proved ILR works very well for the time-dependent hyperbolic conservation laws on
arbitrary unstructured meshes. Inherited from ILR, the improved ILR possesses many
distinguished features, including (i). the reconstruction is still completely parameter-
free, (ii). the discrete local maximum principle can be satisfied on arbitrary unstructured
grids, and (iii). when the reconstruction is applied to Euler equations, the finite volume
scheme is positivity-preserving [9, 30, 52, 53]. Moreover, an integrated quadratic recon-
struction has been proposed in [8] for the 2D and 3D scalar conservation laws. It is noted
that only the unsteady conservation laws were considered in [6–8].

In this paper, we numerically study the performance of finite volume scheme using
the improved ILR [6] to solve two-dimensional (2D) compressible inviscid steady state
Euler equations, and for simplicity, we refer to the improved ILR as ILR hereafter. The
numerical framework is based on a Newton-type cell-centered finite volume scheme de-
veloped in [18,19,26] for the 2D steady Euler equations. Our numerical results show that
the finite volume scheme based on the ILR does not work at all, i.e., the convergence to
steady states can not be achieved. In fact, for the one-dimensional case, the ILR reduces
to the MC limiter [6], and this limiter is non-differentiable. It is well known that the use
of non-smooth slope limiters such as the Barth and Jespersen limiter would hamper the
convergence to steady state solution either using the Newton-type or a time-marching
method [39, 40, 44]. The ILR also suffers from such a problem, which motivates us to
investigate how to apply the ILR method to solve the steady state problems.

The Newton-type finite volume scheme originally developed in [26] mainly consists
of two components, including (i). the cell-centered finite volume scheme is used to dis-
cretize the governing equations, and the Newton method is adopted to linearize the non-
linear discrete formulation, and (ii). a geometrical multigrid method is utilized to solve
the system of linear equations. In the reconstruction step, the ILR proposed by Chen et.
al. [6] is used to achieve second-order numerical accuracy. To improve the convergence
to steady state of 2D Euler equations, a highly efficient gradient smoothing technique is
used to obtain averaged gradients of the limited gradients computed by ILR. The tech-
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nique used in this paper is the Laplacian smoothing, which has been used in [13] to
improve the quality of Delaunay triangulations. In the gradient smoothing procedure,
the smoothed gradient in a target cell is an arithmetic average of the limited gradients in
cells of its reconstruction patch. It is found that the convergence to steady state can be
achieved by using this simple strategy for ILR.

Although the Laplacian smoothing for ILR can significantly improve the convergence
to steady state, there is a drawback for this smoothing–the inequality constraints required
in the ILR are no longer satisfied, which makes the local maximum principle invalid. As
a consequence, slight numerical oscillations would be generated around the discontinu-
ities. To effectively prevent spurious oscillations, the WENO reconstruction is routinely
used in the literature, see e.g. [42]. The classical WENO reconstruction needs multiple re-
construction stencils to compute several candidate reconstruction polynomials, and this
process is computationally expensive, especially for high-order methods. To partially
resolve this issue, an efficient secondary reconstruction is proposed in [29] to provide
candidate polynomials. On using the secondary reconstruction, the gradients of candi-
date linear polynomials can be achieved without additional computational cost when
the gradients on all cells are available. In this paper, for the problems containing dis-
continuities, we adopt the WENO reconstruction based on secondary reconstruction for
the linear reconstruction polynomials obtained by ILR with Laplacian smoothing. The
numerical results show that the additional computational cost introduced in the WENO
reconstruction is low, but the benefits are significant — no numerical oscillations is gen-
erated around the discontinuities, and the convergence to steady state can be further
accelerated for the problems containing discontinuities.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the in-
viscid 2D steady Euler equations and the Newton-type finite volume scheme. In Section
3, we first review the basic ingredients for ILR, and then describe the gradient smooth-
ing procedure as well as the WENO reconstruction based on secondary reconstruction.
Several numerical examples are presented in Section 4 to show the effectiveness of our
method. The conclusion will be given in the last section.

2 Newton-type finite volume method for steady Euler equations

In this section, we first briefly introduce the governing equations, and then present the
main steps of Newton-type finite volume scheme, we refer to [19–21, 26] and the refer-
ences therein for more details.

The 2D steady Euler equations for the compressible inviscid fluid can be written in
the following conservative form

∇·F(U)=0, (2.1)

where U and F(U) are vectors of the conservative variables and fluxes, respectively, and
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they are given by

U =


ρ

ρu
ρv
E

 and F(U)=


ρu ρv

ρu2+p ρuv
ρuv ρv2+p

u(E+p) v(E+p)

,

where (u,v)>, ρ, p, and E denote the velocity, density, pressure, and total energy per unit
volume, respectively.

