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Abstract. The present work contains an analytical expression and solution for free
vibration problem of a composite lattice cylindrical shell surrounded by Winkler-
Pasternak elastic foundation with clamped edges. The foundation is simulated using
a large number of linear, homogenous shear and radial springs with variable stiffness.
An integrated formula for calculation of the natural frequency of lattice structure and
its foundation is derived from the equations of motion of the shell implemented by
Winkler-Pasternak terms based on Fourier decomposition and Galerkin method. The
fundamental frequency formula concerning the foundation elements and lattice pa-
rameters is an effective means of estimation frequency in earlier design phase and also
a tool to assess the vibration analysis of composite lattice cylindrical shell surrounded
by an elastic foundation in design analysis and numerical solutions. The results are
verified and confirmed using finite element analysis which show a very good agree-
ment.
AMS subject classifications: 35-11, 35E05
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1 Introduction

Lattice composite structures resting on/or surrounded by elastic foundations, have an
outstanding roll in different fields of engineering such as aerospace, mechanics, marine
and modern civil structures. Different studies on the natural frequency of beams rest-
ing on elastic foundations and analytical solutions for beams subjected to arbitrary dy-
namic loads have been done, but rare studies about a lattice structure on elastic Winkler—
Pasternak foundation could be observed. The natural frequency of finite Timoshenko
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beams on Pasternak foundations has been analyzed with six cases of bounding condi-
tions [1]. M. K. Ahmed has studied the natural frequencies and mode shapes of a vari-
able thickness elastic cylindrical shell, resting on Pasternak foundation using transfer
matrix [2]. D. N. Paliwal and R. Pandey studied the free vibration of an orthotropic
thin cylindrical shell on a Pasternak foundation [3]. Morozov et al. obtained a solution
for free vibration problem of a composite lattice shell with clamped boundary condi-
tions [4]. They used a continuous model on which, the lattice cylinder has been replaced
with a thin orthotropic shell, with the same corresponding structural stiffness. Mozorov
et al. [5] and Vasiliev et al. [6,7] have considered continuous finite element models for
anisogrid composite structure, using beam, shell or solid elements. An Hou et al. ex-
amined the failure modes of both cylindrical and conical composite lattice shells. They
compared the numerical results obtained by finite element analysis with experimental
solutions [8]. G. Totaro analyzed the local buckling failure modes for composite aniso-
grid lattice cylindrical shells with a typical system of hexagonal cells. The local buckling
of helical ribs is normally based on a simplified and qualitative approach, based on Ritz
method. This model has been verified with the aid of finite-element analysis, demon-
strating a noteworthy accuracy [9]. Xu et al. investigated the natural frequencies of
composite sandwich beams with lattice truss core, by combining the Euler-Bernoulli and
Timoshenko beam theories. They derived the governing partial differential equations of
motion, using Hamilton’s principle and obtained an analytical formulation for determin-
ing the natural frequencies [10]. Frulloni et al. studied the behavior of lattice composite
hollow structures that have been subjected to an external hydrostatic pressure, using fi-
nite element modeling [11]. Jeon et al. introduced the critical stress function utilized in
failure criterion, from the compression test results. The finite element analysis was used
to calculate the failure load with the proposed failure criterion and also the buckling load
for the full-sized cylindrical lattice structures [12]. Kim et al. applied composite lattice
rectangular plates for the solar panels of a high-agility satellite. They proposed an ap-
proximate method of conducting vibration, buckling analyses of the lattice plate of the
solar panel with a torsional spring using the Ritz method. This method considers the
buckling as well as the vibration characteristics (natural frequencies and modes). The
validity was verified by comparing the results with finite-element analysis [13]. Most
recent researches have been focused on failure, design, buckling and vibrations of lattice
structures due to different loads and conditions, but the influence of the foundations is
not considered in most of these studies. The aim of the present study is to obtain an ana-
lytical expression for natural frequencies of lattice cylindrical shells, composed of helical
and radial ribs, surrounded by an elastic Winkler-Pasternak foundation. By solving the
governing equation using Galerkin method, an analytical compact expression can be ob-
tained in order to make the possibility of tuning design parameters, to reach the design
goal without consumption and utilization of cost and time for numerical modeling and
modal analysis. Also, the effect of the shell’s length and stiffness of shearing and radial
springs on natural frequencies and stability of the cylindrical lattice shell are investigated.
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2 Governing equations, theory and mathematical model

A classical theory and modeling of elastic foundation in the radial direction has been used
to derive the governing equations of natural frequencies of a lattice cylindrical shell. In
order to have a clear inspection for the foundation model and governing equations of
motion of the lattice cylindrical shell, each are discussed separately.

