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Abstract. In this article, the effects of temperature and size-dependent on the buckling
behavior of functionally graded (FG) cylindrical nanopanels resting on elastic foun-
dation using nonlocal strain gradient theory are investigated in detail analytical ap-
proach. According to a simple power-law distribution, the material properties of FG
cylindrical nanopanels are assumed to vary continuously through the thickness direc-
tion. The Pasternak model is used to describe the reaction of the elastic foundation on
the FG cylindrical nanopanels. The fundamental relations and stability equations are
derived by applying the nonlocal strain gradient theory and the classical shell theory
based on the adjacent equilibrium criterion. Using Galerkin’s method, the mechanical
buckling behavior of FG cylindrical nanopanels resting on an elastic foundation in the
thermal environment is solved. The reliability of the obtained results has been veri-
fied by comparison with the previous results in the literature. Based on the obtained
results, the influences of the material length scale parameter, the nonlocal parameter,
temperature increment, geometric parameters, material properties, and elastic founda-
tion on buckling behaviors of FG cylindrical nanopanels resting on an elastic founda-
tion in the thermal environment are analyzed and discussed.
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1 Introduction

Functionally graded materials (FGMs) are a new generation of engineering materials pro-
posed in 1984 by Japanese researchers. FGMs are usually composed of ceramic and metal
so that material properties vary smoothly and continuously through the thickness from
the surface to the other surface. The mechanical properties are graded in the thickness di-
rection according to volume fraction power-law distribution, exponential distribution, or
sigmoid distribution. The importance of FGMs was realized by popular applications in
many fields such as tanks and pressure vessels, missiles and spacecraft, submarines, nu-
clear reactors, jet nozzles, and aerospace engineering structures, more and more studies
focused on buckling, vibration, and dynamic responses of FGMs structures [1–4].

Nowadays, because of the brilliant properties such as mechanical properties, electri-
cal properties, thermal properties, and other known physical and chemical properties,
the nanoscale structures consist of functionally graded (FG) nanoscale structures are be-
coming to increase used in different fields of science and technology such as engineering,
medicine, aerospace, electronics, and modern industry. Mechanical behaviors, including
vibration, buckling, static deformation, and dynamic response, have a significant role
in the overall operation of many nanoelectromechanical systems. For nanoscale struc-
tures, the material properties can vary from one point to another. Studying the behavior
of nanoscale structures using classical theories is inaccurate because these theories ig-
nore the size dependence and inability to describe the effects of the nanostructures size.
Therefore, several size-dependent continuum theories have been proposed that could ob-
serve the size-dependent effect on the static and dynamic responses of nanoscale struc-
tures such as the nonlocal elasticity theory [5, 6], the surface elasticity [7–9], the couple
stress and modified couple stress theories [10–14]. Besides, the Doublet Mechanics the-
ory [15–17] and Energy equivalent methods [18–20] have been used to analyze stability,
dynamic, and vibration of carbon nanotubes. Recently, by incorporating the effects of
strain gradients and stress nonlocalities in one continuum-based theory, Lim et al. pro-
posed the nonlocal strain gradient theory [21]. This theory can be considered to be the
most generalized elasticity theory to date. This elasticity theory takes the advantages
of pure nonlocal and strain gradient models, leading to a higher-order size-dependent
model which can be used for a wide range of small size structure types.

Several researchers have investigated several works related to the mechanical be-
haviors of FG nanoscale structures using the above continuum-based models. Based
on Eringen’s nonlocal elasticity and Euler–Bernoulli beam theory, Ghadiriat et al. [22]
presented a free vibration analysis of size-dependent FG rotating nanobeams with all
surface effect considerations. The nonlinear free vibration analysis of nonlocal strain gra-
dient nanobeams has been presented by Şimşek [23]. In this paper, the nanobeam’s ma-
terial properties are assumed to vary continuously in the thickness direction according
to simple power-law. The basic equations and the motion equations are derivered using
the nonlocal strain gradient theory and Euler-Bernoulli beam theory in conjunction with
Hamilton’s principle and Galerkin’s approach. Mehralian and Beni [24] investigated the
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size-dependent free vibration of shear deformable FG nanotubes based on the nonlocal
strain gradient theory and Hamilton’s principle. Abdelrahman et al. [25] analyzed the
dynamic behavior of the perforated Reddy nanobeam under moving load using the non-
local strain gradient theory. The kinematic assumption of the third order shear deforma-
tion beam theory in conjunction with nonlocal strain gradient elastic theory are proposed
to derive the equation of motion of nanobeam. Based on the virtual work principle, the
governing equations of motion of perforated Reddy nanobeams are derived and these
equations are solved by Navier’s approach. The free vibration and dynamic response
of sigmoid/symmetric FG nanobeams under moving load were investigated by Esen et
al. [26]. In this study, the FG Timoshenko beam model was developed in the frame-
work of nonlocal strain gradient theory. The Hamilton principle is employed to drive the
dynamic equations of motion. An analytical solution methodology for free and forced vi-
bration problems was developed based on Navier’s approach. Chen et al. [27] presented
the nonlinear vibration, and post-buckling of multilayer FG graphene reinforced porous
nanocomposite beams based on the Halpin-Tsai micro-mechanics model. Attia [28] stud-
ied size-dependent bending, buckling, and free vibration responses of FG nanobeams
by incorporating Eringen’s nonlocal elasticity theory, modified couple stress theory, and
surface elasticity theory the classical Euler–Bernoulli beam model. Arefi et al. studied
the bending of FG nano-beam [29] and sandwich nanobeams [30] in thermal, mechani-
cal, electrical, and magnetic environments based on Eringen’s nonlocal elasticity theory.
Arefi and Zenkour [31] presented wave propagation analysis of an FG magneto-electro-
elastic nanobeam resting on the visco-Pasternak foundation and considering surface elas-
ticity effects. Post-buckling and thermal post-buckling analysis of imperfect nanobeams
considering surface effects were investigated by Barati and Zenkour [32, 33]. Ebrahimi
and Salari [34] investigated thermal effects on buckling and free vibration behaviors of
FG size-dependent nanobeams subjected to various thermal loading types by presenting
a Navier type solution. Based on Eringen’s nonlocal elasticity theory, modified couple
stress theory, and nonlocal strain gradient elasticity theory, Ebrahimi and Barati ana-
lyzed the vibration of FG nanobeams [35, 36] and buckling response of size-dependent
shear-deformable curved FG nanobeams [37].

