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Abstract. In this paper two-dimensional differential quadrature method has been used
to analyze thick Functionally Graded (FG) rotating disks with non-uniform boundary
conditions and variable thickness. Material properties vary continuously along both
radial and axial directions by a power law pattern. Three-dimensional solid mechanics
theory is employed to formulate the axisymmetric problem as a second order system
of partial differential equations. The non-uniform boundary conditions are exerted di-
rectly into the governing equations to reach the eigenvalue system of equations. Four
different disk profile shapes are considered and discussed. The effect of the power
law exponent is also investigated and results show that by the use of material which
functionally varied along the radial and especially axial directions the stresses and
strains can be controlled so the capability of the disk is increased. Comparison with
other available approaches in the literature shows a good agreement here in terms of
computational time, robustness and accuracy of the present method. Moreover, novel
applications are shown to provide results for further studies on the same topics.
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1 Introduction

A most used structural element in many rotating machineries is rotating disks, they
have many practical engineering applications such as turbo generators, casting ship pro-
pellers, turbojet engines, steam and gas turbine, reciprocating and centrifugal compres-
sors, pumps and brake disk of automobiles. In all these applications, the total stresses
due to centrifugal load have important effects on their strength and safety. Thus, con-
trol and optimization of total stresses and displacements field is an important designing
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task [1]. Therefore more researches have been done on rotating disk analysis some of
which are mentioned here. Afsar et al. [2] studied a thin circular FGM disk subjected to a
thermo-elastic field using the finite element method. They reveal that the thermo-elastic
field in FGM disks is significantly influenced by temperature distribution, the angular
speed of the disk and the inner and the outer surface temperature difference. Asghari
and Ghafoori [3] presented a two dimensional plate stress analysis for a three dimen-
sional FGM rotating disk. Their results showed that although the plane-stress solution
satisfies all the governing three dimensional equations of motion and boundary condi-
tions it fails to give a compatible three dimensional strain field and it is not a valid so-
lution. They modified the plane stress solution to reach an adequate three dimensional
solution for a thick FGM rotating disk. Vullo et al. [4] presented an analytical procedure
for the evaluation of elastic stresses and strains in a non-linear variable thickness rotating
disk. They defined a density variation along the radial direction and a relation between
the stress state and displacement field. They demonstrated that the results obtained by
this method perfectly match those obtained by FEA. Nie et al. [5] analyzed the axisym-
metric deformation of an isotropic rotating disk with its thickness, mass density, thermal
expansion coefficient and shear modulus varying in the radial direction. They used the
differential quadrature method for solving the non-homogeneous ordinary differential
equations with variable coefficients for airy function. They also analyzed the challeng-
ing problem of tailoring the variation of either the shear modulus or the thermal expan-
sion coefficient in the radial direction. Jahed et al. [6] considered an inhomogeneous disk
model with variable thickness and used the variable material properties method to obtain
the stress field under rotation and a steady temperature field. They modeled the rotating
disk as a series rings of different but constant properties and arrived the optimum disk
profile by sequentially proportioning the thickness of each ring to satisfy the stress re-
quirements. Alexandrova et al. [7] studied the plane state of stress in an elastic-perfectly
plastic isotropic rotating annular disk with constant thickness and density mounted on a
rigid shaft. Hosseini et al. [8] present the stress analysis of a rotating nano-disk made of
functionally graded materials with non-linearity varying thickness based on strain gra-
dient theory. They examined the effects of various parameters such as graded index and
thickness profile on stresses. Their results show that the effect of thickness parameters
is greater than the effect of the graded index and the difference between the stress pre-
dicted by the classical theory and the strain gradient theory is large when the thickness
of the nano-disk is small. Farshi et al. [9] considered an inhomogeneous disk with vari-
able thickness and used the variable material properties and an optimization process to
calculate the stress and optimized the disk profile.

Functionally graded materials (FGM) are composites in which the volume fraction,
sizes and shapes of materials constituents can be varied continuously to get desired
smooth spatial variations of macroscopic properties such as the elastic modulus, mass
density, shear modulus, heat conductivity, etc. [3]. The functionally graded materials are
the materials with the designing capability and are usually confirmed from metals and
ceramics phase. Based on an adequate mixture rule, the volume fraction of each phases
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prescribed the composition properties in each point of composite material. It means the
functionally graded materials are characterized by gradually changed physical proper-
ties [10].