2.1 Foundation model

The composite lattice cylindrical structure is considered to be shrouded from its outer
side by a linear, homogenous and elastic foundation in axial direction. The Winkler—
Pasternak foundation can be assumed as radial and shear layer springs with two stiffness
coefficients of K and G, in longitudinal axes. The springs are assumed to have pure
displacement, they are fully independent, with no integration and coupling effect with
each other. The simple and normal response of the foundation to load p(x,y) can be
written as;

p(x,y) =Kw—GV?w, (2.1)
in which w is the displacement along y axis and V? is the Laplace operator;
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Figs. 1(a) and (b) show the coordinate axes, «, B and 7 of the cylindrical shell, with radius
R and length L and a schematic of an elastic Winkler—Pasternak foundation, respectively.
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Figure 1: (a) Coordinate axes of the cylindrical shell [3]; (b) Schematic of elastic Winkler—Pasternak foundation.



358 E. Hamedani and A. Hashemian / Adv. Appl. Math. Mech., 16 (2024), pp. 355-372

2.2 Governing equations

The lattice cylindrical shell consists of helical and hoop ribs which pass through the mid-
points of the helical segments as it is shown in Fig. 2. Geometrical parameters can be
calculated from the continuum model of the lattice cylindrical shell as shown in Fig. 2.
The structure is characterized by the rib height /1, angle of orientation ¢ of the helical ribs,
as and a, are the distances between the helical and hoop ribs, respectively. 7, is the num-
ber of helical ribs of one direction and é; and J, are the width of helical and hoop ribs,
respectively. Also Es, E,, ps and p, are the modulus of elasticity and density of helical and
hoop ribs” material, respectively. The mass per unit area of the shell surface is shown as
B,. The following equations are used to calculate the lattice cylinder parameters [4]:

R cos q)

= = — = 2.

o= cosp,  ar noigd’ fui= (2.3a)
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The equation of motion is derived, using the classical theory of orthotropic cylindrical
shells [3]. The first approach makes use of continuum models that employ various modi-
fications of rib smearing techniques. In this case, the lattice structure is modeled as a shell
having the averaged (smeared) stiffness. The corresponding stiffness coefficients are cal-
culated using the rib smearing techniques and depend on the number and orientation
of the ribs and their stiffness. The models are analyzed using conventional theories of
the continuum orthotropic shells. For applying the continuous model of shell, adequate
number of helical and hoop ribs are used for the lattice structure to reach the defined den-
sity. The lattice composite cylindrical structure is replaced with a continuous orthotropic
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Figure 2: Lattice cylindrical shell composed of helical and hoop ribs [3].
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Figure 4: The elastic foundation is modeled as radial springs.

shell, having equivalent effective stiffness [4]. Also the composite lattice structure is as-
sumed to be unidirectional which simplifies the equations. The equation of motion in
cylindrical coordinate is given as,

ON, aN,xﬁ

g QU 24
oa Top Peap =0 (24a)
aNaﬁ aN‘g 1 M,,qg 1 Mlg 820

1 1My, 0% 4

5%« "9 "Rop "Rap Prap =" (2.4b)
M. 2°M,5 M, N 2
"M, P p_No_gdw_, (2.4¢)
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In which B, is the mass of the shell per unit area. Also, Ny, Ng, Nyg and My, Mg, M, g are
the components of stress resultant and the bending and twisting moments, respectively.
The displacements u, v and w are the displacements along «, B and 7y axes, respectively.
The term for elastic Winkler-Pasternak foundation can be applied to the right side of
third equation of Eq. (2.4), to obtain Eq. (2.5). Figs. 3 and 4 show the radial springs as an
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elastic ambient, limiting the outer surface of the lattice structure

oN, ON, o*u
| aﬁﬁ “Brgp =
E)Nal; aNﬁ lM‘Xﬁ l%—B 8270_
dx 98 R 3B Rop For2
athx E)ZMM; azMﬁ N/g azw

oa2 ' owdp 9> R For?