To complete the system, an equation of state is necessary. For a polytropic ideal gas,
the equation can be defined by

p=(γ−1)
(

E− 1
2

ρ(u2+v2)

)
,

where γ is the ratio of the specific heat coefficients and γ=1.4 for air.
The Newton-type cell-centered finite volume method originally developed in [26] is

employed to discretize the nonlinear governing equations (2.1). The numerical frame-
work of the proposed method mainly consists of two components, i.e., the Newton
method is used for linearization of the discrete formulation arising from using cell-
centered finite volume method to Eqs. (2.1), and a geometrical multigrid method is
adopted to solve the derived linear system. The numerical framework is briefly pre-
sented as follows.

Let Th={Ti}Nh
i=1 be a triangulation consisting of triangular cells for the bounded open

physical domain Ω⊂R2 with boundary ∂Ω, where Nh is the number of cells. Considering
the integral form of (2.1) over every cell Ti ∈Th, and using the divergence theorem, we
have ∫

Ti

∇·F(U)dxdy=
3

∑
j=1

∫
eij

F(U)·nj ds=0,

where eij is the common edge between Ti and its von Neumann neighbor [6] Tj, and nj is
the unit outward normal to edge eij with respect to Ti.

Replacing the flux F(U)·nj by the numerical flux F (Ui,Uj;nj) which is obtained by
solving the associated Riemann problem, a fully discrete system is given by

3

∑
j=1

∫
eij

F (Ui,Uj;nj)ds=0. (2.2)

In the simulation, the Harten-Lax-van Leer-Contact (HLLC) flux [43] is used as the nu-
merical flux.

A linearization mechanism is necessary since the discrete system (2.2) is nonlin-
ear. The Newton iteration method is employed for the linearization, i.e., by setting
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U(n+1)
i =U(n)

i +∆U(n)
i and keeping the linear terms in the Taylor’s expansion, where ∆U(n)

i
is the increment of the conservative variables in the current cell, we obtain the following
linearized system

3

∑
j=1

∫
eij

F (U(n)
i ,U(n)

j ;nj)ds+
3

∑
j=1

∫
eij

∂F (U(n)
i ,U(n)

j ;nj)

∂U(n)
i

∆U(n)
i ds

+
3

∑
j=1

∫
eij

∂F (U(n)
i ,U(n)

j ;nj)

∂U(n)
j

∆U(n)
j ds=0, (2.3)

where ∂F/∂U denotes the Jacobian matrix of the numerical flux, which can be approxi-
mated by numerical differentiation [18]. Since the linearized system (2.3) could be singu-
lar, a regularization technique is required. Li et al. [26] used the l1 norm of cell residual to
regularize the system (2.3), that is, the regularized linear system takes the following form

β

∥∥∥∥∥ 3

∑
j=1

∫
eij

F (U(n)
i ,U(n)

j ;nj)ds

∥∥∥∥∥
l1

∆U(n)
i +

3

∑
j=1

∫
eij

∂F (U(n)
i ,U(n)

j ;nj)

∂U(n)
i

∆U(n)
i ds

+
3

∑
j=1

∫
eij

∂F (U(n)
i ,U(n)

j ;nj)

∂U(n)
j

∆U(n)
j ds=−

3

∑
j=1

∫
eij

F (U(n)
i ,U(n)

j ;nj)ds, (2.4)

where ‖·‖l1 is the l1 norm of a vector, and β is a positive parameter, which is set to 2 for
all numerical examples.

The advantages of using the l1 norm of cell residual for the regularization have been
demonstrated by many works, and we refer to [18, 20, 21, 26] and the references therein
for a detailed discussion. The geometrical multigrid method, see for instance [18, 26], is
employed to solve the linear system (2.4) efficiently.

Remark 2.1. In the simulation, the convergence history of the l∞ norm of total residual,
defined by

max
1≤i≤Nh

∥∥∥ 3

∑
j=1

∫
eij

F (U(n)
i ,U(n)

j ;nij)ds
∥∥∥

l1

against the steps of Newton iteration is used to evaluate the performance of the Newton-
type finite volume scheme using ILR.

Remark 2.2. The boundary conditions used in the numerical examples include (i) the far
field inflow and outflow boundary conditions, and (ii) solid wall boundary condition, i.e.,
u·n=0. The detailed discussion on the treatment of far filed inflow and outflow bound-
ary conditions, including both the subsonic and supersonic cases, can be found in [5].
Furthermore, we refer to the interested reader to [23] for an exhaustive implementation
of solid wall boundary conditions.
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To obtain the second-order numerical accuracy, the integrated linear reconstruction
(ILR) proposed by Chen et al. [6] is used to obtain a linear reconstruction polynomial in
each cell, which will be discussed in the next section.

3 Integrated linear reconstruction

In this section, we first briefly review the basic idea of integrated linear reconstruction
(ILR), and then introduce the Laplacian smoothing procedure for ILR to improve the
convergence to steady state. Finally, we present the efficient WENO reconstruction based
on secondary reconstruction to prevent numerical oscillations around the discontinuities.