To solve an engineering problem, the condition around the boundary of the area un-
der consideration must be specified certainly. It is obvious that the boundary conditions
effects seriously the governing equations and response functions. Uniform boundary
conditions which are used in many articles exist in the literature, lead to an uniform
eigenvalue system of equations therefore a simpler solution. The non-uniformity in the
boundary conditions may take either the discontinuous type (usually referred to as mixed
boundary conditions) or the continuous non-uniform type (that is varying elastically re-
strained conditions) [11]. Furthermore, there are many useful numerical methods for
solving the equations describing the engineering problems, which their closed form so-
lution are difficult to establish. Finite elements, finite difference, differential quadrature,
and boundary element methods are among the numerical solution methods [12]. Con-
siderable research has been done on stress and strain analysis in rotating disks with var-
ious boundary conditions using various techniques such as the nonlinear graded finite
element method [13], finite difference method [14], variable material properties (VMP)
method [15, 16], meshless method based on the local Petrov-Galerkin approach [17],
homotopy analysis method [18] and generalized differential quadrature method [19].
The generalized differential quadrature method is utilized for solving a variety of prob-
lems because of its high accuracy, reliability and general applicability. In this numerical
method, the function derivatives are approximated in terms of linear summation of the
production of function value and weighting coefficients in various grid points [20]. At
first Bellman et al. [21] proposed the differential quadrature method and suggested two
techniques for the first order weighting determination. Shu et al. [22] developed a gener-
alized differential quadrature method to overcome the restrictions existing in Bellman’s
method. Differential quadrature and the generalized differential quadrature methods
have been used to solve many different engineering problems such as: bending anal-
ysis of thin isotropic circular plates [23], vibration analysis of arbitrarily shaped lami-
nated composite shells [24], static analysis of laminated composite rectangular and an-
nular plates with a posteriori shear and normal stress recovery [25], non-steady creep
analysis of FGM rotating thin disk [26], nonlinear bending analysis of a single SWCNT
over a bundle of nanotubes [27], static and free vibration analysis of free-form lami-
nated Doubly-Curved shells and panels of revolution resting on Winkler-Pasternak elas-
tic foundations [28]. The incorporation of boundary conditions and the selection of grid
point distribution are two main complicated and effective problems in GDQ implementa-
tion. Laura and Gutierrez [29] used a é-technique for using the GDQ method in the vibra-
tion analysis of rectangular plates having non-uniform boundary conditions. This tech-
nique was proposed by Bert et al. [30] and Jang et al. [31]. In this technique, a series of two
grid points are separated from each other by a small distance é near the boundary edges.
Since the § parameter must be selected very small, the DQ weighting coefficients ma-
tric may become ill-conditioned thereby creating undesirable oscillations of solution [11].
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Shu et al. [32] presented a new methodology for implementing the clamped and simply
supported boundary conditions for the free vibration analysis of beams and plates using
the generalized differential quadrature method. They proposed this approach to over-
come the drawback of the previous approach in treating the boundary conditions and
compared this method with the other adjustment solution method such as the method of
modifying weighting coefficient matrices.

The literature review shows that the majority of the carried out research is concen-
trated on thin functionally graded rotating disks with thin constant thickness and using
the plane stress assumption. It is obvious the plane stress assumption can not be applied
to thick disks not at all. In most research exist in the literature the material properties are
assumed to vary only in one direction whiles mostly conventional functionally graded
materials might not be that effective in such design problems. Using the one dimen-
sional pattern of heterogeneity might not be an accurate model for thick disk analysis
and cause a noticeable errors. Furthermore using two dimensional pattern of function-
ally graded materials leads to an exact and flexible design of materials that provides
accurate results [33,34]. Furthermore, all applications of the GDQ method in the liter-
ature are restricted to the uniform geometrical model, this restriction is not satisfactory.
In this paper the two dimensional generalized differential quadrature method is used to
solve the governing equation of an FGM rotating thick disk with variable thickness. For
this purpose, the two dimensional governing equations of FGM rotating thick disk with
variable thickness and variation of particle reinforcement along both radial and axial di-
rections are derived and solved using the 2-D GDQ method for non-uniform boundary
conditions.