0, (2.5a)

0, (2.5b)

=Kw—GV?w. (2.5¢)

The terms of Eq. (2.5) should be complemented by establishing equations for orthotropic
and quasi-orthotropic composite materials which are derived from Eq. (2.6)

[ N ] !Bn B 0 ] [ &4 ]

Nﬁ = 321 Bzz 0 S,B ’ (2.6a)
-N"‘ﬁ 0 0 B33 _8“5
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M/g = D21 D22 0 K[; (26b)
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Where Bi1, B2, B2z, B3s, (B2 = B21) and D11, D12, D2, D33, (D12 = D21) are the membrane
strains of the middle surface. x,, kg and x, are curvature and deformation of middle
surface and ¢,, ¢ B and ¢, are the displacement relations, given by:

. _ou g W g ou v (2.7a)
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u and v are axial and circumferential displacements of the middle surface and w is the
shell deflection. Four boundary conditions are needed as

u=0, v=0, w=0, a—w:O.
o

By substituting Egs. (2.6) and (2.7) into Eq. (2.5), a generalized governing equation of mo-
tion can be obtained, considering the elastic properties of the Winkler—Pasternak founda-
tion as the third term of Eq. (2.8)

9%u 9%u 9*v By 0w 9%u

Bugaa By + (Bt Be) 555t 1 g Brom =0 (282



E. Hamedani and A. Hashemian / Adv. Appl. Math. Mech., 16 (2024), pp. 355-372 361

9 D33\ 0%v Dy 920 By
(B12+B33) - (B33+ 33) —+ <B22—|— 22) v +££

dndp 0a? B> R 9P
_ D1y+2Dj3; Pw Dy dw v
R 9420 R 0pd Bogm =0 (2.8b)
_Budu Bpov, Dpdv Dupt2Dp &  Bp, o, 3w
Roa R JB' R op° R 0a208 R ot
o*w o*w *w G o*w
_2(D12+2D33) aﬂczaﬁz — Doy —— aﬁ —Kw+G— 52 R2 8ﬁ2 +Bpw w=0. (2.8¢)

Where K and G are the Winker and Pasternak coefficients, respectively.

3 Solution method

In order to solve the third term of Eq. (2.8) analytically, the shell displacements u, v and
w, can be presented as:

u(a, ) =u(a,B)coswt,
v(a,B,t) =v(a,B)coswt, (3.1)
{ w(a,B,t) =w(a,B)coswt.

By substituting Eq. (3.1) into Eq. (2.8), Eq. (3.2) is derived

0%u 0%u 0’0 By ow
Buggz tBogp + (Bt Ba) 55+ 20 50+ Bpwu =0, (3.2a)
82u D33 82 D22 8 0 Bzz Jw
i) g (Bt 72 ) G+ (B4 5 ) 3 oo
D1+4+2Ds33 Pw D»» Pw
— R 8azaﬁ R 8[53 +Bpw v=0, (3.2b)
B12 Ju B22 Ju Dzz 8 0 D12 —|—2D33 83v Bzz 847,0 84(,(]
B i e e — D —— D ) e
Roo RpBTRIPT R oatop RV Pugeu 2(Dut2Dwn)g 50
P 2 G 2
—Dyp——r FT +Bpwiw— I<w+Ga (wcoswt)—kﬁ@ (wcoswt) =0. (3.2¢)

By solving the above equations along with their homogenous boundary values, the fun-
damental frequency for the lattice cylindrical shell can be obtained. Trigonometry series
as in Eq. (3.3) can be employed to be expanded along hoop coordinate 3, because the
reflecting deformation function of the circular cylindrical shell is periodical

a,B)= i Uy (&) cosA,f, (3.3a)
n=1
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a,B)= i vy (@) sinA, B, (3.3b)

Z wy, () cosA,B. (3.3¢)

Substituting Eq. (3.3) to (3.2), the following homogenous system of ordinary equations is
derived