3.1 A brief review on the ILR

To achieve second-order numerical accuracy, we use the ILR to reconstruct a linear poly-
nomial in each cell. Here, we perform the reconstruction in a component-wise manner.
The idea of ILR is briefly described as follows, and we refer to [6] for the details.

Let T0 be the target cell, and {Ti}3
i=1 be its von Neumann neighbors, see Fig. 1. The

reconstruction patch of T0 is {Ti}3
i=0. Furthermore, let (xi,yi) and ui be the barycenter and

cell average associated with cell Ti, respectively. We assume that the reconstructed linear
polynomial on T0 is given by

R0(x,y)=u0+Lx(x−x0)+Ly(y−y0),

where L=[Lx, Ly]> is the gradient vector.
The l2 norm of the error between the values of R0(x,y) at the barycenters of {Tj}3

j=1

(the cell averages of R0 over Tj for j=1,2,3) and the related cell averages {uj}3
j=1 is used

T0

T1

T2T3

(ξ1, η1)

(ξ2, η2)(ξ3, η3)

Figure 1: Setup of a reconstruction patch for T0.
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to form the optimization problem, that is, we want to minimize the following objective
function

δ(Lx,Ly)=
3

∑
j=1

(
R0(xj,yj)−uj

)2, (3.1)

over all gradients L = [Lx, Ly]> such that the following constraints on the values of
R0(x,y) at the midpoints (ξ j,ηj) (see Fig. 1) of the edges of T0 hold

min{u0,uj}≤R0(ξ j,ηj)≤max{u0,uj}, j=1,2,3. (3.2)

Remark 3.1. For the second-order finite volume scheme, the boundary integrals appear
in (2.4) can be approximated by the midpoint quadrature rule. Therefore, the midpoints
of the edges of T0 are the quadrature points for the numerical integration of the boundary
integrals.

A simple derivation shows that this constrained optimization problem can be trans-
formed into the following double-inequality Quadratic Programming (QP) problem,
namely

min
L

1
2

L>GL+c>L,

s.t. b≤AL≤B, (3.3)

where

G=
3

∑
j=1

[
(xj−x0)2 (xj−x0)(yj−y0)

(xj−x0)(yj−y0) (yj−y0)2

]
, c=−

3

∑
j=1

[
(xj−x0)(uj−u0)

(yj−y0)(uj−u0)

]
,

A=

ξ1−x0 η1−y0

ξ2−x0 η2−y0

ξ3−x0 η3−y0

, b=

min{u1−u0,0}
min{u2−u0,0}
min{u3−u0,0}

, B=

max{u1−u0,0}
max{u2−u0,0}
max{u3−u0,0}

.

We refer to [6] for the details. The active-set method is used to solve the constrained QP
problem efficiently, see [6] and the references therein for the details.

The above description of ILR is for the interior cells, and the von Neumann neighbors
are accurate enough to form the reconstruction patch. However, for the cells located on
the boundary of domain, the von Neumann neighbors are not enough to construct the
limited gradient. Following [6], when T0 is a cell lying on the boundary of domain, we
use the Moore neighbors to construct the related reconstruction patch, that is, those cells
sharing at least one vertex with T0 would be included in the reconstruction patch, see
Fig. 2. Furthermore, the lower and upper bounds for the inequality constraints on the
values of reconstructed linear polynomial at the midpoints of edges of T0 are given by

m=min{u0,u1,··· ,uK} and M=max{u0,u1,··· ,uK},
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Figure 2: The reconstruction patch for the boundary cell T0.

respectively, where K is the number of Moore neighbors of the boundary cell T0.
For the second-order finite volume scheme based on ILR, the limited gradient in each

cell can be achieved directly from the constrained optimization problem (3.3). It is proved
in [6] that the scheme possesses several excellent properties, including (1). the local max-
imum principle is satisfied on arbitrary unstructured grids for scalar conservation laws,
(2). the reconstruction is parameter-free, and (3). when it is applied to time-dependent
Euler equations, the scheme is positivity-preserving. However, the numerical results
presented in Section 4 show that the finite volume scheme based on ILR is unable to
reach the steady state of Euler equations. This phenomenon is due to the introduction
of non-differentiability in the reconstruction function. It is well known that the non-
differentiable limiters such as the Barth and Jespersen limiter and the ENO limiter are
difficult to obtain the steady state [38]. In the following subsection, we introduce the
gradient smoothing for ILR to significantly improve the convergence to steady state.

3.2 A simple smoothing strategy to improve the convergence to steady state

In this work, we use the gradient smoothing to improve the differentiability of recon-
struction polynomial obtained by ILR. The gradient smoothing used here is based on the
Laplacian smoothing technique [13], which is usually used to improve the quality of a
mesh by replacing the selected interior grid point by the weighted average of the points
around it. Denote by P0 = {T0,T1,T2,T3} the reconstruction patch of an interior cell T0,
and let Li be the limited gradient obtained by ILR on Ti, i=0,1,2,3.

