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Abstract. Helical waves are eigenfunctions of the curl operator and can be used to de-
compose an arbitrary three-dimensional vector field orthogonally. In turbulence study,
high accuracy for helical waves especially of high wavenumber is required. Due to the
difficulty in analytical formulation, the more feasible strategy to obtain helical waves
is numerical computation. For circular cylinders of finite length, a semi-analytical
method via infinite series to formulate the helical wave is known [E. C. Morse, J. Math.
Phys., 46 (2005), 113511], where the eigenvalues are evaluated by iterating transcend
equations. In this paper, the numerical computation for helical wave in a finite circular
cylinder is implemented using a Chebyshev spectral method. The solving is trans-
formed into a standard matrix eigenvalue problem. The large eigenvalues are com-
puted with high precision, and the calculation cost to rule out spurious eigenvalues is
significantly reduced with a new criterion suggested.
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1 Introduction

1.1 Background

Helical waves are the eigenfunctions of the curl operator, which was first noted by Bel-
trami [1]. It is also called force-free fields [2] in physics, or Taylor state [3] associating
with a variational principle, and helical Fourier modes [4,5]. The terminology of “helical
wave” has been introduced by Moffatt [6]. They have been widely used in fluid dynamics
and magnetohydrodynamics. Yoshida and Giga [7] proved that helical waves can span a
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complete Hilbert space for solenoidal vector fields under proper boundary conditions in
bounded domains of three-dimensional (3-D) space, and the corresponding helical wave
decomposition (HWD) has been employed to analyze the global energy spectrum of tur-
bulence in several cases [8]. In particular, the spectral coefficients of helical waves are
scalars, and HWD can be taken as the generalization of Fourier basis functions in general
bounded domains.

HWD plays an essential role in studying the energy cascade of homogeneous turbu-
lence. Waleffe [9] investigated the nonlinear energy transfer of homogeneous turbulence
and found that the scale and polarities of helical modes affect the direction of energy
transfer. Chen et al [10] proved that the nonlinear transfer between opposite polari-
ties permits the joint cascade of energy and helicity. Biferale et al [11] showed that an
inverse energy cascade also occurs in 3-D isotropic turbulence by keeping only triadic
interactions between sign-defined helical modes. And they also investigated the trans-
fer properties of energy and helicity fluctuations by keeping only those triads that have
sign-definite helicity content [12]. Helical waves are also used to study the decoupling
mechanism between two-dimensional (2-D) modes and 3-D modes in rotating homoge-
neous turbulence [13, 14].

For magnetic fields, helical modes play an essential role in the coupling mechanism
between the external helicity source and the driven plasma [15, 16]. Due to its complete-
ness as functional basis, HWD are also be used for hydrodynamics simulations using
Galerkin spectral representation [17–21], or helicity calculation [22]. In addition, helical
waves can also be used to construct vortex knots [23]. An early standard reference to
introduce the interdisciplinary application of helical waves comes from Moses [24].

Helical waves in an arbitrary bounded and simply connected domain D are solutions
of the eigenfunction equation

∇×B= kB (1.1)

with the homogeneous boundary condition

B·n|∂D=0, (1.2)

where B denotes helical wave and k denotes eigenvalue. As proved by Yoshida and
Giga [7], an arbitrary solenoidal field in 3-D space can be decomposed into a series of
orthogonal helical waves. This is the basis for the multi-scale expansion of vector fields,
which can naturally be applied to turbulence studies.

Taking the curl of Eq. (1.1) again yields

∇2B+k2B=0, (1.3)

which is the Helmholtz equation that looks more familiar. However, Eq. (1.3) is just a
necessary but insufficient condition for Eq. (1.1) to be satisfied. The case of k= 0 is the
well-known potential field, thus only nonzero eigenvalue k is concerned in the study.
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For some simple geometries, such as a periodic box [24] and spherically symmetric
domains [25], helical waves can be constructed directly or solved by Eq. (1.1) analytically
under the boundary condition imposed on as Eq. (1.2). It is by no means an easy task to
solve the eigenvalue problem for other domains.

To make the solving of helical wave be more feasible, some additional features of
the helical wave should be explored. According to Chandrasekhar and Kendall [26], the
vector field B can also be expressed by a scalar generating function

B= k∇×(ψa)+∇×∇×(ψa) (1.4)

with a fixed unit vector a in space. And ψ is a solution of the scalar Helmholtz equation

∇2ψ+k2ψ=0. (1.5)

Obviously, the boundary condition satisfied by Eq. (1.5) becomes more complicated
than the ordinary due to the non-penetration of B on the boundary of the domain along
with the unconventional form of Eq. (1.4). Despite the peculiarity, the scalar Helmholtz
equation is easier to be handled than Eq. (1.1) which is actually a set of coupling equa-
tions. Indeed, using the separation of variable analysis, the eigenfunctions after the name
of Chandrasekhar-Kendall (CK) modes can be obtained for the cases of periodic cylin-
der [17], sphere [19], specific types of spheromaks [27], finite cylinder [28], annular geom-
etry [29], and periodic channel [30]. Specifically, Alkauskas [31] constructed two unique
Beltrami vector fields with orientation-preserving icosahedral symmetry. For general do-
mains, there are generally no analytical solutions for CK modes, and hence numerical
solutions are necessary for finding the helical waves. We would like to emphasize that
the investigation of all of the helical waves in the mentioned domains of various geom-
etry are welcome due to their fundamental explicit or underlying applications in fluid
dynamics, plasma physics or astrophysics, and etc.