%u, 0v, By ow
Bii ' —Bashu i+ (BratBxs) An 5 " 7 = 4 Bpcwitn =0, (3.42)
du 2 o on
ou, D33\ 0%v, D\ ., D1p+2Ds3 . 0%wy,
B B B —( B A A
—(Bia+Bss) A +< 33+ 5 ) Fra 2ty | Aot —4 3.2
A
— 22 (Bia+ D) wa+ Bpewhon =0, (3.4b)
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T;Z aan _?n (B2 +D22A2) vy + —2 I Ey dzx; - ( R222 +D227\4> Wy — DnTle
*w 02 1
+2(D12+2D3) A 5 =5 — 2 G Al + By, =0, (3.40)

In which wy, is the nth harmonic natural frequency. The new boundary conditions adopted
by Eq. (3.4) are

dw,
do

u,=0, v,=0, w,=0, =0. (3.5)

The Galerkin method has been used to solve the third term of homogeneous boundary-
value problem in Eq. (3.4). So a rapid and good approximating function should be em-
ployed to satisfy the boundary conditions of Eq. (3.5). The clamped-clamped boundary
conditions are assumed in order to generate the fundamental modes of vibrations of the
cylindrical shell, by using the approximated functions. A good approximation for u,(«),
vy () and wy, (w) is represented as follows

ax

Up = uﬂ%/

v, =VuX, w,=W,X. (3.6)

Where

A A Aw A
X—coshf —cosf —0 <smhL —smL)
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In the above equation, A and ¢ are constant values. According to the Galerkin method,
the expressions for the errors are given by:

ED'¢ aX dX BppdX dX
Zy= <311M—B33)\2d )Un—f-(Blz—i—ng,))\ Vnd %d—WmLBp 2d u,, (3.7&)
d’X D33\ d?X D
Zp (B12+B33)/\ u, i 2+|:(B33+33>(M_<B22+ 22>/\2X:|V
D 2D d*X B DyA
+An< 122 - 22+R 22 ”X) Wi+ Byw? XV, (3.7b)
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The unknown constants U,, V,, and W,, could be found from Eq. (3.7), then the suitable
approximated function X and % could be obtained. Using Galerkin’s method gives the
following terms:

' dXd ' Xd ' Xd 3.8
/Oza% x=0, /Ozﬁ a=0, /Oz7 a=0. (3.8)

Substituting Eq. (3.7) into (3.8) and assuming ¢ =0 A (0cA—2), the third term of Eq. (3.4)
could be derived after some mathematical rearrangement

— D2 2 Dy;+2D33 & n* Dy A4
_B12un§+”[<322+ R2 >S+(st Vu+ B22+D22ﬁ+ﬁ574

Do +2D 2
42 (12;;233> n2§+cg+ <K+GZ4>SR2] W, — w3 B,RLW,, =0. (3.9)

Where U, = Y R ,s—lg

By using the parameters which are defined in the Eq. (2.3) and appendix and sub-
stituting into Eq. (3.9) and dividing the resultant equation by Eso*sns%, the subsequent
equation will be derived

E o — K3
—Ssﬂsflzhuné—f—n[( nsf12h+12 R sf12>

1 /K2 2h JC
+R2<12 Rn+f12+ 2E5R”sf12>n s:|Vn



364 E. Hamedani and A. Hashemian / Adv. Appl. Math. Mech., 16 (2024), pp. 355-372

—i—[mts sfzz-i-h 15 f22 i A s fn+ <h3 sf12+2h E)
12 R R 12R2 4 RZ\ R R 12
+ 5 GC + <K+ 3G ) sRZ] W, —wﬁha%nsppRLWn —0. (3.10)
The dimensionless frequency parameter could be stated as:
=W Zps Rl (3.11)

By ignoring the displacement in « direction in comparison with deflection in hoop direc-
tion, then the bellow compact equation could be obtained

_ v, W, =0,
{(Cn 7711811) +C12Wn (3.12)

21 Vi + (c22 — g2+ pss ) Wy =0.

The parameters of Eq. (3.12) have been given as the equations in the Appendix. Setting
the determinant of the system of equations to zero:

C11 —Nnf11 C12 2

det =0 = an;—bn,+c=0, 3.13
21 €22 —1nGao + Pss Tn =51 (313

yields to:

b—+/b%—4ac
17,1:27, (3.14)
a
where

a=gnqn, b=cngn+cng+Pusgnn  and  c=cuccn—c12®+c11Pss. (3.15)

The nth frequency w, due to 7, is given by:

Es

C()nzgi’l psRl

(3.16)

The obtained analytical formula as a rapid tool for reliable estimation of fundamental fre-
quency of lattice cylindrical shell surrounded by elastic foundation, will assist in earlier
design phase to calculate the natural frequency avoiding time consuming finite element
analysis.