The static and dynamic behaviors of the FG nanopanels are also interested in research.
Zenkour and Arefi [38] reported the transient thermo-electro-mechanical vibration and
bending analysis of an FG piezoelectric nanosheet resting on visco-Pasternak’s founda-
tion and subjected to mechanical, thermal, and electrical loadings using the nonlocal
elasticity theory as well as classical plate theory and Hamilton’s principle. Based on the
modified couple stress theory and Hamilton’s principle, the size-dependent vibration
behavior of FG rectangular Mindlin microplates, including geometrical nonlinearity, was
investigated by Ansari et al. [39]. Kolahchi et al. [40] studied nonlinear buckling of em-
bedded polymeric temperature-dependent single-walled carbon nanotubes-reinforced
microplates resting on an elastic matrix as an orthotropic temperature-dependent elas-
tomeric medium using Eringen’s nonlocal elasticity theory. Also, the size-dependent
thermal stability analysis of embedded FG annular nanopanels resting on an elastic foun-
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dation was presented by Ashoori et al. [41]. Daikh et al. [42] presented the bending
deflection and stress distribution of sandwich functionally graded nanoplates rested on
variable Winkler elastic foundation based on new quasi 3D hyperbolic shear theory in
conjoint with nonlocal strain gradient theory. New 3D hyperbolic shear theory is ex-
ploited to satisfy parabolic variation of shear through thickness direction and zero shear
at the bottom and top surfaces. The comprehensive model and governing equilibrium
equations of SFG nanoplates is derived in detail with principle of virtual work and solved
analytically by Galerkin method. Ebrahimi and Heidari [43] investigated surface effects
on nonlinear vibration of embedded FG nanopanels resting on a Pasternak linear elas-
tic foundation based on the third-order shear deformation plate theory and von Karman
nonlinearity in conjunction with Gurtin–Murdoch surface continuum theory. Using the
nonlocal strain gradient theory, the vibration of FG piezoelectric nanopanels [44] and ef-
fects of hygro-thermal, electromagnetic on buckling, vibration and wave propagation in
nanopanels were also investigated in [45, 46].

Besides the problems related to FG nanobeams and nanopanels, FG nanoshells’ me-
chanical responses have been considered by using advanced continuum elasticity theo-
ries. Barati [47] studied the free vibrational behavior of porous FG nanoshells via the
first-order shear deformation theory and the nonlocal strain gradient theory. Arefi et
al. [48] presented the bending response of FG composite doubly curved nanoshells with
thickness stretching resting on an elastic foundation via the higher-order sinusoidal shear
theory. Sahmani and his co-workers presented small scale effects on buckling and post-
buckling behaviors of axially loaded hybrid FG and FG nanoshells using the nonlocal
elasticity theory [49] and the nonlocal strain gradient elasticity theory [50, 51]. Lu et
al. [52] developed a novel size-dependent FG cylindrical shell model based on the non-
local strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity
theory. Based on the nonlocal elasticity theory, Arefi and Zenkour [53] investigated
two-dimensional thermoelastic analysis of an FG nanoshell in frameworks the first-order
shear deformation theory. Liu and Wang [54] studied free vibration of FG piezoelectric
material cylindrical nanoshells with porosites under thermo-electro-mechanical loading
in considering small scale effect according to the Love’s shell theory and the nonlocal
elasticity theory. Also, Zhang and Zhang [55] investigated free vibration and buckling
responses of FG nanoporous metal foam nanoshells by using the first-order shear defor-
mation shell theory and Mindlin’s most general strain gradient theory.

The overviews above show few studies related to the bending, buckling, and vibra-
tion behaviors of FG cylindrical nanoshell structures based on the nonlocal strain gradi-
ent theory. It is noted that previous papers have not considered the effects of the thermal
environment, elastic foundation, and size-dependent effect on the static and dynamic be-
haviors of FG cylindrical nanopanels. So, this study is carried out to fill this gap in anal-
ysis of sandwich panel. The novelty of this paper considers the effects of size-dependent,
thermal increment, and elastic foundation on buckling characteristics of FG cylindrical
nanopanles based on the nonlocal strain gradient theory. It is assumed that the FG cylin-
drical nanopanel is subjected axial compression in thermal environment. The properties
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of FG material nanopanel is assumed to vary along the thickness direction power-law
expression. The fundamental relations and stability equations are derived by applying
the nonlocal strain gradient theory and the classical shell theory based on the adjacent
equilibrium criterion. Using Galerkin’s method, the mechanical buckling behavior of FG
cylindrical nanopanels resting on an elastic foundation in the thermal environment is
solved. Moreover, the numerical results indicate that the nonlocal parameter and strain
gradient parameter, the geometric parameters, material properties, elastic foundation,
and thermal environment have essential roles in the buckling behavior of FG nano cylin-
drical panels.

2 Fundamental relations

Here, a cylindrical nanopanel is considered with uniform thickness h, mean radius R,
span angle θ0 and length of straight edge L, curved edge b=Rθ0 . The cylindrical coordi-
nate system (x, y=Rθ, z) is chosen such that the x and y axes are in the longitudinal and
circumferential directions, respectively, and the z-axial is perpendicular to the middle
surface and in the inward thickness direction (−h/2≤ z≤h/2) as illustrated in Fig. 1.

The cylindrical nanopanel is made of functionally graded materials in which the vol-
ume fractions of ceramic and metal are assumed to vary along the thickness direction of
the plate as [51, 58]

Vc(z)=
(

2z+h
2h

)k

, Vm(z)=1−Vc(z), (2.1)

where, subscripts m and c denote for the metal and ceramic constituents, respectively; k
is volume fraction index (0≤ k<∞).

Figure 1: Geometry of cylindrical nanopanel resting on elastic foundation.
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From Eq. (2.1), the elasticity modulus (E) and thermal expansion coefficient (α) of the
FG nanopanel is given by [58]:

E(z)=Em(z)+[Ec(z)−Em(z)]
(

2z+h
2h

)k

, (2.2a)

α(z)=αm(z)+[αc(z)−αm(z)]
(

2z+h
2h

)k

, (2.2b)

where Ec and Em are elasticity modulus of ceramic and metal, and αc, αm are the thermal
expansion coefficient of ceramic and metal, respectively.

The Pasternak model is used to describe the reaction of the elastic foundation on
the FG cylindrical nanopanles. The plate-foundation interaction is represented by the
Pasternak model as [58]:

q f (x,y)=K1w−K2

(
∂2w
∂x2 +

∂2w
∂y2

)
, (2.3)

in which, q f is the foundation interface pressure, w is the deflection of the shell, K1 and
K2 are the Winkler foundation modulus and the shear layer foundation stiffness of the
Pasternak model, respectively.