Boulmezaoud and Amari [32] solved helical waves through an iteration approxi-
mation based on the finite element method. The algorithm can be applied to arbitrary
bounded 3-D domain but the numerical precision is limited. On another line, Tang [33]
emphasized the importance of non-axisymmetric modes and proposed a new formula-
tion for numerically computing helical waves: the primitive Eq. (1.1) can be transformed
into a standard matrix eigenvalue problem. By a second order finite difference scheme,
Tang illustratively evaluated helical wave of some low wavenumber in an axisymmetric
torus domain and also carried out the validation test.

In this paper, we numerically solved the helical wave in a circular cylinder domain of
finite length following the formulation of [33] but the discretization strategy is different.
We employ a Chebyshev spectral method which is capable of reaching high accuracy due
to the spectral discretization nature. To our best knowledge, there was no similar work
on solving helical wave by using a spectral method previously. Furthermore, a new crite-
rion to rule out spurious eigenvalues during computation is proposed. As the necessary
comparison to our method, the semi-analytical method proposed by Morse [28] will be
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introduced briefly in advance in the next subsection. Also, a problem on eigenvalue eval-
uation in the semi-analytical method in [28] is found and corrected wherein.

1.2 Semi-analytical solution of helical wave in a finite cylinder

For the case of a finite cylinder, the separation of variable method can be used to find
the axisymmetric helical waves (modes) due to the symmetry of the domain. Thus this is
not our concern but mention that the axisymmetric modes are first solved by Finn [34].
The same analytical method cannot be used any longer for non-axisymmetric modes
since the radial and axial variables are coupled wherein. Morse [28] has found the non-
axisymmetric CK modes represented by series solution in terms of radial Bessel func-
tions. By cylindrical coordinates, the scalar function can be written as

ψ(r,θ,z)= e−imθ(F(r,z)+iG(r,z)), (1.6)

where F(r,z) and G(r,z) are real functions since the range of z is shifted to [−1/2,1/2],
assuming the height and the radius of the cylinder are one unit and R0 respectively. The
radial boundary conditions with boundaries r=R0 and z=±1/2 imply that(

R0

mk

)
∂2G(r,z)

∂r∂z

∣∣∣∣
r=R0

=−F(R0,z), (1.7a)(
R0

mk

)
∂2F(r,z)

∂r∂z

∣∣∣∣
r=R0

=G(R0,z). (1.7b)

Using the separable solutions to the scalar Helmholtz equation, the general series expres-
sion for ψ is

ψ(r,z)eimθ =− 1
2|m| ·r

|m| ·eikz+
∞

∑
n′=1

bn′
Jm(
√

k2−((2n′−1)π)2 ·r)
Jm(
√

k2−((2n′−1)π)2 ·R0)
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((
2n′−1

)
πz
)

+i
∞

∑
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an
Jm(
√

k2−(2nπ)2 ·r)
Jm(
√

k2−(2nπ)2 ·R0)
·sin(2nπz), (1.8)

where the Bessel function becomes imaginary at negative variables. Substituting Eq. (1.8)
into Eq. (1.7), a set of matrix equations can be formed via series mapping

Zeven ·a=u′1, (1.9a)

Zodd ·b=u′2, (1.9b)

where Zeven and Zodd are decoupled mapping matrices, u′1 and u′2 are vectors containing
the mapping matrix element, a and b are vectors containing the coefficients an and bn,
respectively. Then, by integration respect to radial boundary condition the eigenvalue
equation can be derived as

ε(k)=
∞

∑
n′=1

bn′(−1)n′

(2n′−1)
+

(
1

2m
+

1
2|m|

)
·πR0

|m| sin(k/2)
k

=0. (1.10)
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It is important to note that there is a bug in that equation in the original literature. Here
the correct equation is presented. The eigenvalue k is then located by solving ε(k) with
finite terms of the series of bn using the mapping matrix solution. Newton-Raphson
method and bisection method are employed to find the roots of Eq. (1.10). The advantage
of this method is that the eigenvalues have high accuracy. However, the scan interval of
ε(k) should be pretty small to ensure that no eigenvalues are missed. Thus, the calculation
cost is very high. More importantly, though, the nearby interval of the integral multiple
of π needs to be skipped for high m modes because Bessel function at small variable with
high m modes is smaller than the machine precision 10−308. For example, the value of
modified Bessel function I60

(
10−4) is 1.04×10−340 and I280

(
10−4) is even 3.07×10−1770.

As a consequence, the completeness of helical waves of higher order modes is lost in
double precision calculation if using Morse’s method.

It is not clear how to discretize the Chandrasekhar-Kendall scalar function into a stan-
dard matrix eigenvalue problem with second order boundary condition, as discussed by
Tang [33].

2 Numerical methods

2.1 Formation of matrix eigenvalue problem with regularity condition

For an axisymmetric domain, the helical modes B=Br r̂+Bθ θ̂+Bzẑ can be written as the
following Fourier mode

Bm
r,θ,z =bm

r,θ,z(r,z)eimθ . (2.1)

Since the linear superposition of all the modes B represents a real vector field, we have

b−m
r,θ,z(r,z)=bm

r,θ,z
∗(r,z), (2.2)

where the asterisk as the superscript denotes complex conjugate. In the following,
bm

r,θ,z(r,z) is denoted as br,θ,z(r,z) for simplicity. Substituting Eq. (2.1) into Eq. (1.1), one
finds

im
r

bz−
∂bθ

∂z
= kbr, (2.3a)

∂br

∂z
− ∂bz

∂r
= kbθ , (2.3b)

1
r

∂

∂r
(rbθ)−

im
r

br = kbz. (2.3c)

This set of equations can be discretized on a numerical grid, giving rise to a standard ma-
trix eigenvalue problem. However, it should be noted that the helical mode calculation
is severely polluted by spurious solutions because the constraint ∇·B = 0 is implicitly
imposed, as indicated by Tang [33].
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An alternatively formulation [33] was used to yield a standard matrix eigenvalue
problem of the general form, which explicitly ensures the divergence-free condition. The
incompressible condition of B is

