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Abstract. While the theory of peridynamics (PD) holds significant potential in engi-
neering, its application is often limited by the significant computational costs by the
nonlocality of PD. This research is based on a three-dimensional(3D) complex Tim-
oshenko beam structure with six degrees of freedom. We propose a fast meshfree
method based on the linear bond-based PD model of the stiffness matrix structure by
ingeniously using the matrix decomposition strategy to maintain the Teoplitz structure
of the stiffness matrix. This method significantly reduces the amount of calculation
and storage without losing accuracy, reduces the amount of calculation from O(N?)
to O(NlogN), and decreases the storage capacity from O(N?) to O(N). We validate
the effectiveness of our approach through numerical examples, particularly in multi-
beam structures. We demonstrate that our method realizes algorithm acceleration in
numerical simulations of multi-beam structures subjected to static concentrated loads.
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1 Introduction

Classical continuum mechanics relies on partial differential equations, making it chal-
lenging to describe models with discontinuities. To address this issue, peridynamics
was proposed by Silling [1] as a nonlocal model based on an integral equation. This
model effectively solves the problems of crack propagation and multiple crack prop-
agation [2]. Consequently, peridynamics has attracted extensive research in modeling
methods, digital technology, and applications. Three constitutive relations have been de-
fined for PD [3]: bond-based PD, ordinary state-based PD, and nonordinary state-based
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PD. While the bond-based PD limits Poisson’s ratio to a fixed value, this restriction is re-
lieved in the state-based model. Currently, PD is widely used to simulate damage predic-
tion and crack propagation in various materials, including elastic and plastic ones [4-7],
as well as nonlinear elastic and composite materials [8-11].

Analyzing complex engineering structures using three-dimensional PD models can
be computationally expensive. To mitigate this, structure-simplified models such as
beams, plates, and shells are often used to reduce the computational cost [12,13]. Silling
et al. first introduced a one-dimensional bar model with axial force [14]. For the Euler-
Bernoulli beam, both ordinary and non-ordinary state-based PD beam models have been
proposed [15,16]. More recently, a three-dimensional Euler-Bernoulli PD beam model
was proposed by Liu et al. [17]. For the Timoshenko beam, a PD beam model that de-
scribes axial, bending, and torsional deformations has been introduced [18]. Other mod-
els, such as those proposed by Diyaroglu et al. that introduce shear deformations using
a bond-based PD beam model [19], and a 6 DOFs bond-based PD beam model that in-
cludes axial, bending, shear, and torsional deformation [20], have also been proposed.
Moreover, the mixed formulation method has been developed to alleviate shear locking
in PD beam models [21]. Yang et al. extended the PD beam and plate models to finite ele-
ment frames [22], proposing high-order beam and functionally graded Timoshenko beam
formulations [23,24]. Recently, PD beam and shell models based on the micro-beam bond
were proposed using the via interpolation method [25,26].

Numerous numerical methods, such as meshfree, finite difference, finite element, and
collocation methods, have been developed to solve the above PD models [27-33]. The
asymptotic compatibility scheme, which preserves the limit behavior of the zero hori-
zons of the non-local operator into the limit behavior of the local differential operator,
provides consistency between the local and non-local models [33,34]. However, the high
computational cost of PD poses limitations, particularly for multidimensional situations,
even in the case of structure-simplified PD models. To overcome this issue, several efforts
have been made, such as coupling methods that use PD only in the area around the crack
while using classical mechanics [35,36] and other geometric analyses [37,38] in other ar-
eas. Additionally, fast methods based on the convolution structure of the PD model have
been proposed [39,40]. To reduce the computational expense, a super-fast peridynamic
model that reduces the number of inner loop operations has been introduced [41].

Recently, researchers have turned to the use of stiffness matrix structures as a way
of reducing computational costs without sacrificing accuracy, a trend popularized by
faster methods that decrease calculation times from O(N?) to O(NlogN). In 2010, a
fast method [42] on the basis of the stiffness matrix Toeplitz structure was proposed to
solve the one-dimensional static linear bond-based peridynamics. Then, according to the
two-dimensional nonlocal diffusion model [43], a fast collocation method based on the
TBT matrix structure was given, which can be considered an approximate scalar-valued
model. And a fast collocation method of two-dimensional static linear bond-based peri-
dynamics with volume boundary conditions was found [44]. We used an equivalent but
more effective method to evaluate it. A fast method [45] was also proposed to solve
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the nonlocal diffusion model with variable coefficients, and a discontinuous method was
proposed to solve the linear bond-based PD model [46], which has discontinuous solu-
tions. A fast algorithm [47, 48] with preprocessing was proposed in 2020, accelerating
the iterative method’s convergence. However, despite these advancements, no similar
method has been proposed for the PD beam model. To address this gap, this research
presents a fast algorithm that utilized the Toeplitz structure of the stiffness matrix of
the Timoshenko bond-based PD beam model as its basis, this method contributes signifi-
cantly to the efforts to optimize computational efficiency, it represents a valuable addition
to the growing body of knowledge aimed at sustaining the productivity of computation-
based scientific studies.