4 Numerical solutions and verification

In finite element modeling, a combined 3D element was considered for the lattice struc-
ture and shear layer for Winkler parameter (in the direction of cylinder cross section
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Figure 5: Lattice cylindrical shell surrounded by elastic foundation.

radius). The combined element has 3D applications, pure transfer and no coupling. It
has been assumed that the elements have no rotational degree of freedom. Also, the
spring element was considered to have no mass. In the first step of modeling the aniso-
grid structure, simplifications were considered by modeling the smallest reputable cell
of the lattice and repeat the result along the axes to have a cylindrical lattice structure
with defined R and L as radius and length, respectively. All the keypoints have been
merged with defined tolerance to model the integrated structure. For foundation model-
ing, a proper number of spring elements along R+ H (which describes the distance from
the outer surface of shell in radial direction) and longitudinal spring elements (with the
same location) have been employed as Winkler parameter and Pasternak modules, re-
spectively. Fig. 5 shows the foundation simulation using spring elements with one end
attached to the structure, while the other ends are clamped. The geometric parameters of
such structures are defined in Table 1.

Before calculating the natural frequencies of the lattice structure located in an am-
bient of elastic foundation, an analytical calculation has been performed to validate the
equation, through a comparison of the natural frequencies of the lattice shell, without
the elastic foundation with previous studies. Adding an ambient of elastic foundation, a
new analytical formula has been obtained. The results indicated that by employing the
elastic foundation, the coefficients of Pasternak and Winkler modulus have an extreme
effect on increasing the natural frequencies of the lattice structure. As shown in the re-
sults of Table 2, by increasing the number of helical ribs specifically more than 48, and in
the presence of the foundation, the natural frequencies will increase. The results in Table
2, were obtained by deriving the governing equations with boundary conditions, using
Galerkin method, with and without the elastic ambient and are in good agreement with
FEM. The natural frequencies without the elastic foundation have been calculated using
the analytic formula for each individual rib’s angle and number of helical ribs and were
compared with the results of A. V. Lopatin et al. [4]. Then the natural frequencies for each
individual rib’s angle and number of helical ribs were calculated using the analytic for-
mula for the lattice cylinder with the ambient elastic foundation and were compared with
FEM solution. Acceptable results have been achieved and it was observed that the natu-
ral frequency has been decreased in different configurations while the elastic foundation
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Table 1: Parameters and values of lattice structure.

Parameters Definition Value

0 Density 1550kg/m>
E Module of Elasticity 70*10°N /m?
R Lattice Cross section Radius 0.5m
L Effective lattice length 2m
s Helical Ribs Thickness 2mm
Or Hoop Ribs Thickness 2mm
Ps Helical Ribs Density 1550kg/m?3
or Hoop Ribs Density 1550kg/m?>
H Ribs Height 8mm

L/R Length to Radius Ratio 4

R/H Radius to Ribs Height Ratio 62
P Poison Ratio 0.32
P Angle between Helical ribs 15°
N Number of Helical Ribs 48
K Pasternak Coefficient 0,10,10%,10%, 10%, 10°
G Winkler Coefficient 0,10, 25, 50, 75, 100, 500

Table 2: Natural frequencies from analytic formula with and without elastic foundation for L =2m.