1
r

∂

∂r
(rbr)+

1
r

imbθ+
∂bz

∂z
=0. (2.4)

This can then be rewritten as

bθ =
i
m

(
∂

∂r
(rbr)+r

∂bz

∂z

)
. (2.5)

Substituting Eq. (2.5) into Eq. (2.3a) and Eq. (2.3c), we have

− i
m

r
∂

∂r
∂

∂z
br−

i
m

∂

∂z
br−

i
m

r
∂2

∂z2 bz+
im
r

bz = k·br, (2.6a)

ir
m

∂2

∂r2 br+
3i
m

∂

∂r
br+

(
i

mr
− im

r

)
br+

2i
m

∂

∂z
bz+

i
m

r
∂

∂r
∂

∂z
bz = k·bz. (2.6b)

After proper discretization, the above equations form the standard matrix eigenvalue
problem again. Taking into account the homogeneous boundary conditions for br and
bz on the surface of the cylinder, the whole problem will kept such nature. However,
the natural boundary conditions on the axis need to be determined. Let us continue to
proceed the regularity problem.

The normal non-penetration conditions B·n=0 on boundaries r=R0 and z=± 1
2 imply

br|r=R0
= bz|z=− 1

2
= bz|z=− 1

2
=0. (2.7)

Inside the cylinder, the regularity conditions at the axis r= 0 are needed. For bz, taking
the limit r→0 of Eq. (2.6a) and considering the regularities of all of the derivatives, one
obtains

− i
m

∂

∂z
br+

im
r

bz = k·br. (2.8)

Since − i
m

∂
∂z br and k·br are both finite as well as m 6=0, so

lim
r→0

bz

r
=C, (2.9)

where C means a constant. Hence, we have homogeneous Dirichlet condition

lim
r→0

bz =0. (2.10)

For br, the limit r→ 0 of Eq. (2.6b) gives the results that are different for m = 1 and
m>1. For m>1 the regularity condition of br which reads

lim
r→0

(
i
m
−im

)
br =0 (2.11)
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implies

lim
r→0

br =0. (2.12)

For m=1, one finds

3i
∂

∂r
br+2i

∂

∂z
bz = k·bz. (2.13)

In the limit r→0 we get homogeneous Neumann boundary condition

lim
r→0

∂

∂r
br =0. (2.14)

2.2 Numerical implementation of Chebyshev spectral method

A classical Chebyshev spectral method based differential matrix [35, 36] is applied to
solve bivariate Eqs. (2.6a) and (2.6b). First, we introduce the Chebyshev points

xi =
cosπi

N
, i=0,.. .,N. (2.15)

The entries of Chebyshev spectral differentiation matrix DN are

di,j =
ci

cj

(−1)i+j(
xi−xj

) , 0≤ i, j≤N, i 6= j, (2.16a)

di,i =−
xi

2
(
1−x2

i

) , 1≤ i≤N−1, (2.16b)

d0,0=−dN,N =
2N2+1

6
, (2.16c)

where c0=cN=2 and cj=1, 1≤j≤N−1. Note that the diagonal entries di,i can be evaluated
better by

di,i =−
N

∑
j=0,j 6=i

di,j, (2.17)

to produce a matrix with better stability properties in the presence of rounding errors.
The discrete derivative U′ (xi) of a grid function U(xi) can be represented by multiplying
Chebyshev differentiation matrix DN

U′=DNU. (2.18)

Apparently, we can compute the second order derivative via D2
N , the square of DN .

For such a 2-D problem in the azimuthal plane, we naturally set up a tensor product
grid based on Chebyshev points independently in each direction. Some notations we
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adopt are presented as follows. Points (r0,r1,··· ,rNr) are radial Chebyshev points rescaled
to [0,R0] and (Z0,Z1,··· ,ZNZ) are axial Chebyshev points rescaled to [−1/2,1/2]. Dr and
Dz denote the radial and axial Chebyshev differentiation matrix also rescaled to [0,R0]
and [−1/2,1/2], respectively. The second order derivatives D2

r and D2
z are evaluated

by squaring Dr and Dz, respectively. Ir and Iz denote the Nr×Nr and Nz×Nz identity
matrices, respectively, andR and R̃ are the diagonal matrices

R=Diag(r0,r1,··· ,rN), (2.19a)

R̃=Diag(1/r0,1/r1,··· ,1/rN). (2.19b)

Note that 1/rN has singularity since rN = 0 at axis r = 0, an alternative way is to set
rN =10−6 and the corresponding row and column of differential matrices will be deleted
later due to the regularity condition.

Then the discretized matrices corresponding to bivariate Eqs. (2.6a) and (2.6b) are
represented by the following Chebyshev differentiation matrix:

A=− i
m
(R⊗ Iz)·(Dr⊗ Iz)·(Ir⊗Dz)−

i
m
(Ir⊗Dz), (2.20a)

B=− i
m
(R⊗ IZ)·

(
Ir⊗D2

Z
)
+im

(
R̃⊗ IZ

)
, (2.20b)

C=
i
m
(R⊗ Iz)·

(
D2

r⊗ Iz
)
+

3i
m
(Dr⊗ Iz)+

(
i
m
−im

)(
R̃⊗ Iz

)
, (2.20c)

D=
2i
m
(Ir⊗Dz)+

i
m
(R⊗ Iz)·(Dr⊗ Iz)·(Ir⊗Dz), (2.20d)

where the “·” and “⊗” denote the ordinary and the Kronecker product of two matrices,
respectively. The operation for Kronecker product can be demonstrated by an example
as