In this paper, we discusses a newly established fast meshfree method for the PD Tim-
oshenko model, which exploits the quasi-Toeplitz structure of the stiffness matrix. The
focus is on decomposing the stiffness matrix to minimize calculation and storage while
maintaining accuracy. This approach reduces the amount of calculation from O(N?) to
O(NlogN) and storage from O(N?) to O(N). The new method accelerates numerical
simulations of multi-beam structures under static concentrated loads.

The following articles are organized as follows. Section 2 provides a review of the
motion equation of the Timoshenko bond-based PD beam model and its discretization in
space using the meshfree method. Section 3 demonstrates the Adaptive Dynamic Relax-
ation (ADR) method for time discretization in static problems. In Section 4, the stiffness
matrix’s matrix structure in the Timoshenko PD beam model is analyzed, and an acceler-
ation process is presented based on this structure. Section 5 includes numerical examples
that demonstrate the accuracy and acceleration effect of the fast method.

2 Linear bond-base peridynamic beam model and its
discretization

Peridynamics is considered a new formula using the continuum theory of integral equa-
tions and a continuous version of molecular dynamics, which was first introduced by
Silling [1], we can also be denoted it as

p(x)i(x,t) :/ (t(u' —ux' —xt) =t (u—u',x—x',t))dH,+b(x1), (2.1)
where u and x denote the displacement vector field, H, represents the neighborhood, p,
t, and b denote the mass density, the pairwise force function, and the body force vector.
In discrete form, this formula can also be given as

My
Pkﬁk = Z (tk,j (u] —uk,x]-—xk,t) —t]‘,k (llk —ll]',Xk—X]',t)> V]'—|—bk, (22)

j=1
where material point x; represents the family member of material point x;. V; is the
volume of material point x;. The amount of family members of x; is recorded as M, t;
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Figure 1: Material points and horizon size for the PD beam model.
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Figure 2: Beam model with 6 DOFs.

means the force density that material point x; exerts on point x;. As shown in Fig. 1,
Hy is a neighborhood named a horizon, § = NsAx represents the maximum distance of
interaction between two material points, which is named after horizon size, where Ax
represents the distance between two adjacent points.

In this study, each beam is considered a Timoshenko beam structure, which has six
degrees of freedom [50]; As shown in Fig. 2, the beam has three displacements (u,v,w)
and three cross-sectional rotations (6*,6Y,6%).

As explained by [20], for a beam, the strain energy density (SED) could be seperated
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into four components, including axial, bending, shear, and torsional as

PD __ PD PD PD PD
Wity =Waxiat (5 + W) (k) T Wahear (5 + W, (k)" (2.3)

bending shear torsional

The axial component of SED was brought in

WeE =3 L 5Cor (5 ) €, 2
j=1

where ¢ = |x]- —Xk| represents the distance between x; and xj, Cax=2E/ Ad? represents the
bond constant. E is the elastic modulus, A denotes the sectional area of the beam.
The bending component of SED was brought in

2 2
1M1 07 6] 07 — 07
Wéjelrjlding k)~ 2 Z; 2 be < z +Cps z CV] (2.5)
]:

where Cp, =2EI,/ A?6% and Cpy =2EI./ A25? represent the bending bond constant, I,
and I, represent the area moment of inertia as

The shear component of SED was brought in
¥ y z z\ 2
1 Mk q u; —uy 07 46
PD J J
Wshear (k) :Ej:1 ECS ( C sgn (xj _xk) B 2
2
ui—uy Q-y—f—Qz
+ ( : ; sgn (x;—x¢) + - 5 % (2.7)
with v
i — Ak
sgn (x;—x;) =~ ;o (2.8)

where C; =2K,G/ Ad? represents the shear bond constant, G denotes the shear modulus,
K; =1.5 represents the shear correction factor.
The torsional component of SED was brought in

2
1 Mk q 9]?‘ —0;
Wiorsional (k) = 5 ). 5Ci < 7 gv;, (2.9)
-1

where C;=2K;G/ A25? represents the torsional bond constant, K; represents the torsional
constant as

K= /A [2+y7]dA. (2.10)
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With the help of the Euler-Lagrange equation, the motion equation of the beam could be

obtained [49]. We can write it as
d (oJL oL
it (adi> “od =" 10

where d; denotes the degree of freedom with d = {u v w 6 0¥ 6%}, d; denotes the time
derivative of d; and L is the Lagrangian.