Laplacian smoothing (LS) for the gradients obtained by ILR simply uses the arith-
metic average of the limited gradients in the reconstruction patch P0 to replace the lim-
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ited gradient on T0, i.e., if we denote the smoothed gradient on T0 by L̂0, then

L̂0=
1
4
(L0+L1+L2+L3). (3.4)

Similarly, for the cell T0 lying on the boundary of domain, let P0 = {T0,T1,. . .,TK} be the
reconstruction patch constructed from the Moore neighbors of T0, the smoothed gradient
on T0 is

L̂0=
1

K+1
(

L0+L1+ . . .+LK
)
. (3.5)

Example 3.1 (Accuracy test). To show that the ILR with Laplacian smoothing is still of
second-order accuracy, in Fig. 3(b), we show the convergence curve of the L1 norm of er-
ror between u(x,y)= sin(πx)sin(πy) and its piecewise linear reconstruction polynomial
uh(x,y) obtained by two different reconstructions: (1). ILR, and (2). ILR with Lapla-
cian smoothing, where the computational domain is Ω = [0,1]2. In the simulation, six
uniformly refined meshes are used, and the coarsest unstructured mesh is presented in
Fig. 3(a). It can be observed from Fig. 3(b) that the errors introduced by the two re-
constructions are of second-order accuracy, and the numerical accuracy achieved by ILR
with Laplacian smoothing is slightly better than that obtained by ILR. In the figure, we
also present the L1 norm of reconstruction errors between the gradient of u(x,y) and the
gradient of uh(x,y), and it can be seen that these errors are of first-order accuracy.
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Figure 3: The coarsest unstructured mesh, and the L1 norm of reconstruction errors in solution and gradient
on six successively refined meshes using ILR and ILR with Laplacian smoothing (LS).

Example 3.2 (Smoothness test). We next show the effectiveness of the gradient smoothing
procedure on improving the smoothness of reconstruction function obtained by ILR. We
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Figure 4: l∞ norm of difference in the gradient at the interior edges obtained by ILR and ILR with Laplacian
smoothing (LS) for two different functions.

use the l∞ norm of the difference of the limited or smoothed gradients at interior edges
to measure the smoothness of the reconstruction function, that is, we use the l∞ norm

max
1≤i≤N(Int.)

e

∫
ei

‖∇u(0)
h,ei
−∇u(1)

h,ei
‖l1 ds

to measure the smoothness, where N(Int.)
e is the number of interior edges of a mesh, ei is

the i-th interior edge, u(0)
h,ei

and u(1)
h,ei

are the linear reconstruction polynomials in the two
cells having ei as an edge.

In the following, we measure the smoothness of related reconstruction functions for
two different functions, where the computational domain and meshes are the ones pre-
sented in the last example. The first function is a smooth function given in the previous
example, and the second one is a discontinuous function given by

g(x,y)=

{
sin(πx)sin(πy), if x<0.5,

sin(πx)sin(πy)+0.1, if x≥0.5.

The result for the smooth function is presented in Fig. 4(a), and that for the discontinuous
one is shown in Fig. 4(b). It can be observed from the figure that by using the gradient
smoothing technique, the smoothness of the reconstruction function obtained by ILR has
been improved.

The numerical results presented in Section 4 show that the Laplacian smoothing for
ILR can significantly improve the convergence to steady states. However, there is a po-
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tential disadvantage for its use–the inequality constraints (3.2) are no longer valid for the
smoothed gradients. As a consequence, spurious oscillations would be generated around
the discontinuities since the discrete local maximum principle does not hold any more.

In the following subsection, we will introduce the efficient WENO reconstruction
based on secondary reconstruction [29] to prevent spurious oscillations for the problems
containing discontinuities.

3.3 WENO reconstruction based on secondary reconstruction

The high-order k-exact WENO finite volume scheme based on the simple and effi-
cient secondary reconstruction is originally proposed by Li and Ren [29] for the time-
dependent Euler equations, and has been extended to solve the steady Euler equations
in curved geometries [35]. The WENO reconstruction developed in [29] does not need
to construct multiple reconstruction stencils to compute several candidate reconstruction
polynomials. In [29, 35], the classical k-exact reconstruction [2] is performed in every cell
to serve as the primary reconstruction, and the additional candidate reconstruction poly-
nomials for the target cell are obtained by secondary reconstruction. The basic idea of
secondary reconstruction can be briefly summarized as follows:

The continuations of the k-exact primary reconstructions on neighboring cells of a target cell
are served as the additional candidate reconstructions, subjecting to the constraint that the cell
average of the continuations should be conserved on the target cell.

The secondary reconstruction for the k-exact WENO finite volume scheme can be
easily extended to the case of ILR with Laplacian smoothing, and now the primary re-
construction is the ILR with Laplacian smoothing.