The nonlocal strain gradient theory considers both the nonlocal elastic stress field and
the strain gradient stress field by introducing two scale parameters. According to this
theory, the constitutive relationship corresponding to the total nonlocal strain gradient
stress tensor considering thermal effects is given by the following simplicity form [41,45,
50] [

1−µ2∇2]σij =
(
1−l2∇2)(Cijklεkl−αij∆T

)
, (2.4)

where µ=ea represents the nonlocal parameter, αij are the thermal expansion coefficients;
∆T is the temperature change.

In this article, the classical shell model has been considered. The strain–displacement
relationship at the middle surface and the curvatures, twist of the FG cylindrical nanopan-
els with the von-Kármán geometrical nonlinearity are given by [47, 57, 58]:

ε0
x =u,x+

1
2

w2
,x, ε0

y =v,y−
w
R
+

1
2

w2
,y, (2.5a)

γ0
xy =u,y+v,x+w,xw,y, (2.5b)

χx =−w,xx, χy =−w,yy, χxy =−w,xy, (2.5c)

where y=Rθ, subscript (,) indicates partial derivative; u, v, w are the displacement com-
ponents in the x, y, z coordinate directions, respectively; ε0

x and ε0
y are the normal strains,

γ0
xy is the shear strain, and χx, χy and χxy are the change of curvatures and twist, respec-

tively.
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The strain components at a distance z from the middle surface of the FG cylindrical
nanopanels are given by:

εx = ε0
x+zχx, εy = ε0

y+zχy, γxy =γ0
xy+2zχxy. (2.6)

The stress-strain relations, including temperature effects and the force and the moment
resultants of the FG cylindrical nanopanels can be determined by [47, 54, 58]

σx =
E(z)
1−ν2

(
εx+νεy

)
− E(z)α(z)∆T(z)

1−ν
, σy =

E(z)
1−ν2

(
εy+νεx

)
− E(z)α(z)∆T(z)

1−ν
, (2.7a)

σxy =
E(z)

2(1+ν)
γxy,

(
Nx,Ny,Nxy

)
=
∫ h

2

− h
2

(
σx,σy,σxy

)
dz, (2.7b)

(
Mx,My,Mxy

)
=
∫ h

2

− h
2

(
σx,σy,σxy

)
zdz, (2.7c)

where ∆T denotes the change of environment temperature from a stress-free initial state.
Setting Eqs. (2.5)-(2.7a) only with the linear form of the strains and curvatures, and

twist in terms of the displacement components into Eq. (2.7b), the constitutive relations
for the FG cylindrical nanopanels based on the nonlocal strain gradient theory can be
expressed as:

(
1−µ2∇2

)
Nx =

(
1−l2∇2

)[
A11

∂u
∂x

+A12

(
∂v
∂y
−w

R

)
−B11

∂2w
∂x2 −B12

∂2w
∂y2 +T1

]
, (2.8a)(

1−µ2∇2
)

Ny =
(

1−l2∇2
)[

A21
∂u
∂x

+A22

(
∂v
∂y
−w

R

)
−B21

∂2w
∂x2 −B22

∂2w
∂y2 +T1

]
, (2.8b)(

1−µ2∇2
)

Nxy =
(

1−l2∇2
)[

A33

(
∂u
∂y

+
∂v
∂x

)
−B33

∂2w
∂x∂y

]
, (2.8c)(

1−µ2∇2
)

Mx =
(

1−l2∇2
)[

B11
∂u
∂x

+B12

(
∂v
∂y
−w

R

)
−D11

∂2w
∂x2 −D12

∂2w
∂y2 +T2

]
, (2.8d)(

1−µ2∇2
)

My =
(

1−l2∇2
)[

B21
∂u
∂x

+B22

(
∂v
∂y
−w

R

)
−D21

∂2w
∂x2 −D22

∂2w
∂y2 +T2

](
1−µ2∇2

)
Mxy

=
(

1−l2∇2
)[

B66

(
∂u
∂y

+
∂v
∂x

)
−D66

∂2w
∂x∂y

]
. (2.8e)

In above relations, the details of coefficients

E1=
∫ h

2

− h
2

E(z)dz=
(

Em+
Ec−Em

k+1

)
h, E2=

∫ h
2

− h
2

zE(z)dz=
(Ec−Em)kh2

2(k+1)(k+2)
, (2.9a)

E3=
∫ h

2

− h
2

z2E(z)dz=
{

Em

12
+(Ec−Em)

[
1

k+3
− 1

k+2
+

1
4k+4

]}
h3, (2.9b)
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and

A11=A22=
E1

1−ν2 , A12=A21=
νE1

1−ν2 , A33=
E1

2(1+ν)
, (2.10a)

B11=B22=
E2

1−ν2 , B12=B21=
νE2

1−ν2 , B33=
E2

1+ν
, B66=

E2

2(1+ν)
, (2.10b)

D11=D22=
E3

1−ν2 , D12=D21=
νE3

1−ν2 , D66=
E3

1+ν
. (2.10c)

The general equilibrium equations of the FG cylindrical nanopanel resting on an elastic
foundation can be obtained as [47, 49, 58]:

Nx,x+Nxy,y =0, (2.11a)
Nxy,x+Ny,y =0, (2.11b)

Mx ,xx+2Mxy,xy+My ,yy+
1
R

Ny+Nxw,xx+2Nxyw,xy+Nyw,yy−q f =0. (2.11c)

3 Stability equations and Galerkin’s method

In this section, the adjacent equilibrium criterion has been used to obtain the linearized
stability equations of the FG cylindrical nanopanel resting on an elastic foundation. Ac-
cording to this criterion, the components of the displacement field at the new adjacent
equilibrium configuration may be written as

u=u0+u1, v=v0+v1, w=w0+w1, (3.1)

where (u0,v0,w0) are components describer equilibrium position in the pre-buckling state
and (u1,v1,w1) are displacement components of a neighboring state of the stable equilib-
rium with respect to the equilibrium position.