The Lagrangian function of the beam could be represented as L=T —U, where T and
U mean the total kinetic energy and the total potential energy, respectively, given as

I . L, . - L, .
_f 2( i+ (60) +(wk>2+X(eg)%f(eg)%;(e@z) Vo (@12a)
U= Z( WD — b — bl — biui — 6 —m{6} 07 ) Vi, (2.12b)

where by, bz, bi denote the applied body forces, and m, mZ, mj denote the moment for

per unit volume at material point x;. The equation can be written as

. &=y X
puk:Cax T ‘/j_}—bk’ (213a)
=1
o O+
=C;s Z( > sgn (xj—x¢) | Vi+bi, (2.13b)
M 67 6
pwk:CSZ<w]ka+ ]2 ksgn(xj—xk)>Vj—i—bZ, (2.13¢)
i=1
p xxG C 9;( Ox
P = tZ Vi+mg, (2.13d)
A = z
y N 67 +6;
Plyy 6/ —6; 1 ik
) =G = beZ —F V_ZCS]Z1 sgn( j=%k)+ " gVi+mi, (2.13e)

L My (07 -0 — g 07 +0;
pfe,i:cbzz<]€ Vit C): C sgn (xj—xi) — ]2 ZVi+mi.  (2.13f)

j=1

We can also write Eq. (2.13) in the vector form as

. Mk
prde=Y_fi;jVi+by, (2.14)
=1
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where d represents the second time derivative of d

o 0 0 O 0 0 7
0po0O 0 0 0 il A
00 p O 0 0 U bz
I .. 0 z
o100 0 p/;“‘ 0 0|, d= Z’kk b= :;; , 2.15)
000 o Pw o 6/ my
A I éz m?
0 0o o B - e
and
f, .= u [ w O 9y 0, T (2 16)
kj— fk,j fk,j fk,j fk,j fk,j fk,j :
with
Ui — g vi—v, 070
fl?,]‘:Cax< ]g >V]; f]z]:Cs< ]g — ]2 Sgl’l (2]73)
— 0! +6{
W; — Wy
f]?),]:CS < / é( + / 7 sgn (X(])—x(k)>> ‘/]', fk] =C; ( > (217b)
6! —6/ 1 - N+N
0, j k Wi — W j
szl—be <§> ‘/]—ECS ( g Sgn <X(]) ( )) + g ], (217C)
0% — 67 1 Vi—D 07 + 67
0, j k j k j k
fk,]._Cbz< : >v,~+2cs< : sgn(x(j)—x(k)>— . )gvj. (2.17d)

Eq. (2.17) of each beam could be expressed by the following matrix form
pd=Ad+b, f=Ad, (2.18)

with p, d, b could be expressed by the following block matrix forms

pr 0 - 0 dq b
- : d b
P S e A Y ha B (2.19)
L0 : :
0 - 0 p, d, b,

3 Temporal discretization of static peridynamic beam model

For the static problems studied in this paper, time discretization can be realized by an
explicit scheme using the ADR method, which is mainly designed for explicitly solving
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the static load problem of the model. We use t" to express the time at timestep 1, At is a
constant time step size, and the displacement vector d at time " is written as 4" =d (x,t").
The mass matrix m can be substituted by a stable mass vector M, and we add a damping
matrix C into the equation of motion given in Eq. (2.18) as

Md" +Cd" = Ad" +b", (3.1)

where M is the fictitious diagonal density matrix [20] as

Ay, 0 0 0 0 0]

A O - 0 0 A, 0 0 0 0

0O A - 0 0 0 Ay, O 0 0
M=1. . . " A%]0o 0 0 A, 0 0] (32)

0 0 A 0 0 0 0 Ay 0

(0 0 0 0 0 Agl

with

1ARAC,S 1ARACS
A=Ay, — 2 2 33
Au=hAo=Nw max(4 Ax ‘1 Ax ) (332)

2 AP AC, S 1APA
Ag, =Ny, = Ng, =max (1 AFAGY 1 by” 2 Coz0 ) (3.3b)

4 Ax 4 Ax 4 Ax

The damping matrix C is defined as C = C,M, where C, represents the damping coef-
ficient. To facilitate reaching a steady-state regime quickly, artificial damping has been
introduced, and the damping coefficient is adaptively changed at each time step to ensure

its optimal effectiveness.
[dnTKndn

with K" denote the diagonal “local” stiffness matrix [51]. The displacement can be calcu-
lated by Algorithm 3.1.