In the following, we describe the implementation of secondary reconstruction in the
context of the second-order finite volume scheme, and we refer to [29] for the general
cases.

Let T0 be the target cell, and let P0 = {T0,T1,. . .,TK} be the associated reconstruction
patch of T0. Note that P0 contains the Moore neighbors of T0 when T0 is a cell lying on
the boundary of domain. Moreover, let

ui(x,y)=ui+L(i)
x (x−xi)+L(i)

y (y−yi)

be the linear reconstruction polynomial obtained by using ILR with Laplacian smoothing
in cell Ti∈P0, where 0≤i≤K with K≥3. The secondary reconstruction polynomial for the
cell T0 obtained by using the primary reconstruction ui(x,y) on Ti, denoted by ui→0(x,y),
for 1≤ i≤K, is determined by

∂αui→0(x,y)
∂xα1 ∂yα2

∣∣∣
(x,y)=(x0,y0)

=
∂αui(x,y)
∂xα1 ∂yα2

∣∣∣
(x,y)=(x0,y0)

,

∀α=(α1,α2)∈N2, |α|=α1+α2=1, (3.6)
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subject to
1
|T0|

∫
T0

ui→0(x,y)dxdy=u0. (3.7)

Therefore
ui→0(x,y)=u0+L(i)

x (x−x0)+L(i)
y (y−y0), where 1≤ i≤K. (3.8)

Now the primary reconstruction polynomial u0(x,y) and the additional candidate linear
reconstruction polynomials ui→0(x,y) are available to construct the WENO reconstruc-
tion polynomial on T0, and the construction is described as follows.

Following [17, 19, 21], the smoothness indicator for the linear polynomial ui→0(x,y)
on the cell T0 is given by

βi = ∑
|α|=1

∫
T0

|T0||α|−1
( ∂|α|ui→0

∂x,α1 ∂yα2

)2
dxdy= |T0|

(
(L(i)

x )2+(L(i)
y )2

)
, (3.9)

where 0≤ i≤K, and here u0→0(x,y) :=u0(x,y).
The weight ωi for the candidate linear polynomial ui→0(x,y) is determined by

ωi =
ω̃i

∑K
i=0 ω̃i

, ω̃i =
1

(ε+βi)p , (3.10)

where the parameters used in the simulation are p= 2, and ε= 10−5 is a small positive
number to avoid division by zero.

Finally, the WENO reconstruction for the cell of interest T0, denoted by ũ0(x,y), is
obtained by a convex combination of all candidate linear reconstruction polynomials

ũ0(x,y)=
K

∑
i=0

ωi ·ui→0(x,y). (3.11)

Remark 3.2. In the following, the 1-exact reconstruction using WENO reconstruction
based on secondary reconstruction [29] as a limiter is referred to as the linear WENO
reconstruction.

4 Numerical examples

In this section, several numerical examples are presented to show the effectiveness of us-
ing Laplacian smoothing for ILR to improve the convergence to steady state of 2D Euler
equations, and to demonstrate the shock-capturing capability of WENO reconstruction
based on the efficient secondary reconstruction. Specifically, the numerical examples pre-
sented in Sections 4.1 and 4.2 are concerned with the isentropic smooth flows, and they
are used to demonstrate that the ILR with Laplacian smoothing is of second-order ac-
curacy, and to show that the gradient smoothing is necessary to obtain the steady state
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even for problems with smooth solutions. In the Section 4.3, we consider transonic flows
around a NACA0012 airfoil, which are used to show that the WENO reconstruction is
needed to prevent numerical oscillations when the ILR with Laplacian smoothing is ap-
plied to problems with discontinuities.

For the following numerical examples, density and velocity of the far field flow are set
to be ρ∞ =1 and v∞ =(u∞,v∞)=(cosα,sinα), respectively, where α is the angle of attack,
and the pressure is p∞=ρ∞‖v∞‖2

2/(γM2
∞), where M∞ is the Mach number of free-stream

flow.
The stop criterion for the Newton method is either the l∞ norm of total residual (see

Remark 2.1) reaches the stop tolerance 10−10 or the number of Newton iteration steps
reaches 500, unless explicitly stated otherwise. The simulation is performed on a C++
package called AFVM4CFD, and the hardware is a Dell Precision 5530 Mobile Worksta-
tion with Intel (R) Xeon (R) E-2176M CPU @ 2.70 GHz and 32 Gb memory.

4.1 Subsonic flow through a channel with a smooth bump

We first consider the inviscid subsonic flow through a channel with a smooth bump [46].
The physical domain is

Ω=
{
(x,y)∈R2|−1.5≤ x≤1.5, 0.0625e−25x2≤y≤0.8

}
.