Freq. Without Foundation

ns 48 60 72

Ribs Angle | Analytical Solution Ref. [4] | Analytical Solution Ref.[4] | Analytical Solution Ref. [4]
15 103.55 104.37 104.9 104.96 105.7 105.64
20 117.79 115.83 117.07 117.1 117.86 118.52
25 121.89 122.96 124.12 123.11 125.17 12491
30 122.65 124.92 125.81 125.09 126.9 127.19
35 122.76 123.73 125.82 125.08 126.97 127.17
40 122.39 123.17 125.13 124.8 125.66 126.39
45 110.61 117.83 112.1 118.62 113.43 119.1

Freq. With Elastic Foundation

Mg 48 60 72

Ribs Angle | Analytical Solution = FEM | Analytical Solution =~ FEM | Analytical Solution = FEM
15 100.86 103.01 109.01 113.22 108.97 112.24
20 100.86 103.55 121.68 126.83 121.65 124.80
25 100.87 103.55 127.99 130.32 127.97 132.35
30 100.98 103.56 130.12 133.35 130.10 134.04
35 102.05 103.73 129.97 136.05 129.95 131.02
40 112.19 105.37 129.06 119.16 129.04 118.36
45 112.20 105.98 120.79 117.17 120.78 115.74

is applied.

Fig. 6 shows that the results of analytical solutions are in good agreement with the
results of [4], for the lattice structure without elastic foundation. It also shows that the
results of analytical solutions are in good agreement with FEM in the presence of elastic
foundation.
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Figure 6: Comparison of natural frequencies of a lattice structure with/without Winkler—Pasternak Foundation
with ns =48.
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Figure 7: Comparison of natural frequencies of a lattice structure with/without Winkler—Pasternak Foundation
with ng =60.

In Figs. 6-8 the values of natural frequencies for different rib numbers and angles are
illustrated. It is shown that the natural frequencies decrease without the elastic founda-
tion. To study the effect of foundation coefficients, K and G, the natural frequencies of
the structure, were calculated using Eq. (3.16). Because the modal analysis takes much
time with enormous elements within the length of 4 meters and circumferential ribs of
60 and 72, so the calculations were performed for a length of 2 meters and rib angles of
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Figure 8: Comparison of natural frequencies of a lattice structure with/without Winkler—Pasternak Foundation
with ng =72.

15 degrees. For calculating the natural frequencies for cylinders with other lengths and
angles, with different numbers of circumferential ribs, advanced computers with paral-
lel processors are needed. In Fig. 6, in the absence of foundation, the natural frequency
increases from rib angle’s 15° to 30° and then gradually starts to decrease. By adding the
Winkler-Pasternak foundation to the lattice structure, a smooth increase of natural fre-
quency can be observed. In Fig. 7 and also in Fig. 8, the natural frequencies increase from
rib angle’s 15° to 35° for both cases with and without foundation, but from 35° to 45° the
amount of natural frequencies decreases smoothly. However, changing the number of
ribs used in lattice structures, causes the variation of natural frequencies. Table 3 shows
the variations of Winkler and Pasternak coefficients and their influences on natural fre-
quencies. The stiffness of the structure is affected by two coefficients and each one plays
an important role in variation of natural frequencies. As mentioned in Table 3, increasing
K, for the elastic foundation while keeping G constant, (and vice versa) will increase the
natural frequencies because of increasing the stiffness of the structure proportionally. By
applying different values of (K,G), it is observed that the K values are more effective than
G values in calculation of natural frequencies.

The finite element model has been applied for the lattice cylindrical shell with 97830
nodes and 3984 springs” elements. The total stiffness follows the rules of parallel springs
and is divided by the number of springs, implemented in modeling. A typical fundamen-
tal vibration of cylindrical lattice shell surrounded by elastic foundation with clamped
edges is analyzed in FEM software. Four mode shapes are shown in Figs. 9 and 10 for
k=100 and G=0N/m?>. The even shape modes are not shown due to their similarity with
odd modes which explains that the clamped lattice structure has longitudinal stability.

Variations of the elastic foundation Winkler coefficient, K, from 0 to 2x10° and its
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Figure 9: First, third, fifth and seventh mode shapes.

effect on fundamental frequency is shown in Table 4. The natural frequencies derived
from analytical solution and FEM are compared in Table 4 for n; =48 ribs and the error
values are also calculated. These calculations could be performed for 1n; =60 and 72 ribs
vs other angles which leads to many diagrams. The trend of increasing the fundamental
frequency can be compared between two sets of results in the same table and is shown as

Table 3: Natural frequencies calculated by analytical formula varying elastic foundation coefficients for L=2m.