At this time, since M is a diagonal matrix, the calculation amount in Algorithm 3.1 is
determined by Ad.

4 A fast meshfree method

When using the ADR method to solve static problems, the main calculation is to solve
f=Ad, a traditional matrix-vector multiplication Ad has a computational complexity of
O(N?) and a memory requirement of O(N?), with the increasing of material points, the
computational complexity, and the memory requirement will proliferate, so we devel-
oped a fast meshfree method to reduce the computational complexity from O(N?) to
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Algorithm 3.1 Adaptive dynamic relaxation method.

Require: Stiffness matrix A; Initial displacement do; Loading b; Time step At =1; Ficti-
tious diagonal density matrix M.
while not converged do
Calculation parameter Cy;

if n=1 then
ji/2_ Dt Ad’+bP

elseif n>0 then
dn+1/2 — (Z_Atcn)dnil/z‘FZAt(Adn +b")/M

24+AtC,

end if
end while
qntl=gn +Atd'n+l/2

O(NlogN) and reduce the memory requirement from O(N?) to O(N). This fast mesh-
free method uses fast Fourier transforms (FFT) to solve Ad, which A must be a Toeplitz
matrix. Therefore, we need to make the matrix meet the conditions through some matrix
transformations.

4.1 A fast meshfree method of PD for single beam

We begin this section by considering a linear bond-based peridynamic single beam model
Q=0,UQ = [x;,x5], where Q) is the spatial domain and the material points are evenly
distributed. As shown in Fig. 3, we divide (), into (2;,UQ), to investigate the properties
of different material points.

o Oc={x;:d;(t)=h;(t) };
° Qin:{xi:[xi—é,xi—f—é]ﬂQ:[xi—é,xi—l—(S]};
o O.={x;:[x;—0,x;+6]NQ# [x;—6,x;+5]}.

Here, (). is volume constrained boundary with the prescribed displacement data h;(f).
i, is the internal area, where the material points have 2N; family members. The domain
Q). includes the material points still in (), but the number of family members owned by
material points is less than 2Nj;. Nj,, N,, N respectively represent the number of material
points in areas (;,, (2, ()¢, Nijy+N.=N.

4.1.1 The stiffness matrix form of PD beam model

The matrix A is the stiffness matrix form of the PD beam model, defined as
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Qin ! Qt

Figure 3: Different domains of (). The yellow part is the sub-domain );;,. The orange part is the sub-domain
Q.. The green part is the sub-domain ().

51,1 §1,2 e EI,N +Ne @1
_ A Ao - Apngn, _ d;
a| & . Sl D S @)
ANiN,1 ANEN2 0 ANEN,NAN, dnin,

A, represents the action of the material point x; on material point x;, when we calculate
f=Ad, due to d;(t) =h;(t), x; €Q,, therefore, the calculation of d; is meaningless and not
considered in the matrix. To ensure that the matrix is square and the calculation of A;;d;
is usually less than O(NlogN), we can move it to the other side of the equation. So we
just need to calculate f=Ad where

A A - AN dy
Ay Ayp - Apn dp
An1 An2 - ANnN dn

All material points belong to the area (). Due to the existence of horizon size 6, Ajj= 0,
|j—i| > Nj, A becomes a banded matrix, which is implied by

Ay AlN, 11 0 e 0 0 0
AN,411 0 AN+LN 1 .0 0
0 ANy 2 Nge2 0 0
A=| - (4.3)
0 0 0
0 0 o ANCNGN-N; 0 ANCNgN
0 0 0 e 0 ANN-N, AN |
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with
B 10y ué 10,
Alf AR A Ay Ay A
0y v [
AYP AL AL i Aziéj: i
woy Y wo;
ap | A A A A Ay
T Ak pf B f08c p00 p0i0.
L] L] L] L] L] 1]
0,u 0,0 6, w 0,0, 0,06, 0,0,
At AT AT A A A
0,u 0,0 0, w 0,0, z 0,6,
A AT AT AT Al.,].y A
Cox 0 0 0 0 0
Gij c
0 g—s 0 0 0 —?ssgn
i
C C
0 0 g—s 0 fsgn 0
- i ) (4.42)
0 0 0 G 0 0
Cl] c
Cs by Cs
0 0 ——sgn 0 —=——"0; 0
0 Zsen 0 0 0 bz Zse
| © 2% gy 4]
B uby u6 ub, ]
Agoaw A A AL Ay
0y 4 [
Al AT AT A Ai,l-: i
w0y w w6,
A | A AT A AT AT A
Oxu 60 0w 0,0y x 0,6
I T T
u 0 w x y4
A AT A Al Al A
0.u 0,0 6,w 0,0, z 0,6,
_Ai,i Ai,i ii i1 i,iy ii
- C 3
= 0 0 0 0 0
Gij c
0 —= 0 0 0 —=sen
Gij c 28
M| 0 0 -—= 0 5 sgn 0
— Gij c, ) (4.4b)
=1 0 0 0 = 0 0
if
Cs be Cs
0 0 = 0o ——Z-=2g 0
5 Sgn gl] 4 51]
Cs Cbz Cs
0 —= 0 0 0 —E_TSE
_ 28" e