The left boundary is the inflow boundary with the inlet Mach number M∞ = 0.5 and an
attack angle α=0◦, and the outflow boundary is set at the right boundary, while the wall
boundaries are set at the top and bottom boundaries. Since the flow field is isentropic
under such a flow condition, we can use the convergence of L2(Ω) norm of the entropy
error [13, 21, 23] to evaluate the order of accuracy, and the entropy error is defined by

εent =
p

p∞

(ρ∞

ρ

)γ
−1, (4.1)

where p∞ and ρ∞ are the pressure and density of the far field flow, respectively.
The coarsest unstructured mesh Th, see Fig. 5, consists of 574 cells, and five uniformly

refined meshes are used in the simulation. We first show the convergence history of l∞
norm of total residual against the number of Newton iteration steps obtained by ILR
in Fig. 6(a), from which we can observe that the steady state can not be obtained on all
meshes due to the lack of differentiability of the reconstructed quantities. On the contrary,

Figure 5: The coarsest unstructured mesh for the simulation of subsonic flow through a smooth bump.
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Figure 6: (Smooth bump) The convergence history of l∞ norm of total residual on five uniformly refined meshes
obtained by (a) ILR, and (b) ILR with Laplacian smoothing (LS).

the residual obtained by ILR with Laplacian smoothing can successfully reach the stop
tolerance 10−10, which can be seen from Fig. 6(b). We can conclude from the figure that
the gradient smoothing procedure is necessary to reach the steady state when the ILR is
used.

We next show the distributions of Mach number isolines obtained by ILR in Fig. 7 (left
column), and present those obtained by ILR with Laplacian smoothing in Fig. 7 (right
column), where the levels of isolines for the Mach number are uniformly distributed
with spacing 0.0195. It can be observed from the figure that (1). the results obtained by
ILR with gradient smoothing are more accurate than the results obtained by ILR on the
finer meshes, and (2). when the ILR with Laplacian smoothing is used, the distribution
of Mach number isolines becomes more symmetric as the baseline mesh is uniformly
refined several times, which successfully shows that the method is convergent.

We finally present the L2(Ω) norm of entropy errors obtained by using ILR and ILR
with Laplacian smoothing in Table 1. In the table, we also report the averaged CPU time
(in second) for one Newton iteration step, and show the total number of Newton iteration
steps to reach the stop criterion. It can be observed from the table that the second-order
accuracy can not be preserved when the ILR is used, this phenomenon can be explained
by the fact that the steady state is difficult to achieve when ILR is used. On the contrary,
the ILR with gradient smoothing can successfully obtain the optimal convergence rate.
Furthermore, we can also see from the table that the averaged CPU time per Newton
iteration step for ILR with Laplacian smoothing is only slightly larger than that by using
ILR, which shows that the gradient smoothing procedure is not time-consuming at all.
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Figure 7: Mach number isolines obtained on five uniformly refined meshes (from top to bottom) using ILR (left
column), and ILR with Laplacian smoothing (right column).

Table 1: (Smooth bump). The L2(Ω) norm of entropy errors, the related convergence rates, the averaged
CPU time per Newton iteration step, and the total number of Newton steps to reach the stop criterion for the
Newton type finite volume scheme using ILR and ILR with Laplacian smoothing.

No. of ILR ILR + LS
cells L2 Error Rate Time per step (s) No. of steps L2 Error Rate Time per step (s) No. of steps
574 2.20e-03 - 0.0197 500 3.39e-03 - 0.0198 27

2296 6.01e-04 1.87 0.0592 500 8.97e-04 1.92 0.0603 33
9184 2.37e-04 1.34 0.215 500 2.39e-04 1.91 0.2243 52
36736 1.11e-04 1.10 0.8779 500 5.38e-05 2.15 0.8804 85

146944 1.54e-04 -0.47 3.676 500 1.23e-05 2.13 3.722 138

4.2 Subsonic flow around a circular cylinder

In this test case, we consider an inviscid subsonic flow of Mach number M∞ =0.38 with
0◦ attack angle around a circular cylinder [4]. The detailed setup of this problem can
be found in [21]. Similar to the first test case, the flow is isentropic, so we can use the
convergence of the L2(Ω) norm of entropy errors to evaluate the order of accuracy. In
this test case, the maximum number of Newton iteration steps is set to 1000.

In the simulation, the radius of cylinder is r=0.5, and the domain is bounded by an
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(a) The coarsest mesh: 200 cells (b) Close-up view of the coarsest mesh
around the cylinder

(c) Close-up view of three finer meshes around the cylinder

Figure 8: The meshes used for the simulation of subsonic flow around a circular cylinder.

outer circle with radius R=26.3. In Fig. 8(a), we show the coarsest mesh, which contains
10×10×2 cells, and we show the close-up view of the coarsest mesh around the cylinder
in Fig. 8(b). In Fig. 8(c), we present the three finer meshes around the cylinder, which are
obtained by uniformly refining the coarsest mesh in a body-fitted manner.