Near the most existing analyses with generalized differential quadrature methods in
the literature are confined to a uniform geometrical model, this restriction is obviated
in this paper. Despite all existing complexities such as the application of non-uniform
boundary conditions and non-uniform geometrical models, variation of material prop-
erties along both radial and axial directions and the system of nonlinear equations, the
convergence of the final response is very fast. This model obviates many of the simplifica-
tions and restrictions which are associated with other solution methods in FGM rotating
disk analysis.

2 Mathematical formulation

Let a two dimensional FG rotating thick disk with inner radius a and outer radius b with
variable thickness /(r) depicted in Fig. 1(a). The present study considers the disk in axis-
symmetric conditions so that only the generic radius is investigated as a two-dimensional
domain (all the contributions about 6 are neglected as well as 1y and all the derivatives
with respect to 6 direction). The disk is fixed at the inner radius and the outer surface of
the disk is traction free so the boundary conditions of the problem are non-uniform. Such
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boundary conditions can be written as:

{r:a: u(r,z)=0, w(rz)=0, {Zz—h/zi 02 (7,z)

0, T(r,z)=0
0, T:(r,z)=0.

7

r=b: a,(r,z):O, T,,Z(r,z): Z:]’l/2: UZ( ) (21)

By considering the generic element of rotating disk in Fig. 1(b), the equilibrium equations

are derived as 3 3
90r | Ir—0% +— i +prw =0,

or r 0z
Ity | 00: T 22
or  9dz r

Where, 0;, 0y, 0, and T, are the radial, circumferential, axial and shear stresses, respec-
tively. p is the material density and w is the rotating speed. Using stress-strain and
strain-displacement relations, it is concluded that:
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In the above relations, ¢,, €g, €, and ¢,, are the radial, tangential, axial and shear strain
components, respectively. u and w are the radial and axial displacements. E and G are
the elasticity and shear modulus respectively and v is the Poisson ratio. From the above
set of equations, the stress-displacement relations can be extracted as Eq. (2.4)
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After substituting stresses from Eq. (2.4) into governing equilibrium equations the Navier
form governing equations are established as below:

Pu . Pu Fw  w . du . dw
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Figure 1: Disk specification and element conditions.

Where A1 — A7 and B — Bs are coefficients that depend on material properties which vary
along both radial and axial directions. Definitions of such coefficients are given in the
appendix.

As it was aforementioned, all mechanical and thermal properties of FG rotating thick
disks are a function of the radial and transverse directions of the disk. Material properties
will be introduced in the next section.

3 Volume fraction and material distribution

In recent years the fabrication and processing method of Functionally Graded (FG) mate-
rials has been developed significantly. Using the computer-aided manufacturing process
it is possible to produce functionally graded materials with two or three dimensional
gradients. The inner surface of a rotating disk usually experiences a larger amount of
stress so it is necessary to reinforce this part by using high-strength materials. For this
reason in this paper the inner surface is considered to be made of two different metals.
Furthermore, for obviating the temperature resistance property, the outer surface of the
disk is made of two different ceramics. The volume fraction of the materials is varied
continuously as a function of both radial and transverse directions as indicated below:

=P (=2) 11 (57)
=P ()| [t
- 5] (55)']

ENEE
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Figure 2: Volume fraction of first metal.

where m1, my, ¢1 and ¢, refer to the first metal, second metal, first ceramic and second
ceramic respectively. a and b are the inner and outer radii of the disk which are selected
to be 0.1m and 0.5m respectively. h(r) is the variable thickness, , and 1, are the volume
fraction exponents along the r and z directions. By using a linear mixture rule the material
properties at each point can be obtained. For instance if ¥ defines a generic material
property, it can be determined by a linear combination of volume fractions and the same
properties of each constituent

YP=1P10:1+ Y202+ Y1 0m1 +Pr2Vmo2. (3.2)

Values of n, and n, change the distribution pattern, for example if n, =0 or n, =0 the
volume fraction reduces to a one-dimensional functionally graded distribution. The vol-
ume fraction distribution for the first metal by selecting n, =1.5 and n, =3 for constant
thickness is presented in Fig. 2.