where i # j, sgn =sgn (xj —x;), M; represents the number of family members at material
point x;.
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Due to the stiffness matrix, A is not a Toeplitz matrix. To use the fast meshfree
method, decomposing A into ten new matrices A**, A", A¥%, A0 AO0y  A0:0:  ATO:
A% A% AP0 we have

uu uu uu
Al,l Al,z o Al,N
uu uu uu
Al — A2,1 A2,2 o AZ,N (4.5)
uu uu uu
AN,l AN,Z T AN,N

Similarly, we can get A”, A%, A0x  AOOy  A0:0:  AVO:  AwOy  AOw A0 Decompose d
into six vectors u, v, w, 0y, 0, 6, we observe that
T

u=[u; Uy - Uy (4.6)

Similarly, we can get v, w, 0,, 6,, 6, and through the above decomposition, we can
decompose f=Ad as follows

£ :Auuu/ £ :Avvv+A092 Bz/ £ :szvw+Aw9y Gy, (4.7a)
O = Abbg, % = A%“w+A%Pg,, - = A%Oy 4 A%b:9,, (4.7b)

with f can be merged by f*, f°, f©, %, f%, £’
Let’s take A*" as an example to analyze the structure of ten decomposed submatri-

ces. Due to the limitation of J, each material point in the beam model interacts with the
surrounding points at most A*" can be expressed as the following banded matrix

_ c c -
_y == . ax 0 0
T C1 81,14 N;
Cax .. . Cax
C1+N;,1 T G1N,,j
Al — 0 : , (4.8)
.. —Z ng ng
T ON-1-Nyj EN-N;N
T - <
I CN,N—N; T ONj |

where the block bandwidth is 2Nz +1.

Furthermore, due to the material points being evenly distributed, it’s easy to see that
A;‘]“ does not depend on the position of x; or x; but on the distance x; —x;. However, for
the values on the main diagonal of the matrix, the influence area of x; € (), is complete,
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M; =2Nj, but the family members of x; € (), are incomplete, so we only need to repair

A, x; € Q) on the main diagonal of the matrix, and then get a Toeplitz matrix B** and a

patch matrix C**, given by
Cull — Bllll _ Allll . (4.9)

Similarly, we can get the Toeplitz matrices structure matrices B*?, B“%, BO<fx B BO:0:
B, BY%, B%® BY%? and the patch matrices C*, C*%, CO:fx ooy CP:0= vz, 0y, COw,
Co-v,

4.1.2 Acceleration of form f=Ad

Let’s take B""u as an example, due to B"" is Toeplitz matrix, so matrix By}’ can be embed-
ded into a circulant matrix Byy.

o Bu Buu
B“” = (ﬁuu Buu> ’ (410)

where the matrix ]~3§(}‘ is defined by

0 ... 0 0 --- 0 BKIH—N,;-H,N—l ... BKIITN—l
0o . 0 0 . 0 BN N,
0 0 0 0 0
BY = (4.11)
0 .0 .o 0
By - BW, 0 - 0 0 0
Let g5y, be the first column vector of B, as
g"=[Bli - Bilyg 0 - 0 Bffny - B3] @12)

This reduces the storage and evaluation of the matrix B** from O(N?) to O(2N;+1) =
O(N). And then, we need to extend the vectors u to uyy;, as

i=[u 0 - 0] (4.13)
p"* can be obtainbed by FFT [42] in Algorithm 4.1, and then

puu :Auuu:Buuu_Cuuu:puu_Cuuu (414)
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Algorithm 4.1 Fast matrix-vector multiplcation.