(
1 2
3 4

)
⊗
(

a b
c d

)
=


a b 2a 2b
c d 2c 2d

3a 3b 4a 4b
3c 3d 4c 4d

. (2.21)

Now we define

M≡
(

A B

C D

)
. (2.22)

For m>1, the Eqs. (2.6a) and (2.6b) then become bivariate eigenvalue problem

M·
(
Br
Bz

)
= k
(
Br
Bz

)
. (2.23)
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For m= 1, due to the homogeneous Neumann condition of br the equations become the
following generalized eigenvalue problem

M·
(
Br
Bz

)
= kE·

(
Br
Bz

)
, (2.24)

where E is the identity matrix with the same size as M. The Br and Bz are the radial and
axial components of the helical B at 2-D Chebyshev collocation grids, i.e.,

Br =
(

B00
r ,B10

r ,··· ,BNz0
r ,B01

r ,B11
r ,··· ,BNz1

r ,··· ,BNz Nr
r

)T
, (2.25a)

Bz =
(

B00
z ,B10

z ,··· ,BNz0
z ,B01

z ,B11
z ,··· ,BNz1

z ,··· ,BNz Nr
z

)T
, (2.25b)

where Bij
r and Bij

z represent br
(
rj,zi

)
and bz

(
rj,zi

)
, respectively.

The homogeneous Dirichlet boundary conditions imply that the corresponding rows
and columns of M can be ignored. The corresponding index vector I can be obtained
from the rows where the boundary points are located in a 1-D vector, which is stretched
from the 2-D Chebyshev grids. Let M̃ denotes the modified matrix by stripping away
the rows and columns of the index vector I. The modified vectors B̃r and B̃z are obtained
by stripping the Br and Bz of the corresponding rows. Therefore, for m>1, the modified
eigenvalue problem becomes

M̃·
(
B̃r

B̃Z

)
= k

(
B̃r

B̃z

)
. (2.26)

For m = 1, the modified matrix M̂ is obtained by replacing the first (Nr+1)×(Nz+1)
columns of the rows, which correspond to the points of br at the axis in M, by the relevant
rows of Dr⊗ Iz, and the remaining columns are assigned to zero. Similarly, a modified
matrix Ê is given by replacing the relevant rows of E with zero. Then, the Dirichlet
boundary conditions are treated by the same way as for m> 1 modes. The generalized
eigenvalue problem is now

M̂·
(
B̃r

B̃z

)
= kÊ·

(
B̃r

B̃z

)
. (2.27)

For a dense matrix, a QZ algorithm is employed here to solve the above generalized
eigenvalue problem in MATLAB r ’s built-in matrix eigenvalue routine eig.

With the br and bz solved in Eqs. (2.26) and (2.27), the bθ can be computed from the
incompressible equation, i.e., Eq. (2.5). Let Ḃr and Ḃz be the 2-D matrix of the Chebyshev
collocation grids, the matrix form of bθ is

Ḃθ =
i
m

(
Ḃr+Ḃr ·DT

r ·R+Dz ·Ḃz ·R
)

. (2.28)

Note that the bθ can also be calculated by Eq. (2.3b). However, such procedure will give
rise to numerical oscillation at the corner nodes, whereas using the incompressible equa-
tion does not.
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2.3 Symmetry property of the helical wave

A symmetry property of the helical wave in the circular cylindrical geometry should
be presented. This property comes from the symmetry of geometry of 3-D domains,
and it is very useful in the computation when the geometry of the considered domain is
centrosymmetric.

First, there are at least two independent helical waves corresponding to the same
eigenvalue k since both bm

r,θ,z cos(mθ) and bm
r,θ,z sin(mθ) are the eigenfunctions once the

single helical mode is of the Fourier form bm
r,θ,zeimθ . This means there also exist two inde-

pendent real helical wave for the same eigenvalue and thus the eigenvalue is duplicate
at least. Second, due to the centrosymmetry of the cylindrical geometry, the positive and
negative eigenvalues with the same absolute value appear in pairs for each m. And a pair
of Fourier modes for ±|k| for each m to express the helical wave are correlated according
to the following relations:

for m>0,

 Bm
|k|=

(
bm

r ,bm
θ ,bm

z
)

eimθ for eigenvalue |k|,

Bm
−|k|=

(
(bm

r )
∗ ,−

(
bm

θ

)∗ ,(bm
z )
∗
)

eimθ for eigenvalue −|k|,
(2.29a)

for m<0,

 Bm
|k|=

(
(b|m|r )∗,(b|m|θ )∗,(b|m|z )∗

)
eimθ for eigenvalue |k|,

Bm
−|k|=(b|m|r ,−b|m|θ ,b|m|z )eimθ for eigenvalue −|k|.

(2.29b)

Eq. (2.29b) is just a natural consequence that the superposition of helical wave

Br,θ,z =
∞

∑
m=−∞

(Bm
±|k|)r,θ,z (2.30)

are requested to be real vector field of 3-D space and therefore the conjugate relation
between bm

r,θ,z expressed by Eq. (2.2) appear automatically. This allows us to compute
those eigenfunctions only for m>0.

Finally, it should be emphasized that all of these eigenfunctions satisfy the homoge-
neous boundary conditions due to the structure of Eq. (2.29a).

2.4 Criterion of spurious eigenvalue

In the background of our present work, the problem of spurious eigenvalues and eigen-
modes should unavoidably be paid attention. Generally, spurious eigenvalues appear
in numerical calculation of eigenvalue problem due to the under-resolution of gen-
uine eigenmodes [38]. The typical method for removing spurious eigenvalues is to ex-
clude nonconverging eigenvalues by repeating several calculations with different grids.
Tang [33] has pointed out that the bivariate Eqs. (2.6a) and (2.6b) that explicitly enforce
divergence-free condition for helical modes are less polluted by spurious modes than the
primitive Eqs. (2.3a)-(2.3c). However, it is still a big challenge to lower the calculation
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cost of removing spurious eigenvalues, because it is necessary to perform the calcula-
tion several times to determine whether the relative error converges, as illustrated by
Tang [33].