Substituting the displacement components (3.1) into relations (2.7b), yields

Nx =N0
x+N1

x , Nθ =N0
θ +N1

θ , Nxθ =N0
xθ+N1

xθ , (3.2a)

Mx =M0
x+M1

x, Mθ =M0
θ+M1

θ , Mxθ =M0
xθ+M1

xθ . (3.2b)

Now, substituting Eqs. (3.1) and (3.2) into Eqs. (2.11a)-(2.11c) and note that the terms in
the resulting equations with subscript 0 satisfy the equilibrium equations and therefore
drop out of the equations, the stability equations for the FG cylindrical nanopanel resting
on an elastic foundation can be represented as [57, 58]

N1
x,x+N1

xy,y =0, (3.3a)

N1
xy,x+N1

y,y =0, (3.3b)

M1
x ,xx+2M1

xy ,xy
+M1

y ,yy
+

1
R

N1
y +N0

x w1
,xx+2N0

xyw1
,xy+N0

y w1
,yy−q f =0. (3.3c)
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In force resultants, superscript 1 refers to the state of stability, and superscript 0 refers to
the state of equilibrium. The terms N0

x , N0
y and N0

xy are the pre-buckling force resultants
obtained from the linear equilibrium Eqs. (2.11a)-(2.11c).

Then, the system of stability equations of FG cylindrical nanopanel resting on an elas-
tic foundation in the form of displacement components u1, v1 and w1 according to the
nonlocal strain gradient theory can be delivered by inserting the relation Eq. (2.8) into
Eqs. (3.3a)-(3.3c) as follows:

(
1−l2∇2)[A11

∂2u1

∂x2 +A12

(
∂2v1

∂x∂y
− 1

R
∂w1

∂x

)
+A33

(
∂2u1

∂y2 +
∂2v1

∂x∂y

)
−B11

∂3w1

∂x3 −B12
∂3w1

∂x∂y2−B33
∂3w1

∂x∂y2

]
=0, (3.4a)

(
1−l2∇2)[A21

∂2u1

∂x∂y
+A22

(
∂2v1

∂y2 −
1
R

∂w1

∂y

)
+A33

(
∂2u1

∂x∂y
+

∂2v1

∂x2

)
−B21

∂3w1

∂x2∂y
−B22

∂3w1

∂y3 −B33
∂3w1

∂x2∂y

]
=0, (3.4b)

(
1−l2∇2)[A21

R
∂u1

∂x
+

A22

R

(
∂v1

∂y
−w1

R

)
+B11

∂3u1

∂x3 +B12

(
∂3v1

∂x2∂y
− 1

R
∂2w1

∂x2

)
+B21

(
∂3u1

∂x∂y2−
1
R

∂2w1

∂x2

)
+B22

(
∂3v1

∂y3 −
2
R

∂2w1

∂y2

)
+2B66

(
∂3u1

∂x∂y2 +
∂3v1

∂x2∂y

)
−D11

∂4w1

∂x4 −D12
∂4w1

∂x2∂y2−D21
∂4w1

∂x2∂y2−D22
∂4w1

∂y4 −2D66
∂4w1

∂x2∂y2

]
+
(
1−µ2∇2)(N0

x
∂2w1

∂x2 +2N0
xy

∂2w1

∂x∂y
+N0

y
∂2w1

∂y2

)
−
(
1−µ2∇2)[K1w1−K2

(
∂2w1

∂x2 +
∂2w1

∂y2

)]
=0. (3.4c)

The Eqs. (3.4a)-(3.4c) are rewritten in a following form:

A11

[
∂2u1

∂x2 −l2
(

∂4u1

∂x4 +
∂4u1

∂y2∂x2

)]
+A12

[
∂2v1

∂y∂x
−l2

(
∂4v1

∂y∂x3 +
∂4v1

∂y3∂x
− 1

R
∂3w1

∂y2∂x
− 1

R
∂3w1

∂x3

)
− 1

R
∂w1

∂x

]
+A33

[
∂2u1

∂y2 −l2
(

∂4u1

∂y2∂x2 +
2 ∂4u1

∂y4

)
−l2

(
∂4v1

∂y∂x3 +
∂4v1

∂y3∂x

)
+

∂2v1

∂y∂x

]
+B11

[
l2
(

∂5w1

∂y2∂x3 +
∂5w1

∂x5

)
− ∂3w1

∂x3

]
+B12

[
l2
(

∂5w1

∂y4∂x
+

∂5w1

∂y2∂x3

)
− ∂3w1

∂y2∂x

]
+B33

[
l2
(

∂5w1

∂y4∂x
+

∂5w1

∂y2∂x3

)
− ∂3w1

∂y2∂x

]
=0, (3.5a)

A21

[
∂2u1

∂y∂x
−l2

(
∂4u1

∂y∂x3 +
∂4u1

∂y3∂x

)]
+A22

{
1
R

[
l2
(

∂3w1

∂y∂x2 +
∂3w1

∂y3

)
− ∂w1

∂y

]
+

∂2v1

∂y2
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−l2
(

∂4v1

∂y4 +
∂4v1

∂y2∂x2

)}
+A33

[
∂2u1

∂y∂x
−l2

(
∂4u1

∂y3∂x
+

∂4u1

∂y∂x3

)
+

∂2v1

∂x2 −l2
(

∂4v1

∂x4 +
∂4v1

∂y2∂x2

)]
+B21

[
l2
(

∂5w1

∂y3∂x2 +
∂5w1

∂y∂x4

)
− ∂3w1

∂y∂x2

]
+B22

[
l2
(

∂5w1

∂y3∂x2 +
∂5w1

∂y5

)
− ∂3w1

∂y3

]
+B33

[
l2
(

∂5w1

∂y3∂x2 +
∂5w1

∂y∂x4

)
− ∂3w1

∂y∂x2

]
=0, (3.5b)