The convergence history of l∞ norm of total residual obtained by ILR on four uni-
formly refined meshes is shown in Fig. 9(a), and it can be observed that the steady state
is not attainable on all meshes. On the contrary, the convergence to steady state can be
significantly improved when the gradient smoothing procedure is used for ILR, which
can be clearly seen in Fig. 9(b).

We next show the distributions of Mach number isolines obtained from ILR and ILR
with Laplacian smoothing in Fig. 10, where the levels of isolines for the Mach number
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(b) ILR + LS

Figure 9: (Circular cylinder). The convergence history of l∞ norm of total residual on four uniformly refined
meshes obtained by ILR, and ILR with Laplacian smoothing.

Figure 10: Mach number isolines obtained by ILR (top row) and by ILR with Laplacian smoothing (bottom
row) on four successively refined meshes (from left to right).

are uniformly distributed with spacing 0.038. It can be observed from the figure that
the results obtained by ILR are unsatisfactory on all meshes, which is explained by the
fact that the convergence to steady state can not be achieved by using ILR, while the
Mach number contours obtained by ILR with gradient smoothing become more symmet-
ric when the baseline mesh is uniformly refined several times, which demonstrates the
convergence of the proposed method.
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Figure 11: (Circular cylinder). The convergence history of L2(Ω) norm of entropy errors.

We finally present the convergence rate of L2(Ω) norm of entropy errors obtained
by ILR with gradient smoothing in Fig. 11, and as a comparison, we also present the
results obtained by the linear WENO finite volume scheme in the figure, where the 1-
exact WENO reconstruction based on the secondary reconstruction is used. It can be
observed from the figure that the numerical accuracy obtained by ILR with Laplacian
smoothing is of second-order accuracy, and the results obtained by ILR with Laplacian
smoothing are more accurate than those obtained by linear WENO reconstruction.

4.3 Inviscid transonic flow around a NACA0012 airfoil

In this section, we consider the inviscid transonic flows around a NACA0012 airfoil, and
the following two different free-stream flow conditions are considered

(1). Mach number M∞ =0.8 and attack angle α=1.25◦;

(2). Mach number M∞ =0.85 and attack angle α=1◦.

The mathematical expression for the NACA0012 airfoil is

y=±0.6(0.2969
√

x−0.1260x−0.3516x2+0.2843x3−0.1036x4), where x∈ [0,1].

The test cases of transonic flow around a NACA0012 airfoil are usually used to evaluate
the ability of numerical schemes to prevent numerical oscillations around discontinuities.
Although the ILR with gradient smoothing is efficient to achieve the steady state of Euler
equations, it would generate numerical oscillations around the discontinuities since the
local maximum principle can not be guaranteed any more. Therefore, the numerical
examples presented in this section are used to demonstrate that a post-processing of the
gradients obtained by ILR with Laplacian smoothing is necessary to achieve oscillations-
free numerical results.
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(a) The coarsest mesh (b) Close-up view of the coarsest mesh around
the airfoil

Figure 12: The coarsest mesh used for the simulation of transonic flow around a NACA0012 airfoil.

In the simulation, the physical domain is truncated by an outer circle of radius 20.
The coarsest unstructured mesh consists of 2662 triangles, see Fig. 12. Furthermore, in
the simulation, two finer meshes are obtained by uniformly refining the coarsest mesh in
a body-fitted manner.

We show the convergence history of l∞ norm of total residual against the Newton
iteration steps using ILR for the transonic flow with Mach number M∞ =0.8 at an attack
angle α=1.25◦ in Fig. 13(a), and show the related result for the flow with Mach number
M∞=0.85 at an attack angle α=1◦ in Fig. 13(d). It can be observed from these two figures
that the steady states can not be achieved for these two transonic flow problems on all
meshes, just as in the previous test cases. In Figs. 13(b) and (e), we report the convergence
history of residual obtained by ILR with the Laplacian smoothing, and it is found that the
steady states can be achieved on all meshes, which shows the effectiveness of the use of
gradient smoothing to improve the convergence to steady state.

Although the gradient smoothing procedure for ILR can significantly improve the
convergence to steady state, this procedure would destroy the inequality constraints on
the quadrature points required in ILR, which results in the generation of spurious oscilla-
tions around discontinuities. This drawback can be obviously observed from Figs. 14(b)
and (e), in which we show the distributions of pressure coefficient along the surface of
airfoil for the two different transonic flow problems on the finest mesh using the ILR
with Laplacian smoothing procedure, where the pressure coefficient along the airfoil is
defined by

Cp =
p−p∞

0.5ρ∞‖v∞‖2 , (4.2)

where p∞ and v∞ =(cosα,sinα) are the far field pressure and velocity field, respectively.
It can be observed from the two figures that there are some slight numerical oscillations
around the shocks, while the results obtained by ILR are much better than those obtained
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Figure 13: (NACA0012). The convergence history of total residual for two different transonic flow problems
computed on three uniformly refined meshes using three different reconstructions. Top row: M∞=0.8, α=1.25◦.
Bottom row: M∞ =0.85, α=1◦.