In theory, the energy of the spurious eigenmodes is very low. However, we cannot
judge such low-energy modes through the normalized numerical outputs of the standard
matrix eigenvalue problem. There should be an alternative criterion to distinguish the
spurious eigenmodes. Based on the fact that the spurious eigenmodes do not belong
to the eigenfunction set of the curl operator, we find that an existing identity [39] that
expresses the total energy of a Beltrami field in terms of a surface integral can just serve
as a criterion of spurious eigenvalue. The identity reads∫

D
B2dV=

∫
∂D

B2r ·dS−2
∫

∂D
(B·r)(B·dS), (2.31)

where B2=B·B is the energy of the real helical wave, and r is the position vector starting
from an arbitrary origin. For the helical wave with B·dS=0 as boundary condition, the
identity reduces as ∫

D
B2dV=

∫
∂D

B2r ·dS. (2.32)

In Appendix, we prove that this identity also holds for complex helical waves, if we give
B2 the meaning of |B|2.

The identity implies an important energy relation for any helical wave defined in a
bounded 3-D domain, which is tangent to the boundary surface of the domain. The nu-
merical criterion proposed to filter the spurious eigenmodes and the consequent spurious
eigenvalues is defined by

σ≡
∣∣∫
DB2dV−

∫
∂DB2r ·dS

∣∣∫
DB2dV

≥σC. (2.33)

It can be proved that σ is actually controlled by a well-defined energy norm of the relative
error of the computed helical waves, from which we obtained that

σ=O(max|B−B0|). (2.34)

Here, the B0 denotes the true or the approximated helical wave that has been normalized
by the L2 norm. All of the relevant details of the argumentation are supplied in the
Appendix. It is expected that the spurious eigenmodes will give rise to a significant error
norm and therefore the σ would exceed certain threshold σC. The determination of the
σC depends on the accessible level of accuracy of the numerical computation, which is
further relevant to the truncation error and the round error. A further argument and
specific results will be presented in the next section.

To our best knowledge the criterion proposed is new. Moreover it can significantly
reduce the calculation cost since the calculation is performed only once.
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3 Numerical results

3.1 Convergence and accuracy of eigenfunctions and eigenvalues

Based on the Chebyshev spectral method formulated previously, a case demonstration is
displayed. Here we take R0 =0.25, meaning that the ratio of height to diameter is 2. The
convergence of the computed eigenvalues as a function of the number of grid points is
shown in Table 1, wherein we take Nz=4Nr since the height of the cylinder is 4 times the
radius.

Table 1: The first 10 eigenvalues of helical modes at m=3.

Index E. C. Morse [28] Nr =10 Nr =30
1 24.6782477661218 24.6782509629646 24.6782477662102
2 25.5625440411167 25.5625475731572 25.5625440414496
3 26.8666453206450 26.8666514515229 26.8666453213065
4 28.4368538322556 28.4368695149927 28.4368538332641
5 30.1799718498448 30.1800052314483 30.1799718511973
6 32.0610758743960 32.0611308056641 32.0610758760922
7 34.0670197921808 34.0671007566754 34.0670197942201
8 36.1799016758825 36.1800249117142 36.1799016782458
9 37.7264135106135 37.7279550482058 37.7264135109012
10 38.2440896181714 38.2448688141708 38.2440896189689

The convergence of the residual of the computation represented by Err(bθ) defined
in Eq. (3.1) (see also [33]), along with the relative error of the eigenvalue evaluated by
Err(k)≡|k(Nr)−k(Nr =70)|/k(Nr =70) are shown in Fig. 1

R(bθ)≡
∂br

∂z
− ∂bz

∂r
−k·bθ , (3.1a)

M(bθ)≡
1
2

(
∂br

∂z
− ∂bz

∂r
+k·bθ

)
, (3.1b)

Err(bθ)≡
∫∫
R2(bθ)·rdrdz∫∫
M2(bθ)·rdrdz

. (3.1c)

The numerical result indicates that the residual is of O(N−4
r ) for any helical wave

with fixed label. This convergence rate lies in the fact that the Chebyshev expansion can
be convergent algebraically on non-periodic domain like a cylinder with a finite length.
The general result on the convergence rate is illustrated by Trefethen [35]. Compared with
the finite difference method [33], the spectral method achieves a typical residual level of
O(10−6) with much fewer grid points, under the considered scope of parameters. The
level of the relative error of the computed eigenvalues is even smaller.
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(a) Err(bθ) are plotted as functions of Nr (b) Err(k) are plotted as functions of Nr

Figure 1: The convergence of Err(bθ) and Err(k) for the nth eigenvalue at m=3.

We know that helical waves of different eigenvalues are orthogonal. Therefore, the
orthogonalization accuracy can be used to verify whether the number of the computation
grid points are sufficient. The normalized coefficient cn of helical wave is

cn =

(∫
B·B∗dV

)− 1
2

(3.2)

and naturally the orthogonalization accuracy d12 can be measured in terms of

d12=
∫

B1 ·B∗2 dV, (3.3)

where B1 and B2 denote the numerically normalized helical wave. The orthogonalization
accuracies of the helical modes for m=3 are shown in Table 2.

Table 2: The orthogonalization accuracy of helical modes for m=3. Nr =30, Nz =4Nr.