A21

R

[
∂u1

∂x
−l2

(
∂3u1

∂x3 +
∂3u1

∂y2∂x

)]
+

A22

R

{
1
R

[
l2
(

∂2w1

∂x2 +
∂2w1

∂y2

)
−w1

]
+

∂v1

∂y

−l2
(

∂3v1

∂y3 +
∂3v1

∂y∂x2

)}
+B11

[
∂3u1

∂x3 −l2
(

∂5u1

∂x5 +
∂5u1

∂y2∂x3

)]
+B12

{[
∂3v1

∂y∂x2−l2
(

∂5v1

∂y3∂x2 +
∂5v1

∂y∂x4

)]
+

1
R

[
l2
(

∂4w1

∂y2∂x2 +
∂4w1

∂x4

)
− ∂2w1

∂x2

]}
+B21

{
∂3u1

∂y2∂x
−l2

(
∂5u1

∂y2∂x3 +
∂5u1

∂y4∂x

)
+

1
R

[
l2
(

∂4w1

∂y2∂x2 +
∂4w1

∂x4

)
− ∂2w1

∂x2

]}
+D11

[
l2
(

∂6w1

∂x6 +
∂6w1

∂y2∂x4

)
− ∂4w1

∂x4

]
+D12

[
l2
(

∂6w1

∂y4∂x2 +
∂6w1

∂y2∂x4

)
− ∂4w1

∂y2∂x2

]
+D21

[
l2
(

∂6w1

∂y4∂x2 +
∂6w1

∂y2∂x4

)
− ∂4w1

∂y2∂x2

]
+B22

{
2
R

[
l2
(

∂4w1

∂y2∂x2 +
∂4w1

∂y4

)
− ∂2w1

∂y2

]
−l2

(
∂5v1

∂y3∂x2 +
∂5v1

∂y5

)
+

∂3v1

∂y3

}
+2B66

[
∂3u1

∂y2∂x
+

∂3v1

∂y∂x2−l2
(

∂5u1

∂y2∂x3 +
∂5v1

∂y∂x4 +
∂5v1

∂y3∂x2 +
∂5u1

∂y4∂x

)]
+D22

[
l2
(

∂6w1

∂y6 +
∂6w1

∂y4∂x2

)
− ∂4w1

∂y4

]
+2D66

[
l2
(

∂6w1

∂y2∂x4 +
∂6w1

∂y4∂x2

)
− ∂4w1

∂y2∂x2

]
+

[
1−µ2

(
∂2w1

∂x2 +
∂2w1

∂y2

)](
N0

x
∂2w1

∂x2 +2N0
xy

∂2w1

∂x∂y
+N0

y
∂2w1

∂y2

)
−
[

1−µ2
(

∂2w1

∂x2 +
∂2w1

∂y2

)][
K1w1−K2

(
∂2w1

∂x2 +
∂2w1

∂y2

)]
=0. (3.5c)

In this research, an analytical approach is used to study the buckling behavior of the
FG cylindrical nanopanel resting on an elastic foundation under an axial compression
load in the thermal environment. The FG cylindrical nanopanel is assumed to be simply
supported on all edges and subjected to an axial compressive load, uniformly distributed
along the curved edges of the nanopanel. Under the assumed loading, the pre-buckling
force resultants are obtained as [57, 58]

N0
x =−

P
b
−T1, N0

y =0, N0
xy =0. (3.6)

The displacement and force boundary conditions for a simply supported FG cylindrical
nanopanel are defined as [57, 58]

w1=0, M1
x =0, N1

x =N0
x at x=0, x=L, (3.7a)

w1=0, M1
y =0, N1

y =N0
y at y=0, y=b. (3.7b)
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The approximate solutions satisfying the boundary conditions (3.7) may be found in the
forms [57, 58]

u1=Ucos
mπx

L
sin

nπy
Rθ0

, v1=Vsin
mπx

L
cos

nπy
Rθ0

, w1=Wsin
mπx

L
sin

nπy
Rθ0

, (3.8)

where m and n are the number of half-waves in the generatrix direction, and the circum-
ferential direction, respectively; and U, V, W are the amplitudes.

Substituting Eq. (3.8) into Eqs. (3.5a)-(3.5c), then applying Galerkin’s method for the
resulting equations. Finally, the resulting systems of equations are given as

X11U+X12V+X13W=0, (3.9a)
X21U+X22V+X23W=0, (3.9b)

X31U+X32V+(X33+X34N0
x+X35N0

y +X36K1+X37K2)W=0, (3.9c)

where the details of coefficients Xij (i= 1,3; j= 1,6) and ηk (k= 1,3) are defined in Ap-
pendix.

To derive the axial buckling force for the FG cylindrical nanopanel, the coefficient
matrix of algebraic Eqs. (3.9a)-(3.9c) must be set equal to zero:∣∣∣∣∣∣

X11 X12 X13
X21 X22 X23
X31 X32 X33+X34N0

x+X35K1+X36K2

∣∣∣∣∣∣=0. (3.10)

Developing this determinant and solving the resulting equation, the explicit expression
to analyze the buckling of the FG cylindrical nanopanel subjected to an axial compressive
load is delivered

X34N0
x =

X31(X12X23−X22X13)−X32(X11X23−X21X13)

(X21X12−X11X22)
−X33−X35K1−X36K2. (3.11)

By noting expression of N0
x in Eq. (3.6), the critical axial buckling load (Ncr) is obtained

by minimizing Eq. (3.10) with respect to m and n, the number of longitudinal and circum-
ferential buckling waves.

4 Numerical results and discussion

4.1 Comparison studies

To verify the present work, two following comparisons are carried out.
First, compare the results obtained by the present study with the results achieved by

Zhao and Liew [56] and Timosenko and Gere [59] for simply-supported isotropic cylin-
drical panel subjected to an axial compressive load is shown in Table 1. The panel dimen-
sions are L= 10in, span angle θ0 = 0.2rad, radius R= 50in, and thickness h= 0.1in. The
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Table 1: Convergence of a simply-supported isotropic cylindrical panel under uniform compression (h= 0.1in,
L=10in, θ0 =0.2rad, R=50in, E=3.0×106 psi, ν=0.3.).

Zhao and Liew [56]
Timosenko and Gere [59] presentMode

9×9 11×11 13×13 15×15
Ncr =

Ncr R
Eh2 0.6194 0.5963 0.5961 0.596 0.6052 0.575

Table 2: Convergence of a simply supported Al/ZrO2 panel under uniform compression (h=0.001m, L=0.1m,
R=0.5m, θ=0.2rad), error=(present-[56])*100/[56]. * Buckling mode (m,n).

Ncr
k=0 k=0.5 k=1 k=2 k=5 k=10 k=20

[56] 1.2768 1.039 0.9313 0.8366 0.7464 0.6933 0.6525
(mode) 1 1 1 1 1 1 1
Present 1.2404 1.0507 0.9584 0.8653 0.7571 0.6908 0.6424
(m,n) (2,1)* (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)

Error (%) 2.85 -1.13 -2.91 -3.43 -1.43 0.36 1.55

material properties are Young’s modulus E= 3.0×106psi and Poisson ratio v= 0.3. The
critical buckling load for the isotropic cylindrical panel is defined as follows [56]:

Ncr =
NcrR
Eh2 .

Second, the present study results and the ones obtained by Zhao and Liew [56] for the
simply-supported FG cylindrical panel and the FG cylindrical panel subjected to an axial
compressive load are compared in Table 2. The FG cylindrical panel is assumed to be
made up of Aluminum (Al) and Zirconia (ZrO2). The Young’s modulus of aluminum
and Zirconia are Em =70GPa and Ec =151GPa, respectively. The geometric properties of
the panels are considered as: length L= 0.1m, span angle θ0 = 0.2rad, radius R= 0.5m,
and thickness h= 0.001m. The Poisson ratio is chosen as ν= 10/3. The critical buckling
load for the FG cylindrical panel is defined as follows [56]:

Ncr =
NcrR
Emh2 .