4 Solution method

The governing equation of FG rotating thick disks has been derived in section 2 and ma-
terial properties have been defined in Section 3. Due to the complexity of the differential
problem at hand a numerical method to solve the given system of equations must be
used. As it was aforementioned, the 2-D generalized differential quadrature method is
used for solving the present problem. In this solution method the partial differential of a
function with respect to a coordinate direction is expressed as a linear weighted sum of
all functional values at all grid points in that direction [19].

For a smooth function f(r,z), 2-D GDQ discretized its nth and mth order derivatives
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with respect to r and z at the grid point (7;;,z;;) on the non-uniform area as:
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where N and M are the number of grid points in the r and z directions respectively. al(]? )

and b](lm ) are the weighting coefficients of order (n) and (m) along the r and z direction
respectively. These coefficients can be defined on the non-uniform area using the first
order derivatives as below:
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In the above equations af]-l) and bl-(]-l) are the first weighting coefficients which are given
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Where,
N
(rlj [T (ri—r4). (4.4a)
k=1k#i
M
) (zi) = I (zij—zi). (4.4b)
k=1k#j

For calculating the weighting coefficients, the coordinates of grid points must be known,
various grid points distributions are studied in the literature, in this study the roots of
Chebyshev polynomial of the first kind used for grid point generation in radial and trans-
verse directions as:

rij=a+0.5 [1 cos <Z\.I—11 >] (b—a), (4.5a)
z,-]-:—z ~|—05[1 COS(]{/[_11 )}h (4.5b)

In Eq. (4.5b), h; is the thickness of the disk in 7. Two dimensional generalized differential
quadrature method represented by the above formulations was applied to analyze the
thick FG non-constant thickness disk and showed high capacity in accurate, fast and
efficient computational operations.

5 Numerical application and discussion

Before providing the results of a thick disk the solution algorithm must be validated. For
this purpose, the present results for FG rotating disks are compared to a finite element
solution [33]. For the present comparison the inner radius 2 =0.2 and outer radius b=0.5
and a linear profile shape is considered. The material constituents are selected to be same
and for n, =2 and n, = 1.5 results are achieved and for instance the radial displacement
comparison is presented in Fig. 3. As it can be seen, it shows a good agreement between
the results.

In the following, a thick rotating disk made of 2-D FG material and a non-uniform
profile is considered. The disk has non-uniform boundary conditions; claimed at the
inner radius and free at other boundary surfaces. The rotational speed of the disk is
considered to be 500rad/s. The thickness of the disk is varied along the radial direction

in the form of Eq. (5.1)
h(r)=ho (1 q(Z_D ) (5.1)

where, h is considered to be 0.5(b—a), a and b as explained earlier are the inner and outer
radius respectively. As it can be seen for m =0 the constant thickness is concluded and
the combination of the values of g and m results in different thickness profile variations.
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Figure 3: Non-dimensional radial displacement in radial direction compared with [33].

In this paper constant, linear, concave and convex profile shapes are considered. For
different types of profile shapes the values of g and m are considered in Table 1.

Grid distribution as a function of the profiles indicated in Table 1 is depicted in Fig. 4.
The volume fraction distribution is followed from Eq. (3.1). First metal used as m; is Ti-
tanium, the second metal is considered to be Aluminum, the first ceramic which named
as c is Silicon Carbide and second ceramic is supposed to be Alumina. Material proper-
ties at each point are obtained by using the properties of these materials in Table 2 and a
suitable mixture rule as Eq. (3.2).

By using the above material properties in distinct profile shapes of thick disks the
results of disk analysis are provided some of which are presented in this paper.

Radial, tangential, axial and equivalent stress distribution along the radial direction
in constant profile shape for n, =2, n, =3 and at z=0, are presented in Fig. 5.

As can be seen the radial stress has a reduction trend along the radial direction, while

Table 1: Parameters of various profile shapes.

Constant Linear Concave Convex
m=0,9=0 | m=1,4=07 | m=0.7,q=07 | m=2,4q=0.7

Table 2: Constituent material properties.