(n1,n2) (1,2) (11,12) (21,22) (31,32) (41,42)
|d12| 6.11 E-08 5.68 E-06 2.13 E-05 2.72 E-05 5.57 E-06

(n1,n2) (1,10) (10,20) (20,30) (30,40) (40,50)
|d12| 1.77 E-07 9.07 E-07 8.75 E-07 3.02 E-06 2.79 E-05

3.2 Concerning spurious eigenvalues

It is observed that the volume integral and surface integral appearing in Eq. (2.32) exhibit
remarkable difference in the numerical computation. For each eigenmode, the difference
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Table 3: The volume and surface integral respect to “helical wave” corresponding to spurious eigenvalues.

m eigenvalue
∫

B2dV
∫

B2r ·dS σ

10(Nr =10)
9.66393058153239 5.9574873 E-4 3.7640344 E-1 630.82
19.3175137923818 5.0778739 E-4 3.1910055 E-1 627.41
28.9497792149881 4.0543541 E-4 2.5224011 E-1 621.14

30(Nr =20)
127.202125821719 1.5972880 E-5 3.1773984 E-2 1988.24
135.063119832602 1.4861827 E-5 2.9380954 E-2 1975.94
142.907983957222 1.3735205 E-5 2.7172541 E-2 1977.31

60(Nr =30)
240.575909639702 3.1375369 E-6 10866824 E-2 3462.49
247.956276288191 3.0644213 E-6 1.0094055 E-2 3292.95
254.325995435115 3.0623070 E-6 9.1608647 E-3 2990.49

Table 4: The volume and surface integrals respect to true helical waves.

m eigenvalue
∫

B2dV
∫

B2r ·dS σ

10(Nr =10)
57.7055869784940 1.4782495 E-3 1.5297180 E-3 3.48 E-2
57.9775945702477 1.3259570 E-3 1.3679836 E-3 3.17 E-2
58.4267240209706 1.2708831 E-3 1.3047569 E-3 2.67 E-2

30(Nr =20)
144.347641951720 3.0728171 E-4 3.0727466 E-4 2.29 E-5
144.450847328404 2.7445460 E-4 2.7444754 E-4 2.57 E-5
144.622684178780 2.6167061 E-4 2.6166256 E-4 3.07 E-5

60(Nr =30)
270.095938380067 1.1519272 E-4 1.1517933 E-4 1.16 E-4
270.150836048074 1.0281925 E-4 1.0280731 E-4 1.16 E-4
270.242307046357 9.7950790 E-5 9.7939413 E-5 1.16 E-4

is quantitatively measured by the normalized index σ as already introduced in Section
2.4. By this index the whole data set of numerical output falls into two categories: one
with comparative small σ and the other with very large σ. The σ differs by several order
of magnitudes between the two categories. Apparently the former correspond to the true
eigenmodes and the latter are spurious eigenmodes with spurious eigenvalues. The dra-
matic gap of σ makes it easy to determine a threshold σC. The typical results are shown in
Tables 3 and 4, wherein σC =0.1 is taken and the results of the first three eigenvalues are
listed for each m. Other choice of threshold, e.g., 0.2, 0.5 or even 1.0, is of course possible
in our cases. However, we keep in mind that while this threshold serves to differ the two
categories of eigenmodes effectively, it represents the tolerable level of the relative error
of the computed eigenmode due to its implication as pointed in Section 2.4. In this sense,
the value of 0.1 as the allowed maximal relative error seems reasonable.

As we can see from the Tables 3 and 4, the significant numerical differences between
the volume integral and surface integral for spurious eigenvalues are due to the fact that
the eigenfunctions are almost zero inside the cylinder with numerical oscillations near



X.-L. Lyu and W.-D. Su / Adv. Appl. Math. Mech., 16 (2024), pp. 331-354 345

(a) (b)

(c)

Figure 2: The imaginary part of br, bθ , bz for the first spurious eigenvalue for m=3. Nr =10, Nz =4Nr. The
image of the real parts are similar to that of the imaginary parts.

the boundary, as shown in Fig. 2. Therefore, the surface integral is two or three orders of
magnitudes larger than volume integral.

3.3 Configuration of the helical waves

Fig. 3 shows the streamlines for the real helical field corresponding to the lowest eigen-
value for m=2. While for axisymmetric helical waves each streamline lies on an axisym-
metric torus, for non-axisymmetric helical waves concerned in this paper the streamlines
can be chaotic since the global first integral for streamlines cannot be recognized any
longer. Remind that chaotic streamlines is indeed the case for the superposition fields
of two helical waves with the same eigenvalue but different orientation for spherical do-
mains, as observed by Shi et al. [37]. The typical streamlines of helical waves we calculate
in the finite cylinder are illustrated in Fig. 4, wherein only periodic and quasi-periodic
streamlines are found. Meanwhile, it can be clearly seen as expected that the characteris-
tic scale of the helical wave becomes smaller as the eigenvalue increases.
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(a) a pair of periodic streamlines (b) a quasi-periodic streamline

Figure 3: Streamline of helical wave for the lowest eigenvalue for m=2.

(a) (b) (c) (d)

Figure 4: Vector plot of (br,bz) and contour plot of bθ for the helical wave corresponding to the lowest eigenvalue
and 10th eigenvalue for m=2 in the azimuthal plane of the finite circular cylinder. (a) The real part respect to
the 1st eigenvalue; (b) the imaginary part respect to the 1st eigenvalue; (c) the real part respect to the 10th
eigenvalue; (d) the imaginary part respect to the 10th of eigenvalue.
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3.4 Asymptotic behavior of large eigenvalues

For larger eigenvalues, more grid points are required to resolve the finer scale of helical
waves. The numerical tests show that the grid points of Nr = 80 are sufficient for the
m= 280 helical modes, ensuring that the orthogonalization accuracies are around 10−5.
Additionally, the memory requirement of this grid is about 120GB in MATLAB r. The
eigenvalues of the m = 280 helical modes are shown in Table 5. The interval between
these eigenvalues is much smaller than that in the m=2 helical modes. Fig. 5 shows the
contour plot of bθ for the helical mode corresponding to the 30th eigenvalue for m=280.
Note that the components of B are small inside the cylinder while they are large near
the boundary. However, since the maximal velocity is at the order O(1), the velocity of
O(10−11) still remains within the double precision. It is straightforward to see that the
azimuthal fields are similar to those represented by 2-D Fourier series. This asymptotic
behavior of high wavenumber has also been illustrated by Su et al. [8].