Tables 1 and 2 indicated an excellent agreement between the obtained results of the
present study and the results achieved by Zhao and Liew [56] and Timosenko and
Gere [59].

4.2 Buckling analysis of FG cylindrical nanopanels

In this sub-section, the buckling response of the FG cylindrical nanopanel resting on an
elastic foundation in a thermal environment based on the nonlocal strain gradient theory
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Figure 2: Effect of the volume fraction index (k) and the nonlocal parameter (µ) on the critical axial buckling
load Ncr.

simple considering supported boundary conditions is explored. The material is Alumina-
Aluminum FGM (Al2O3-Al), which has the following properties: Ec = 380GPa, αc = 7×
10−6(◦C−1), Em=70GPa, αm=23×10−6(◦C−1), and the Poisson’s ratios νm=νc=0.3 [47].
The nonlocal parameter (µ) and material length scale parameter (l) vary from 0(nm) to
4(nm) [46, 47, 49].

Effects of the nonlocal parameter (µ), material length scale parameter (l), and the volume
fraction index (k) on the critical buckling loads.

In Tables 3-5 and Figs. 2-4, the variations of critical buckling loads of the FG cylin-
drical nanopanel to the nonlocal parameter (µ) and the material length scale parameter
(l) are illustrated for different values of the volume fraction index (k) and fixed values
of h=5nm, R=50h, L=2R, θ0 =

π
3 , ∆T=300, K1 =1.5×1016, K2 =1.5 [48]. For example,

in Table 3 with the value of volume fraction index k= 2 (and l = 0), the critical buckling
load decreases about 6.71% when the nonlocal parameter (µ) increases from 0 to 4; and
in Table 4, with the value of volume fraction index k=1 (and µ=0), the critical buckling
load increases about 12.41% when the length scale parameter (l) increases from 0 to 4.

From these illustrations, it can be concluded that the critical buckling loads decrease
(constant material length scale parameter) with the increasing of the nonlocal param-
eter (µ) due to stiffness-softening mechanism presented by nonlocal effects. However,
stiffness-hardening mechanism due to strain gradients results in smaller critical buckling
loads. So, the affections of nonlocality and strain gradient size-dependency on transient
vibrations of nanopanel are opposite to each other. The above discussion reveals that
both nonlocal and strain gradient parameters should be considered and accounted for
modeling of nanostructures. Besides, it can be concluded from these illustrations, the
critical buckling load does not change when µ= l, which means that the obtained results
of the nonlocal strain gradient theory are identical with the classical results if the material
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Figure 3: Effect of the volume fraction index (k) and the material length scale parameter (l) on the critical
axial buckling load Ncr.

Figure 4: Effect of the nonlocal parameter µ and the material length scale parameter l on the critical buckling
loads.

length scale parameter is equal to the nonlocal parameter (µ= l). These illustrations also
indicate that at a fixed nonlocal parameter (µ) and/ or the material length scale parame-
ter (l), an increment in the volume fraction index (k) leads to a decreasing of the buckling
load. This is due to the reason that by increasing the value of the volume fraction index
(k), the percentage of metal phase will rise, thus makes the FG cylindrical nanopanel less
rigid.

Moreover, it can be seen from Table 5 and Fig. 4 that the results at µ/l = 0 and l = 0
illustrate those of the nonlocal elasticity theory. When µ/l=1, the nonlocal strain gradi-
ent theory results are identical with the classical results. It is of interest that when µ> l,
at a certain scale ratio (µ/l), the critical buckling loads decrease as the material length
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Table 3: Effect of the volume fraction index (k) and the nonlocal parameter (µ) on the critical axial buckling

load Ncr (h=5nm, R=50h, L=2R, θ0 =
π
3 , ∆T=300, K1 =1.5×1016, K2 =1.5). * Buckling mode (m,n).

Ncr k
µ (nm) 0 0.5 1 2 5 10

0 24.0155 15.8427 12.7028 10.5222 9.3096 8.705
(9,1)* (9,1) (10,1) (10,1) (10,1) (10,1)

1 23.9374 15.7884 12.6469 10.4782 9.2746 8.6746
(9,1) (9,1) (10,1) (10,1) (10,1) (10,1)

2 23.7061 15.5933 12.4822 10.3485 9.1713 8.5848
(9,1) (10,1) (10,1) (10,1) (10,1) (10,1)

3 23.3306 15.2587 12.2163 10.1391 9.0046 8.4383
(9,1) (10,1) (10,1) (10,1) (10,1) (11,1)

4 22.8249 14.8117 11.8612 9.8166 8.7269 8.187
(9,1) (10,1) (10,1) (10,1) (11,1) (11,1)

Table 4: Effect of the volume fraction index (k) and the material length scale parameter (l) on the critical axial

buckling load Ncr (h= 5nm, R= 50h, L= 2R, θ0 =
π
3 , ∆T= 300, K1 = 1.5×1016, K2 = 1.5). * Buckling mode

(m,n).

Ncr k
l (nm) 0 0.5 1 2 5 10

0 24.0155 15.8427 12.7028 10.5222 9.3096 8.705
(9,1) (9,1) (10,1) (10,1) (10,1) (10,1)

1 24.0939 15.8972 12.7588 10.5663 9.3447 8.7356
(9,1) (9,1) (10,1) (10,1) (10,1) (10,1)

2 24.329 16.0607 12.9269 10.6987 9.4501 8.8272
(9,1) (9,1) (10,1) (10,1) (10,1) (10,1)

3 25.2697 16.3331 13.2071 10.9193 9.6258 8.9799
(9,1) (9,1) (10,1) (10,1) (10,1) (10,1)

4 25.2697 16.7146 14.2786 11.2283 9.8717 9.1938
(9,1) (9,1) (10,1) (10,1) (10,1) (10,1)

scale parameter l increases. However, when µ< l, the critical buckling loads increase at
a certain scale ratio (µ/l) as the material length scale parameter l increases. These phe-
nomena show that the FG cylindrical nanopanel exerts a stiffness-softening effect when
µ> l and exerts a stiffness-hardening effect when µ< l.