Titanium | Aluminum | Silicon Carbide | Alumina

E(GPa) 100 70 450 390
G(GPa) 39 28 190 125
p(Mg/m3) 45 2.7 3.2 34

v 0.36 0.34 0.15 0.26
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Figure 5: Stress distribution via radial direction at z=0 in constant profile shape with n, =2, n, =3.

the tangential and axial stresses almost increase through the radial direction. The equiv-
alent stress reduced gradually along the radial direction and the maximum stresses oc-
curred at the inner radius therefore it is necessary to reinforce the disk against the stresses

at the inner radiuses.
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along the radial direction at z=0 with n,=1.5, n; =3 and for different profile shapes.

Non-dimensional radial and axial displacement variation along the radial direction
for n, =1.5, n, =3 and at the middle thickness of four different thickness profiles are
shown in Fig. 6.

The non-dimensional radial displacement for all profile shapes rises along the radial
direction and this rising for the constant profile shape is senior. Results show that the disk
with linear and concave profile shapes has a better response. In the non-dimensional
axial displacement as Fig. 6(b) shows in all profile shapes the rising trend is governed
but it is obvious that this rising in constant and linear shape is serious. Disk with the
concave profile shape has the lower axial displacement along the radial direction so it
can be totally said that the disk with a concave profile shape has a better response in case
of displacement distribution in the radial direction.

Fig. 7 shows the radial, tangential and axial strain distribution along the radial direc-
tion at z=0 for the concave type of thickness shape and n, =2, n, =3. The increasing-
decreasing type of distribution for radial, tangential and shear strains is dominant, almost
the highest value of strains occurred near the inner radius.

Fig. 8 illustrated the variation of radial, tangential, axial and shear strains along the
radial direction at middle thickness for four different thickness profiles, respectively. As
can be seen the constant profile shape has also the largest amount of strains too. So the
constant profile shape is not appropriate.

Fig. 9 shows the variation of radial, tangential, axial and shear stresses along the ra-
dial direction at z =0 for different profile shapes, respectively. Radial and axial stresses
decreased along the radius and almost tangential and shear stresses increased via the ra-
dial direction. This is evident that the constant profile shape has the largest value and the
concave or linear profile shape has the lowest amounts of stresses.

Radial, tangential, axial and equivalent stresses distribution for a disk with convex
profile shape and n, =2, n, =3 are presented in Fig. 10. For this profile shape the equiv-
alent stress changes gently along the radius while the radial and axial stresses have rela-
tively large changes along the radius.
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Fig. 11 shows the non-dimensional radial and axial displacement variation in con-
stant profile disk through the thickness of disk at four different radius distances with
consideration of the material distribution power of n, =2, n, =3.

Radial and axial displacement increases along the thickness and whatever the dis-
tance from the inner radius increased this rising is larger. It means that the maximum
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Figure 9: Stress distribution along the radial direction at z=0 in various profile shapes with n, =1.5, n;=3.
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Figure 10: Stress distribution along the radial direction at z=0 for convex profile shape and n, =2, n, =3.

value of displacement happened near the outer radiuses and upper surfaces. Because of
the power exponent of material properties along the thickness is non zero so the distri-
bution of non-dimensional displacements is not symmetric with respect to z=0.

Similar to the previous figure, the non-dimensional axial and radial displacement
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Figure 12: Non-dimensional axial and radial displacement distribution via axial direction at four different radius.

distribution in convex profile disk with n, =2, n, =3 along the thickness direction at four
different radius positions are also presented in Fig. 12.

This figure is also illustrated that displacements in the outer radius and upper thick-
ness have larger amounts.

Fig. 13 presents the radial, tangential and axial strain along the thickness direction
at r =0.33b for different types of thickness profiles. Results indicated that the distribu-
tion of strains along the thickness direction is depended on the profile shape of the disk
entirely. So that the constant profile shape has a critical condition in comparison to the
other profile shapes. Against the constant shape, the concave profile shape has better
strain behavior along the axial direction. Since the boundary conditions of the disk at the
upper and lower surface are free the shear strain at this location becomes zero.

For a better review and comparison, the 3-D distribution of radial strain, tangential
strain, axial strain and shear strain for convex, constant, linear and concave profiles re-
spectively with n, =2, n, =3 shown in Fig. 14.