(K,G) Natural Frequency (Hz) (K,G) Natural Frequency (Hz) (K,G) Natural Frequency (Hz) (K,G) Natural Frequency (Hz)
(10,0) 100.86 (10, 10) 100.92 (10, 25) 101.02 (10, 50) 101.19
(100, 0) 100.86 (100, 10) 100.93 (100, 25) 101.03 (100, 50) 101.19
(2x10%,0) 100.89 (1000, 10) 100.95 (1000, 25) 101.05 (1000, 50) 101.21
(104,0) 101.10 (10*, 10) 101.17 (10%,25) 101.27 (104,50) 101.44
(10°,0) 103.30 (10%,10) 103.37 (10°,25) 103.47 (10°,50) 103.63
(106,0) 123.17 (106,10) 123.22 (106,25) 123.30 (106,50) 123.481
(2x106,0) 142.01 (2x106,10) 142.06 (2x106,25) 142.13 (2x106,50) 142.25
(3x106,0) 158.63 (3x10°,10) 158.67 (3x106,25) 158.74 (3x106,50) 158.84

(K,G) Natural Frequency (Hz) (K,G) Natural Frequency (Hz) (K,G) Natural Frequency (Hz) (K,G) Natural Frequency (Hz)
(10,75) 101.35 (10,100) 101.52 (10,500) 104.13 (10,1000) 107.30
(100,75) 101.36 (100,100) 101.52 (100,500) 104.13 (100,1000) 107.31
(1000,75) 101.38 (1000,100) 101.54 (1000,500) 104.15 (1000,1000) 107.32
(104,75) 101.601 (10%,100) 101.77 (10¢,500) 104.37 (104,100) 107.531
(105,75) 103.79 (10°,100) 103.95 (105,500) 106.50 (105,1000) 109.60
(106,75) 12357 (105,100) 123.71 (106,500) 125.86 (106,1000) 128.49
(2x106,75) 142.36 (2x106,100) 142.48 (10,500) 104.13 (2x10°,103) 146.65
(3x10°,75) 158.95 (3x10°,100) 159.05 (100,500) 104.13 (3x105,103) 162.80
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Figure 10: The first mode shape of lattice cylindrical shell in elastic ambient.
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Figure 11: Comparison of analytical and FEM solutions vs Winkler coefficient.

a graph in Fig. 11. In Table 4, the natural frequencies from analytical formula and FEM
solutions are compared for different Winkler coefficients and the acceptable error values
show a good agreement between the two methods. Also it is observed that by increasing
the Winkler coefficient of the foundation, the natural frequencies will increase.
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Table 4: Changes of natural frequencies due to foundation winkler coefficient variations for ns =48.

(K,G) Analytical solution/ Natural Frequencies FEM Solution of Natural Frequencies Error%
(0,0) 100.86 103.01 2.13
(10,0) 100.86 103.55 2.67
(102,0) 100.86 103.55 2.67
(103,0) 100.88 103.55 2.65
(10%,0) 101.11 103.73 2.60
(10°,0) 103.31 105.37 2.00
(106,0) 123.17 120.49 2.17
(2x10°,0) 142.01 135.33 4.70

5 Conclusions

A free vibration problem of composite lattice circular cylindrical shell, surrounded by
Winkler-Pasternak ambient, with clamped ends has been solved. Continuous model has
been replaced with the lattice structure, assuming equivalent effective orthotropic stiff-
ness characteristics. The analytical formulation has been solved analytically, using both
Fourier decomposition and the Galerkin method. The integrated formula was solved for
natural frequencies of lattice shell enclosed in an elastic ambient. The results were veri-
fied using the Finite-Element Method. For FEM simulations, the coefficients of Winkler
and Pasternak characteristics, were replaced by shear and radial springs, respectively.
The fundamental frequency of the system is dependent on elastic foundation character-
istics, thus the variation of radial and shear springs stiffness, cause different natural fre-
quencies. It was observed that by increasing the springs stiffness, more system stability
can be expected. Application of both analytical and numerical methods, demonstrated
that higher values for the system structural parameters are needed for a system with
shortened length. The efficiency of the analytical formula has been confirmed using FEM
numerical calculations. This parametric formula enables efficient assessment of the ap-
propriateness of both radial and shear springs stiffness in the design analysis.

Appendix

1)
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