by ILR with gradient smoothing, see Figs. 14(a), (b) and (d), (e) for the details.
To obtain oscillations-free numerical results, the WENO reconstruction based on sec-

ondary reconstruction is used for the limited gradients obtained by ILR with Laplacian
smoothing. The related distributions of pressure coefficient along the airfoil on the finest
mesh for the two transonic flow problems are shown in Figs. 14(c) and (f), and one can see
that there is no numerical oscillations around the shocks. Furthermore, we also show the
convergence histories of the l∞ norm of total residual using ILR with Laplacian smooth-
ing in a combination of WENO reconstruction for the two transonic flow problems in
Figs. 13(c) and (f). It can be observed from Fig. 13 that the convergence to steady state
of Euler equations has been further improved when the WENO reconstruction is intro-
duced.

In Table 2, we report the averaged CPU time (in second) for one Newton iteration step
and the total number of Newton iteration steps to reach the stop criterion for four differ-
ent reconstructions: (i). the ILR, (ii). the ILR with Laplacian smoothing, (iii). the ILR with
both the Laplacian smoothing and WENO reconstruction, and (iv). the linear WENO
reconstruction. In the table, we show the results for the two different transonic flow
problems on three uniformly refined meshes, where the positive integers corresponding
to the column with “#steps” not included in the square brackets represent the related
Newton iteration steps to reach the stop criterion for the transonic flow with Mach num-
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Figure 14: (NACA0012). Pressure coefficient on the surface of NACA0012 obtained on the finest mesh using
three different reconstructions for two transonic flow problems. Top row: M∞=0.8 and α=1.25◦. Bottom row:
M∞ =0.85 and α=1◦.

ber M∞=0.8 at an attack angle α=1.25◦, while the positive integers in the square brackets
correspond to the Newton iteration steps needed for the transonic flow with M∞ = 0.85
at an attack angle α=1◦. It can be observed from the table that (1). for the reconstructions
based on ILR, the ILR using Laplacian smoothing in a combination of WENO reconstruc-
tion is the most efficient one to reach the steady states on all meshes, (2). the averaged
CPU time for one Newton iteration step needed for the ILR using Laplacian smoothing
in a combination of WENO reconstruction is about 10% larger than that for ILR, hence
the increase of computational cost for the former is not significant, and the former one is
very efficient to reach the steady states, and (3). for the four different reconstructions, the
ILR using both the Laplacian smoothing and the WENO reconstruction needs the fewest
Newton iteration steps to reach the steady states, and the total CPU time it needs is com-
parable to the time needed by linear WENO reconstruction for the two transonic flow
problems on the finest mesh.
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Table 2: (NACA0012). The averaged CPU time per Newton iteration step, and the total number of Newton
iteration steps to reach the stop criterion using four different reconstructions for two transonic flow problems,
where the integers in square brackets represent the total number of Newton iteration steps for flow with
M∞ =0.85 and α=1◦, while others correspond to those for the flow of M∞ =0.8 and α=1.25◦.

No. of ILR ILR + LS ILR + LS + WENO Linear WENO
cells Time/step (s) #steps Time/step (s) #steps Time/step (s) #steps Time/step (s) #steps
2662 0.07188 500 [500] 0.07344 76 [108] 0.07799 35 [67] 0.04299 40 [73]
10648 0.2611 500 [500] 0.2689 97 [140] 0.2809 57 [110] 0.1557 60 [127]
42592 1.0135 500 [500] 1.0625 105 [315] 1.1048 86 [117] 0.6378 142 [192]

5 Conclusions

In this paper, we numerically study the performance an integrated linear reconstruction
(ILR) on solving the two-dimensional steady Euler equations. To obtain the convergent
results towards the steady state of the system, a highly efficient gradient smoothing pro-
cedure based on the Laplacian smoothing is used, and the numerical results show that
the convergence to the steady state can be improved significantly. However, the intro-
duction of Laplacian smoothing would destroy the inequality constraints imposed in the
construction of ILR, which results in the generation of spurious oscillations around the
discontinuities. The efficient WENO reconstruction based on the secondary reconstruc-
tion is used to prevent the numerical oscillations, and the increase in computational cost
to implement the WENO reconstruction is not significant. The numerical results show
that for problems containing shocks, the ILR using both the Laplacian smoothing and
WENO reconstruction not only effectively prevents the numerical oscillations, but also
significantly improves the convergence to steady states.

Although the ILR with the two post-processing procedures works well for steady
state problems containing discontinuities, a better way to apply the ILR to steady state
problems should be studied. A possible way is to modify the constraints of optimization
problem for ILR such that the modified ILR has excellent steady state convergence as
well as the maximum principle preserving property, which will be studied in our future
work.
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