Figures show that the strain distribution varied strongly along both radial and ax-
ial directions and plane stress assumption in thick disk situations leads to unacceptable
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Figure 13: Strain distribution via axial direction at r=0.33b in four different profile shapes with n,=1.5, n,=3.

results. As before, maximum variation pertaining to the inner radiuses and upper thick-
nesses. Therefore, the disk should be strengthened in the vicinity of its clamped position.

3-D distribution of radial, tangential, axial and shear stress for concave, convex, linear
and constant profiles with n, =2, n, =3, respectively shown in Fig. 15. Radial and axial
stresses vanish in the outer surface because of the free boundary condition at this surface.
Radial, tangential and axial stresses experienced their larger amounts near the inner ra-
dius and upper thicknesses so the material strength at these points must be adequate.

Non-dimensional radial and axial displacements variations at the middle thickness
and middle radius respectively, for the disk with linear thickness variation along the
radius directions and power low exponent as 1, =2, n, =3 are available in Fig. 16. Non-
dimensional radial and axial displacements have the increasing trend along both radial
and axial directions.

Non-dimensional stresses distributions along the radial and axial directions at vari-
ous profile shapes with power exponent as n, =1.5, n, =3 proposed in Fig. 17. Results
indicate that the biggest stresses occur at constant profile shape so the variable thickness
shape is an essential choice in the field of disk design. By using the variable thickness, the
stresses decrease and the disk’s capacity to experience a bigger rotational speed is con-
cluded. The effect of thickness shape on tangential stress and stress distribution along
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the axial direction is more appreciable.

Another influential factor in disk analysis is the material power exponents in radial
and axial directions. For a more detailed analysis and assessment of the effect of material
distribution power, four different combinations of power exponent is considered and the
stress and strain distribution in this situation are extracted. Fig. 18 presents the Strain
distribution in constant profile shapes with different combinations of material power ex-
ponents.

The results show that increasing the amount of radial distribution power (n,) will
increase the strain values and increasing the amount of power distribution along the
thickness (1) reduces strain values. Therefore it can be said that the best composition of
power exponent consists of the lower value of 1, and the larger value of n,. Fig. 19 illus-
trates the non-dimensional stress distribution along radial and axial directions for four
different combinations of power exponents. Plot (a) in Fig. 19 shows that the distribution
of radial stress along the radial direction does not change considerably with the power
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law exponents but the disk with n, =n, =0 (isotropic disk) has higher radial stress in
comparison with the functionally graded disk. Tangential stress is depended entirely on
the power exponents law and changes significantly with increasing n,.

Fig. 20 presents the non-dimensional radial and axial displacement along the thick-
ness at r=0.33b in a constant thickness profile shape. As can be seen with an increase of
n, and decrease of 1, the non-dimensional displacements rise.
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6 Conclusions

In this paper a thick FG rotating disk with two dimensional pattern of heterogeneity is
analyzed using two dimensional generalized differential quadrature method which is
applied in a non-uniform geometrical model of disks. Four different profile shapes of the
disk are considered all of them fixed at inner radius and have traction free condition in
the other surfaces boundaries. Furthermore four different combination types of power
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Figure 20: Non-dimensional radial and axial distribution along the thickness in constant profile shapes with
different combinations of power exponent.

exponents are used and the effects of particle distribution pattern on the response of the
disk are discussed. Results show that the disk with constant shape is not a suitable choice
for selecting a thick FG disk, it means in order to reach better conditions of stresses and
strains the non-uniform profile shape is an inevitable model. Among four different pro-
file types, the parabolic concave profile has a better response than all and can be efficient
for applied design. In about the power distribution of materials it can be said that the
isotropic disk and also the disk with the only radial distribution of particle contents have
a serious condition and it must to reinforced the disk along the axial direction it means
that consideration of material inhomogeneity in two directions leads to a more flexible
design and also exact analysis of thick FG rotating disks. Therefore the best composition
of power exponent consists of the lower value of n, and larger value of 1, herein using
the two dimensional functionally graded materials leads to an accurate design. Results
comparison with the other published literature show a good agreement, however the
time spent by different methods for solving the same problem is much higher.
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