Effect of R/h and L/R ratios on the critical buckling loads.
Figs. 5-8 illustrate the effects of R/h and L/R ratios on the critical buckling loads Ncr

of the FG cylindrical nanopanel resting on elastic foundation in a thermal environment
when R is constant. It is indicated that the critical buckling loads Ncr decrease strongly
when the R/h ratio increases. This is obvious because of increasing ratio R/h, h will be
reduced, and thus the FG cylindrical nanopanel becomes softer. In addition, it is easily
seen that the L/R ratio has no apparent effect on the critical axial buckling load Ncr when
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Table 5: Effect of the volume fraction index (k) and the material length scale parameter (l) on the critical axial

buckling load Ncr (h= 5nm, R= 50h, L= 2R, θ0 =
π
3 , ∆T= 300, K1 = 1.5×1016, K2 = 1.5). * Buckling mode

(m,n).

Ncr l (nm)
µ (nm) 0 1 2 3 4

0 12.7028 12.7588 12.9269 13.2071 14.2786
(10,1)* (10,1) (10,1) (10,1) (10,1)

1 12.6469 12.7028 12.8702 13.1492 13.5399
(10,1) (10,1) (10,1) (10,1) (10,1)

2 12.4822 12.5373 12.7028 12.9784 13.3644
(10,1) (10,1) (10,1) (10,1) (10,1)

3 12.2163 12.2704 12.4325 12.7028 13.0811
(10,1) (10,1) (10,1) (10,1) (10,1)

4 11.8612 11.9138 12.0716 12.3346 12.7028
(10,1) (10,1) (10,1) (10,1) (10,1)

the L/R ratio increases. From Figs. 7 and 8 with the ratio L/R is small (L/R < 2), the
critical buckling loads Ncr of the FG cylindrical nanopanel varies quite complicatedly to
the ratio L/R; on the other hand, with larger values of the ratio L/R, the ratio L/R has a
little effect on the critical buckling loads Ncr of the FG cylindrical nanopanel. Generally,
the critical axial load Ncr decreases as an increase in the L/R ratio.

Effect of span angle θ0 on the critical buckling loads.
Figs. 9 and 10, respectively, show the effect of span angle θ0 on the critical axial buck-

ling loads Ncr of the FG cylindrical nanopanel resting on elastic foundation in the thermal
environment with different values of the nonlocal parameter (µ) and material length scale
parameter (l). It can be seen that, for small values of the span angle (θ0≤1rad≈60◦), the

Figure 5: Effect of R/h on the critical axial buckling load Ncr.
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Figure 6: Effect of R/h on the critical bucklingload Ncr.

Figure 7: Effect of L/R ratio on the critical buckling load Ncr for some values of the nonlocal parameter µ.

critical axial buckling load Ncr decreases rapidly when the span angle θ0 increases; how-
ever, for higher values of the span angle, the critical axial load Ncr does not change much
when the span angle changes.

Effect of the thermal environment on the critical axial buckling load Ncr.
Tables 6 and 7 examine the effect of the thermal environment on the critical axial

buckling load Ncr of the FG cylindrical nanopanel resting on an elastic foundation with
respect to the nonlocal parameter (µ) and the material length scale parameter (l). It can be
seen that an increase in the temperature level of the FG cylindrical nanopanel leads to a
significant decrease in the critical axial buckling load of the nanopanel. For example, with
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Figure 8: Effect of L/R ratio on the critical buckling load Ncr for some values of the material length scale
parameter l.

Figure 9: Effect of span angle θ0 on the critical axial buckling load Ncr for some values of the nonlocal parameter
µ.

∆T = 500K is presented in Table 6, as the nonlocal parameter µ=(0,1,2,3,4), the critical
axial buckling loads of FG cylindrical nanopanel resting on an elastic foundation decrease
from 55.53% to 58.09%; and with ∆T=500K is presented in Table 7, as the material length
scale parameter l=(0,1,2,3,4), the critical axial buckling loads FG cylindrical nanopanel
decrease from 55.53% to 53.03%. This is expected due to the reduction in material stiffness
as the temperature elevates.

Effect of elastic foundation on the critical axial buckling load Ncr.
Variations of the critical axial buckling load of the FG cylindrical nanopanel in the

thermal environment with or without a Winkler–Pasternak type elastic foundation are
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Figure 10: Effect of span angle θ0 on the critical axial buckling load Ncr for some values of the material length
scale parameter l.

presented in Table 8. According to this table, by increasing the Winkler/ shear modulus
parameters, the critical axial buckling load of the FG cylindrical nanopanel increase. It
is entirely appropriate because the elastic foundation increases the stiffness of the FG
cylindrical nanopanel. For example, comparing the values of critical axial buckling loads
of the FG cylindrical nanopanel with or without the elastic foundations, for K2 = 0 and
K1=1×1016; 1.3×1016, 1.5×1016, 1.8×1016; 2×1016 [39], the effect on Ncr are 49.6%, 61.73%,
69.75%, 81.79%, 89.82%, respectively; corresponding to values of K1 from 1×1016 to 2×
1016, the critical axial buckling loads increase from 7.96% to 9.88% when increasing values
of K2 from 0 to 2. The critical axial buckling load Ncr = 14.0551 (K1 = 2×1016, K2 = 2)
increases by about 122.65% compared to Ncr =6.3125 (K1=0, K2=0).

Table 6: Effect of the thermal environment on critical axial buckling load Ncr with respect to nonlocal parameter
(h=5nm, R=50h, L=2R, θ0 = pi/3, k=1, K1 =1.5×1016, K2 =1.5). * Buckling mode (m,n).

Ncr ∆T(K)
µ (nm) -100 -50 0 100 200 300 500

0 21.1647 20.1069 19.0492 16.9337 14.8182 12.7028 8.4718
(10,1) (10,1) (10,1) (10,1) (10,1) (10,1) (10,1)

1 21.1088 20.0511 18.9934 16.8779 14.7624 12.6469 8.416
(10,1) (10,1) (10,1) (10,1) (10,1) (10,1) (10,1)

2 20.9441 19.8864 18.8286 16.7132 14.5977 12.4822 8.2513
(10,1) (10,1) (10,1) (10,1) (10,1) (10,1) (10,1)

3 20.6782 19.6205 18.5628 16.4473 14.3318 12.2163 7.9854
(10,1) (10,1) (10,1) (10,1) (10,1) (10,1) (10,1)

4 20.3231 19.2654 18.2077 16.0922 13.9767 11.8612 7.6303
(10,1) (10,1) (10,1) (10,1) (10,1) (10,1) (10,1)
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Table 7: Effect of the thermal environment on critical axial buckling load Ncr with respect to material length
scale parameter (h=5nm, R=50h, L=2R, θ0= pi/3, k=1, K1=1.5×1016, K2=1.5). * Buckling mode (m,n).