It is important to investigate the asymptotic behavior in the limit n→∞, where n
is the serial number of the discrete eigenvalues from small to large. Referring to Weyl
theorem [40], the eigenvalues of the Laplace operator will tend to infinity as O(n2/3)
in 3-D domains. For a sphere, the square of eigenvalues of the curl operator coincide

Table 5: The eigenvalues for helical mode for m=280.

index eigenvalue (Nr =60) eigenvalue (Nr =80)
1 1169.19080378001 1169.19080378088
2 1169.20346684213 1169.20346684299
3 1169.22457164063 1169.22457164143
4 1169.25411771796 1169.25411771867
5 1169.29210443364 1169.29210443424
6 1169.33853096425 1169.33853096471
7 1169.39339630374 1169.39339630403
8 1169.45669926318 1169.45669926328
9 1169.52843847123 1169.52843847115
10 1169.60861237412 1169.60861237378
201 1231.45967916162 1231.45967912746
202 1232.08535801264 1232.08535797005
203 1232.38065411391 1232.38065394132
204 1232.72250241083 1232.72250236704
205 1233.36621791279 1233.36621791828
206 1233.37764891913 1233.37764869176
207 1234.01927755101 1234.01927750852
208 1234.38012375685 1234.38012357206
209 1234.67945747190 1234.67945742790
210 1235.34150332264 1235.34150324872
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Figure 5: The contour plot of bθ for the 30th eigenvalue for m=280 in the partial [r,z] region of [0.1,0.15]×
[−0.05,0.05].

Figure 6: The distribution of positive eigenvalues in a finite circular cylinder with serial number n.

precisely with those of the Laplacian under homogeneous Dirichlet boundary condition.
Here, we find that the eigenvalues of curl operator in the finite cylinder also obey the
power law of n1/3, as shown in Fig. 6, where only positive eigenvalues are plotted. It can
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be verified that the eigenvalues of the curl operator for finite circular cylinder coincide
with those of the Laplacian only for axisymmetric modes corresponding to m=0. For the
Laplacian under homogeneous Dirichlet boundary condition, the eigenvalue sequence is
formulated as

λ2
m,q,n =(nπ/h)2+(µm,q/R0)

2, m=0,1,2,.. ., n=1,2,.. ., q=1,2,.. ., (3.4)

where µm,q is the q-th zero of Bessel function Jm(r) and h is the height of the cylinder.
Hence the square root of the first five eigenvalues for m = 3, h = 1.0, R0 = 0.25, say, are
evaluated and ranked as

25.7133..., 26.2827..., 27.2053..., 28.4467..., 29.9674.... (3.5)

Apparently the sequence is not the same as what has been listed in Table 1, showing the
difference on eigenvalues for m 6=0 between the curl operator and the Laplace operator.

4 Summary

In this paper, the non-axisymmetric helical waves in a finite circular cylinder are numer-
ically computed via a Chebyshev spectral method as well as a new criterion proposed
to rule out the spurious eigenvalues. The method is implemented by a Chebyshev dif-
ferentiation matrix. Compared with the existing work, high wavenumber modes can be
resolved in the present study due to the high accuracy the algorithm can accesses. This
is a requisite for turbulence research in arbitrary bounded domains by means of HWD,
which is the natural generalization of Fourier expansion used as a pivotal tools for tur-
bulence in periodic box.

We first review the Chandrasekhar-Kendall modes generated by a scalar Helmholtz
equation for bounded domains. Due to the coupling variables in radial and axial direc-
tion for a cylinder, Morse has found the non-axisymmetric CK modes represented by
a series solution in terms of radial Bessel functions. The eigenvalues generated by this
semi-analytical solution have high precision. However, the completeness of helical waves
is lost in double precision calculation since Bessel functions at small variable with high
m modes are too small to be represented within the machine precision. In addition, we
correct the eigenvalue equation appeared in [28].

To solve the helical waves in high precision, Chebyshev spectral method is employed
to discretize the two component equations presented by Tang [33]. The differentiation
matrix is formed on 2-D spectral collocation grid points in the meridian plane of the
cylinder. The regularity conditions at axis are then derived in detail. The numerical im-
plementation of the Chebyshev spectral method and the convergence of eigenfunctions
with the finer grids are presented. Also the orthogonalization accuracy of helical waves
with large eigenvalues is presented. Furthermore, the distribution of the eigenvalues
and the asymptotic behavior are demonstrated. It is found that the square of eigenvalues
for non-axisymmetric helical waves is distinct from those of the Laplacian, though the
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two sets of eigenvalues are identical for the axisymmetric modes, once the square of the
eigenvalues of the curl operator are used instead of the signed ones.

To remove spurious eigenvalues, several calculations with different grids are always
taken. This will cause high calculation costs. We find a new criterion based on an energy
identity for helical modes. Thus, the calculation can be performed only once and the
computation cost is significantly reduced.

Appendix

We now prove the crucial identity, i.e., Eq. (2.32) for any helical wave tangential to the
boundary surface and allowing complex number representation. Then the essence of
the criterion proposed for ruling out spurious eigenmodes and eigenvalues during the
computation, i.e., Eq. (2.33), can be demonstrated.