Require: Extended matrix g"*; Extended vector u
guu — FFT(guu)
a=FFT(u)
Wit — gl g {j
W' =[FFT(w"")
whilei=1:N do
f)uu (l) — WLIM (l)
end while

with C*" is only non-zero on the main diagonal of the matrix, the computation of C"*"u
will not exceed O(NlogN), for which, the computation of Eq. (4.14) is only affected by
B*“"u.

Similarly, we can get pvv’ pww’ p9x9xl peyey, pGZOZ, pv(?z’ pwey’ pGyw, pOZv‘

£ =p"t, 2 =p”+p*, = p+p“¥, (4.15a)
£ — Pexex’ o — peyey +p9yzul £ — pGZGZ +p9zv‘ (4.15b)

And f can be merged by f*, £, £, Ox £ 0= Apply the above process to Algorithm 3.1,
we can calculate 4" 1.

The numerical procedure is shown in Fig. 4. By the above method, the computational
cost of f = Ad can be implemented in O(N?) to O(2Nlog2N) = O(NlogN) operations
and the storage memory of A can be decreased from O(N?) to O(2N) = O(N) via the
fast Fourier transform (FFT).

4.2 A fast meshfree method of PD for multi-beam

4.2.1 Transformation of coordinate systems and equations of motion

Eq. (2.13) are deduced in the local coordinate system. Nevertheless, in practical problems,
multi-beam structures must be considered in the global coordinate system. Therefore, we
need to convert the equation of motion for each beam into the same global coordinate
system.

In the global coordinate system, the centreline of each straight beam has unit vectors
YT; , n_;, n_z) to know the direction of this beam, the conversion of global and local coordi-
nates can be completed by the coordinate transformation matrix H, which is equivalent
to

x=Hx/ (4.16)

with
H=[i, i, 7], (4.17)

where x represents the local coordinates and x” represents the global coordinates.
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Figure 4. The fast meshfree method of single beam.
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The conversion of global and local displacement vectors can also be completed by
displacement transformation matrix Tey, which is equivalent to

(4.18)
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with
K 0 0
=0 K K:[H 0}, (4.19)
SRR 0 H
Lo

where d denotes the local coordinates and d’ denotes the global coordinates.
Multiply the equation by T7 to the left, the Eq. (2.18) can be written as

T pTT d =TT ATT d+T™b (4.20)
with
p'=TIpT, A'=TTAT, d'=T'd, b'=T"Db, (4.21)
and
f=A"d =TTATTTd=T"f. (4.22)

In the global coordinate system, invoking Eq. (4.21), the equation of motion given in
Eq. (4.20) can be converted as

p'd=A'd+Vb. (4.23)

4.2.2 Handling of joint points

As shown in Fig. 5, beams A and B are joined at one point. First, we discretize each
beam into material points. And then, for the point at the connection, delete unnecessary
point, and keep only one material point as A1) this point denotes the joint point for two
beams.

The joint point A(*/) has family members in two beams. Different beams may have
different geometrical and material properties, so if A("/) interacts with a material point
in beam A, the parameters of A1) are same as beam A. Else the parameters of A1) are
same as beam B.

Beam A Beam A Beam A

AlD

Alid)

g
Beam B Beam B Beam B

Figure 5: The joint point of two beams.
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4.2.3 Implementation of the fast meshfree method for multi-beam

First, we can get the initial whole displacement d, in global coordinate system, we can

split dj, to get the displacement dg(i) of each beam in global coordinate system. And then,

we can get the displacement d(()i) of each beam in local coordinate system by

d{) =g, (4.24)

where T() stands for the displacement transformation matrix of the ith beam. According
to the method in Section 4.1, we can get the internal force for each beam, record the
internal force of the ith beam in the local coordinate system as £() and the internal force
in a global coordinate system can be determined by

£, (4.25)

And we can assemble the whole internal force F' of multiple beams by ') in the global
coordinate system. Applying the above process to Algorithm 3.1, we can calculate the
whole displacement d’ of multiple beams in the global coordinate system.

Repeat the above process, and the fast meshfree method of peridynamic multiple
beams can be realized.

5 Numerical results

This section presents numerical examples that demonstrate the capabilities of the pro-
posed method. The computational cost of static problems is compared between the tra-
ditional meshfree method and the fast meshfree method. The ADR method is used to
solve these static problems. We implement these methods in Matlab and run all experi-
ments on a workstation with Intel Xeon Gold 6240(2.6GHz) logical processors and 2048G
installed memory. All the experiments are done using double precision. The beams men-
tioned in the following experiments are made of steel material. The material parameters
are Young’'s modulus E =2 x 101N /m?, the shear modulus G =1 x 10N /m?2, and the
mass density p="7850kg/m?.