Ncr ∆T(K)
l (nm) -100 -50 0 100 200 300 500

0 21.1647 20.1069 19.0492 16.9337 14.8182 12.7028 8.4718
(10,1) (10,1) (10,1) (10,1) (10,1) (10,1) (10,1)

1 21.2207 20.1630 19.1052 16.9897 14.8743 12.7588 8.5278
(10,1) (10,1) (10,1) (10,1) (10,1) (10,1) (10,1)

2 21.3888 20.3311 19.2733 17.1579 15.0424 12.9269 8.6959
(10,1) (10,1) (10,1) (10,1) (10,1) (10,1) (10,1)

3 21.6690 20.6113 19.5535 17.438 15.3226 13.2071 8.9761
(10,1) (10,1) (10,1) (10,1) (10,1) (10,1) (10,1)

4 22.0613 21.0035 19.9458 17.8303 15.7148 13.5993 9.3684
(10,1) (10,1) (10,1) (10,1) (10,1) (10,1) (10,1)

Table 8: Effect of elastic foundation on critical axial buckling load Ncr (h=5nm, R=50h, L=2R, θ0 = pi/3,
k=1, ∆T=300, µ=3, l=1), error=[Ncr(K2 =2)−Ncr(K2 =0)]∗100/Ncr (K2 =0). * Buckling mode (m,n).

Ncr K1
k2

0 1×1016 1.3×1016 1.5×1016 1.8×1016 2×1016

0 6.3125 9.4491 10.2091 10.7157 11.4756 11.9822
(8,1)* (10,1) (10,1) (10,1) (10,1) (10,1)

1 - 10.4856 11.2455 11.7521 12.512 13.0187
(10,1) (10,1) (10,1) (10,1) (10,1)

1.3 - 10.7966 11.5565 12.0631 12.823 13.3296
(10,1) (10,1) (10,1) (10,1) (10,1)

1.5 - 11.0039 11.7638 12.2704 13.0303 13.5369
(10,1) (10,1) (10,1) (10,1) (10,1)

2 - 11.5221 12.282 12.7886 13.5485 14.0551
(10,1) (10,1) (10,1) (10,1) (10,1)

error 9.88 9.22 8.82 8.28 7.96

5 Conclusions

In this study, an analytical approach is utilized to analyze the mechanical buckling of the
FG cylindrical nanopanel resting on an elastic foundation in the thermal environment
by using the nonlocal strain gradient theory. The material properties of nanopanel are
varied by power-law distribution along with the thickness. The equilibrium equations
are derived via the adjacent equilibrium criterion. The analytical solution for buckling
analysis of the supported cylindrical nanopanel under the axial compressive load and
the thermal environment is performed using Galerkin’s solution. The comparison shows
that the present results are in good agreement with the published results in the literature.
The numerical results support the following conclusions:
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i) The value of critical axial buckling loads of the FG cylindrical nanopanel resting
on an elastic foundation in the thermal environment decreases when the nonlocal
parameter (µ) increases; and vice versa, the value of critical buckling loads of the
FG cylindrical nanopanel increases when the material length scale parameter (l)
increases. Furthermore, the FG cylindrical nanopanel exerts a stiffness-softening
effect when µ> l and exerts a stiffness-hardening effect when µ< l.

ii) The critical axial buckling load (Ncr) decreases strongly when increasing the R/h
ratio and volume fraction index k.

iii) The critical axial buckling load (Ncr) generally decreases when the L/R ratio and
span angle θ0 increases.

iv) The temperature has had a significant effect on the critical axial buckling load (Ncr)
of the FG cylindrical nanopanel resting on an elastic foundation. The critical axial
buckling load (Ncr) decreases with an increase in temperature.

v) The critical axial buckling load (Ncr) of the FG cylindrical nanopanel resting on an
elastic foundation in the thermal environment increases gradually with increasing
the coefficients of elastic foundation.

Appendix

X11=−
π2[R2θ2

0
(

L2+π2l2m2)+n2π2l2L2]
4L3R3θ3

0

(
m2R2θ2

0 A11+n2L2 A33

)
,

X12=−
nπ2m

[
R2θ2

0
(

L2+π2l2m2)+n2π2l2L2]
4R2θ2

0 L2 (A12+A33),

X13=
πm

[
R2θ2

0
(

L2+π2l2m2)+n2π2l2L2]
4L4R3θ3

0

[(
π2m2RB11−L2 A12

)
Rθ2

0+n2π2L2(B12+B33)
]

,

X21=−
nπ2m

[(
π2l2m2+L2)R2θ2

0+n2π2l2L2]
4L2R2θ2

0
(A21+A33),

X22=−
π2[(π2l2m2+L2)R2θ2

0+n2π2l2L2]
4L3R3θ3

0

(
n2L2 A22+m2R2θ2

0 A33

)
,

X23=
nπ
[(

π2l2m2+L2)R2θ2
0+n2π2l2L2]

4L3R4θ4
0

[
L2
(

n2π2B22−Rθ2
0 A22

)
+π2m2R2θ2

0 (B21+B33)
]

,

X31=
πm

[(
L2+π2l2m2)θ2

0 R2+n2π2l2L2]
4L4R3θ3

0

[(
m2Rπ2B11−L2 A21

)
Rθ2

0+L2π2n2(B21+2B66)
]

,
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X32=
nπ
((

L2+π2l2m2)θ2
0 R2+n2π2l2L2)

4L3R4θ4
0

[
L2
(

n2π2B22−Rθ2
0 A22

)
+π2m2R2θ2

0 (B12+2B66)
]

,

X33=−
[(

L2+π2l2m2)θ2
0 R2+n2π2l2L2]

4L5R5θ5
0

[
L4R2θ4

0 A22+n2π2L4
(

n2π2D22−2Rθ2
0 B22

)
−π2L2θ4

0m2R3(B12+B21)+m4R4θ4
0π4D11+L2θ2

0m2n2R2π4(D12+D21+2D66)

]
,

X34=
hπ2m2[µ2π2n2L2+

(
µ2π2m2+L2)R2θ2

0
]

4RL3θ0
,

X35=
hπ2n2[µ2π2n2L2+

(
µ2π2m2+L2)R2θ2

0
]

4R3Lθ3
0

,

X36=
R2L2θ2

0+µ2π2m2R2θ2
0+µ2π2n2L2

4RLθ0
,

X37=
π2(R2θ2

0m2+n2L2)(R2L2θ2
0+µ2π2m2R2θ2
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0
.
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