For an arbitrary solenoidal vector field B with a form of complex number, which is
defined in three-dimensional domain D and tangent to the boundary ∂D, there holds∫

D
r ·(∇×B)×B∗dV=

∫
D
(∇×B)·(B∗×r)·dS

=
∫
D

B·∇×(B∗×r)dV+
∫

∂D
B×(B∗×r)·dS

=
∫
D

B·(r ·∇B∗+2B∗)dV−
∫

∂D
(B·B∗)r ·dS, (A.1)

where r is the position vector and the superscript “∗” denotes the complex conjugate.
Taking the complex conjugate of the identity, we have∫

D
r ·(∇×B∗)×BdV=

∫
D

B∗ ·(r ·∇B+2B)dV−
∫

∂D
(B∗ ·B)r ·dS. (A.2)

For any helical wave B, satisfying the properties

∇×B= kB, ∇×B∗= kB∗, (A.3)

and the non-penetration boundary conditions, i.e., B·n= B∗ ·n= 0, the above identities
read

k
∫
D

r ·B×B∗dV=
∫
D

B·(r ·∇B∗+2B∗)dV−
∫

∂D
(B·B∗)r ·dS, (A.4a)

k
∫
D

r ·B∗×BdV=
∫
D

B∗ ·(r ·∇B+2B)dV−
∫

∂D
(B∗ ·B)r ·dS. (A.4b)

Taking the summation of the two equations gives

0=
∫
D

r ·∇(B·B∗)dV+4
∫
D

B·B∗dV−2
∫

∂D
(B·B∗)r ·dS. (A.5)
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Substituting ∫
D

r ·∇(B·B∗)dV=
∫

∂D
(B·B∗)r ·dS−3

∫
D

B·B∗dV (A.6)

and B·B∗= |B|2, we arrive at the following “energy” identity∫
D
|B|2dV−

∫
∂D
|B|2r ·dS=0. (A.7)

We now take into account the influence of the computation error. Return to arbitrary
solenoidal vector field B defined in D and tangent to ∂D. Taking the summation of
Eq. (A.1) and Eq. (A.2) again and using Eq. (A.6), we obtain∫

D
r ·(∇×B)×B∗dV+

∫
D

r ·(∇×B∗)×BdV=
∫
D
|B|2dV−

∫
∂D
|B|2r ·dS. (A.8)

Define that

Db≡
∫
D
|B|2dV−

∫
∂D
|B|2r ·dS (A.9)

and rewrite Eq. (A.8) as

Db =
∫
D

r ·(∇×B−kB)×B∗dV+
∫
D

r ·(∇×B∗−kB∗)×BdV, (A.10)

then using the Cauchy-Schwarz inequality we have the following estimation that

|Db|≤2L
(∫
D
|∇×B−kB|2dV

) 1
2
(∫
D
|B|2dV

) 1
2

, (A.11)

where L is the maximum of |r| within D. If we introduce the L2 norm ‖·‖2 of a vector
field defined in D, then Eq. (A.11) can be expressed as

|Db|≤2L‖∇×B−kB‖2 ·‖B‖2. (A.12)

When B is considered as the approximate helical wave by numerical computation, the
approximation error can be measured by a relative residual defined as

Err(B)≡ ‖∇×B−kB‖2
2

‖(∇×B+kB)/2‖2
2
≈ ‖∇×B−kB‖2

2

k2‖B‖2
2

. (A.13)

If we define a dimensionless index as

σ≡ |Db|
‖B‖2

2
(A.14)
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and denote the difference between the true helical wave B0 and the approximated one by
b, then there will be

σ≤2Lk
√

Err(B)≤2
√

2L
(
‖∇×b‖2

2+k2‖b‖2
2
) 1

2 /‖B‖2. (A.15)

This inequality indicates the relation between σ and the relative error function defined in
the text, thus it is necessary for the clarity. However, the estimation is rather loose because
the wavenumber k as the prefactor appearing in the inequality can be large. A better
estimation can be realized by substituting the expression B = B0+b straightforwardly
into Eq. (A.9) and simplifying. Following this line we obtain

Db =2
∫
D

B0 ·bdV+
∫
D
|b|2dV+2

∫
∂D

(B0 ·b)r ·dS+2
∫

∂D
|b|2r ·dS. (A.16)

If the centre of the cylinder is chosen as the original, then we have 0<r ·dS= r·dS≤L·dS
with L being the maximum of |r|. Using the Cauchy-Schwarz inequality again, we have∫

D
B0 ·bdV≤‖B0‖2 ·‖b‖2, (A.17a)

∫
∂D

(B0 ·b)r ·dS≤
(∫

∂D
|B0|2r ·dS

) 1
2
(∫

∂D
|b|2r ·dS

) 1
2

. (A.17b)

Since B0 is a normalized helical wave, there is∫
∂D
|B0|2r ·dS=

∫
D
|B0|2dV=‖B0‖2

2=1. (A.18)

Then Eq. (A.17b) means

∫
∂D

(B0 ·b)r ·dS≤
√

L
(∫

∂D
|b|2dS

) 1
2

. (A.19)

And finally the estimation of σ can be given as

σ=O
(

2‖b‖2+2
√

L
(∫

∂D
|b|2dS

) 1
2
)
=O(max|b|). (A.20)

Here, the second order terms have been neglected due to the smallness of |b| and σ≈Db
is taken into account. Because b is also normalized by ‖B0‖2, the estimation indicates
that the index σ is actually an equivalent measurement for the relative error of computed
helical wave. If σ exceeds certain prescribed threshold σC, then the numerical approxi-
mation to the true helical wave is worse. Therefore, σ≤σC with σ expressed by Eq. (A.14)
along with an appropriate σC can be a criterion to remove the spurious eigenmodes and
the parallel spurious eigenvalues.
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