5.1 Straight beam structure subjected to a constant concentrated load

In this experiment, a concentrated load is subjected to straight beam structure. As shown
in Fig. 6(left), the length of the beam is L =1m, and A =0.1x0.1 m? is the area of the
square cross-section. One end of the straight beam is fixed in the wall, and the other end
is applied with concentrated loading F,y =5x 10> N.

In the peridynamic model, each beam is uniformly divided into 101, 201, 401, 801,
1601, 3201, 6401, and 12801 material points. To implement the fixed end of the beam,
we add Nj fictitious points at the end where the horizon size § =0.03m. As shown in
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Beam

Figure 6: Straight beam subjected to concentrated load (left) geometry, (right) PD discretization.
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Figure 7: Variation of w,8y, in straight beam structure, (above) the meshfree method, (below) the fast meshfree
method.

Fig. 6(right), the black points are real material points, and the red are fictitious material
points.

In terms of PD prediction results, due to the small deformation assumption, only w

and 6, are two nonzero DOFs of the beam. Variations of the displacement w and the
rotation 0, along a straight beam are observed in Fig. 7. The two figures above show
the results of the meshfree method, and the two figures below show the results of the fast
meshfree method. We can see that the results of the fast meshfree method agree well with
the traditional meshfree method.
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Table 1: Computational time of the meshfree method and fast meshfree method in straight beam structure.

Material points of beam 401 801 1601 3201 6401 12801
Time steps 22000 30000 40000 57000 80000 110000
Run time Meshfree method 12s Imls 6m26s 40mb4s 4hlm  23hllm
Fast meshfree method 32s 1Im19s 3m27s 10m20s 31mb53s  1h31m

In terms of computational cost, Table 1 displays the computational time of the mesh-
free method and the fast meshfree method. Because the time is too short when there are
few material points, the data is recorded when the number of material points gets greater
than 401. To study the performance of the fast meshfree method in more complex cases,
we fix the size of J, increase the number of material points and give a corresponding time
comparison.

As illustrated in Table 1, with the initial number of material points, the fast mesh-
free method has no obvious computational advantage over the meshfree method and re-
quires longer computing time. This is caused by the large proportion of matrix assembly
time. With the increase of material points, the computing advantages of the fast meshfree
method are more and more obvious. In the ADR method, the number of time steps to
achieve stability increases with the amount of material points. Excluding the influence
of iteration steps, the growth of computing time is consistent with the comparison be-
tween O(N?) and O(NlogN) in the analysis. As shown in Table 1, when the quantity of
material points increases from N to 2N, the computational cost of the meshfree method
will increase by 22 =4, while the computational cost of the fast meshfree method will
increase by 2log2N/logN, for each time step. The final increasing rate should be the
mutiplication of the increasing rate each time step and the total number of time steps.

5.2 2D frame subjected to a constant concentrated load

In this example, we study a 2D frame subjected to a concentrated load. As shown in
Fig. 8(left), the steel frame consists of two beams. Both beams have the same length

Beam B

Beam A 7/_

Figure 8: 2D frame subjected to concentrated load (left) geometry, (right) PD discretization.
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Figure 9: Variation of w, 0y, 6y in the 2D frame, (above) the meshfree method, (below) the fast meshfree
method.

(L =1m) and square cross-section (A =0.1x 0.1m?). The frame is clamped at both ends
and applies concentrated force F,y = —3 x 10°N at the connection of two beams (L,L,0).

From the perspective of the peridynamic model, each beam is uniformly divided into
201, 401, 801, 1601, 3201, and 6401 material points. To impose the fixed ends of the frame,
we add Nj fictitious points at both ends. As shown in Fig. 8(right), the black points are
real material points, and the red points are fictitious. Here, horizon size § =0.015m.

As shown in Fig. 9, by the small deformation assumption, the beam has three non-
zero DOFs w, 6, and 0y. The figures above show the displacement and rotation change
of the meshfree method in the global coordinate system, and the figures below show
the displacement and rotation change of the fast meshfree method. From Fig. 9, we can
see that the results of the two methods are consistent. For the purpose of verifying the
performance of the fast meshfree method in more complex cases, we fix 6 and increase
the number of material points. Table 2 shows the corresponding computational time
comparison of the two methods.

As we can see from Table 2, as the number of the material points goes up, the number
of time steps for the ADR method to achieve stability also increases correspondingly.

Table 2: Computational time of the meshfree method and fast meshfree method in 2D frame.

Material points of each beam 201 401 801 1601 3201 6401

Time steps 15000 20000 30000 40000 55000 80000
Meshfree method 28s  3ml13s 19m36s 1h59m 12h29m  4d1lh

Fast meshfree method  29s Im3s  2mdés 7m2s  19m4d5s 53mls

Run time
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At first, the computational time of the meshfree and fast meshfree methods are almost
the same. However, with the densification of the material points, the difference in the
computational efficiency between the two methods gradually appears. As the conclusion
in the analysis, the computational time of the meshfree method increases by O(N?), while
the computational time of the fast meshfree method increases by O(NlogN). Finally,
there is a huge time gap between several days and less than one hour.

5.3 Multi-beam structure subjected to a constant concentrated load

In this section, an example of a multi-beam structure subjected to concentrated load is
solved by applying the present method. As shown in Fig. 10(right), the multi-beam struc-
ture consists of twelve beams. L1 =L, =1m, L3 = L4 =0.8m, H=0.8m, both beams have
the same square cross-section A=0.1x0.1m?. The multi-beam structure subjected to con-
centrated loading F,» =5 x 10% N at joint point 8.

In this example, all the beams are divided with the same number of material points.
Similarly, we add Nj fictitious points at the end of beams 1, 2, 3, 4, 9, 10, 11, and 12 to
implement the fixed ends of the structure, along negative z direction. For beams 1, 2, 3
and 4, horizon size 6 = 0.0244m. For beams 5, 6, 7 and 8, horizon size é =0.0241m, and
horizon size 6 =0.0363m for beams 9, 10, 11 and 12.

A joint point belongs to several beams at the same time. In each beam, the volume
of the joint point is different, so it is difficult to calculate the force density. Therefore, for
Eq. (2.18) of each beam, we multiply the volume of the material points on both sides of
the equation so that we can convert the force density into a force and solve the above
problem.

Figs. 11 and 12 represent the displacement u, v, w and rotation 0y, 0y, 0, variations
along each beam. The above three figures show the results of the meshfree method, and
the below three figures are the results of the fast meshfree method. For 6 DOFs, we can
get consistent results with the meshfree method and fast meshfree method.

Figure 10: Multi-beam structure subjected to concentrated load (left) geometry, (right) PD discretization.
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Figure 11: Variation of displacement u, v, w in multi-beam structure, (above) the meshfree method, (below)
the fast meshfree method.

Figure 12: Variation of 8y, 6y, 0, in multi-beam structure, (above) the meshfree method, (below) the fast
meshfree method.

Table 3 shows the computational time of the meshfree method and the fast meshfree
method. We fix the size of § and divide each beam into 101, 201, 401, 801, 1601, 3201, and
6401 material points and give a corresponding time comparison. Only the computational
time within ten days is recorded in the table. Similarly, the computational time is affected
by time steps, and the growth of computational time is consistent with the comparison
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Table 3: Computational time of the meshfree method and fast meshfree method in multi-beam structure.

Material points of each beam 101 201 401 801 1601 3201 6401
Time steps 5000 9000 18000 34000 68000 128000 250000
Run time Meshfree method 8s 59s 6ml3s 47m49s 6h24m  2d2h -
Fast meshfree method 17s  1m23s 5m 17m20s  1hlm  3h59m 14h35m

between O(N?) and O(NlogN) in our analysis. We can see that when the number of
material points reaches a certain number, the computational cost of the meshfree method
can not be accepted. Therefore, the fast meshfree method becomes critical.

6 Conclusions

The main contribution of this study is the development of a fast meshfree method based
on the Timoshenko beam model of the linear bond-based peridynamic. For a single
beam structure, the stiffness matrix is decomposed according to boundary conditions
and refined to meet the Toeplitz structure, reducing storage requirements from O(N?) to
O(N). The fast Fourier transform is used for PD integral calculation, reducing computa-
tional costs from O(N?) to O(NlogN) compared to the traditional meshfree method. For
multi-beam structures, vector splitting and coordinate system transformation are used to
transform them into a combination of single beam problems.

This study proposes a fast meshfree method that considers the matrix structure and
can be applied to the Timoshenko beam model of peridynamics. The method enables
numerical simulations of complex beam structures, and several numerical examples are
presented, including the straight beam structure, the 2D straight beam frame, and the
multi-beam structure with a concentrated load. Computational efficiency comparisons
between the fast meshfree method and the meshfree method demonstrate a significant
reduction in calculation time, from several days to less than an hour. The results are
consistent with theory, and ongoing efforts aim to apply the fast meshfree method to
peridynamic plate and shell models and complex offshore platform structures.
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