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Abstract. This paper deals with nonlinear second-order initial value problems with
time-variable delay. For solving this kind of problems, a class of implicit Runge-Kutta-
Nyström (IRKN) methods with Lagrange interpolation are suggested. Under the suit-
able condition, it is proved that an IRKN method is globally stable and has the com-
putational accuracy O(hmin{p,µ+ν+1}), where p is the consistency order of the method
and µ,ν≥ 0 are the interpolation parameters. Combining a fourth-order compact dif-
ference scheme with IRKN methods, an initial-boundary value problem of nonlinear
delay wave equations is solved. The presented experiments further confirm the com-
putational effectiveness of the methods and the theoretical results derived in previous.
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1 Introduction

The initial value problems (IVPs) of second-order delay differential equations (DDEs) are
a kind of important models for describing the practical scientific phenomena arising in
vibration mechanics, mechanical engineering, biodynamics, automatic control and the
other related fields (see e.g., [1, 2]). Nevertheless, for the IVPs of nonlinear second-order
DDEs, it is very difficult to obtain their exact solutions. Hence, in the recent years, ones
have begun to develop various numerical methods to solve this kind of problems. For
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example, Papageorgiou & Famelis [3] constructed explicit Runge-Kutta-Nyström meth-
ods, Martı́n & Garcı́a [4] presented variable-stepsize multistep methods, Ramadan, El-
Sherbeiny & Sherif [5] proposed polynomial spline methods, Seong & Majid [6] gave an
Adams-Moulton-type method, Kherd, Omar, Saaban & Adeyeye [7] suggested opera-
tional matrix methods, Zhang& Wang [8] derived generalized Strömer-Cowell methods
and Li & Zhou [9] further adapted the methods in [8] into block generalized Strömer-
Cowell methods.

In the existing numerical methods for solving IVPs of second-order DDEs, one-step
methods usually have higher computational efficiency than multistep methods with the
same consistency order since the computational procedure of an one-step method is self-
starting. In view of this, in the actual computation, ones often prefer to use one-step
methods to solve the problems. As an example, the mentioned-above explicit Runge-
Kutta-Nyström methods are just a type of one-step methods. It is well-known that ex-
plicit methods do not work for stiff problems as the boundedness of their stability re-
gions confines the computational stepsize into excessively small and thus leads to an
unsuccessful computation. In order to overcome this defect, in the present paper, we will
consider implicit Runge-Kutta-Nyström methods with Lagrange interpolation to solve
nonlinear second-order IVPs with time-variable delay.

The rest of this paper is organized as follows. In Section 2, by adapting the standard
IRKN (see e.g., [10–12]) methods and combining the Lagrange interpolation, we construct
a class of new IRKN methods to solve nonlinear second-order IVPs with time-variable
delay. In Section 3, we perform an error analysis for IRKN methods and proved that the
methods can arrive at the computational accuracy O(hmin{p,µ+ν+1}) under the suitable
condition, where p is the consistency order of the method and µ,ν≥0 are the interpolation
parameters. In Section 4, we study nonlinear global stability of IRKN methods and derive
a global stability criterion of the methods. In Section 5, with a combination of the fourth-
order compact difference scheme and IRKN methods, we present an application to an
initial-boundary value problem (IBVP) of nonlinear delay wave equations. The presented
numerical experiments further verify the computational effectiveness of the methods and
the theoretical results obtained in previous sections.

2 Nonlinear second-order IVPs with time-variable delay and
their IRKN methods

Consider the following nonlinear d-dimensional second-order IVPs with time-variable
delay τ(t)>0:

y′′(t)= f (t,y(t),y(t−τ(t))), t∈ [t0,T]; (2.1a)
y(t)= ϕ(t), y′(t)= ϕ′(t), t∈ [τ0,t0], (2.1b)
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where functions τ, f and ϕ are assumed to be sufficiently smooth on their respective
domains,

τ0= min
t0≤t≤T

[t−τ(t)]

and f satisfies condition:

ϕ′′(t0)= f (t0,ϕ(t0),ϕ(t0−τ(t0)))

and the following Lipschitz condition with constants L1,L2>0:

‖ f (t,y,z)− f (t,ỹ, z̃)‖∞≤L1‖y− ỹ‖∞+L2‖z− z̃‖∞, ∀t∈ [t0,T], y,ỹ,z, z̃∈Rd. (2.2)

Throughout this paper, we always assume that problem (2.1) has a unique solution y(t)
smooth enough on [t0,T] and its derivatives can be bounded by∥∥∥∥dky(t)

dtk

∥∥∥∥
∞
≤Mk, ∀t∈ [t0,T], k∈N. (2.3)

For solving problems (2.1), we take stepsize h= T−t0
N , gridpoints tn = t0+nh and off-step

points t(n)j = tn+cjh (n≤N, 1≤ j≤ s), where N is a given positive integer greater than

bT−t0c, and denote the approximations of y(tn+1), y′(tn+1), y(t(n)j ) and y(t(n)j −τ(t(n)j ))

by yn+1, y′n+1, y(n)j and z(n)j , respectively. Let τ(t(n)j ) = (mj,n−δj,n)h with mj,n ∈N and
δj,n∈ [0,1), then

t(n)j −τ(t(n)j )= tn−mj,n +(cj+δj,n)h.

Further, if cj+δj,n = lj,n+θj,n with lj,n∈{0,1} and θj,n∈ [0,1), then

t(n)j −τ(t(n)j )= tn−mj,n+lj,n +θj,nh.

Based on these settings and the standard IRKN methods (see e.g., [10–12]), a class of
adapted IRKN methods can be derived as follows:

y(n)i =yn+hciy′n+h2
s

∑
j=1

aij f
(

t(n)j ,y(n)j ,z(n)j

)
, 0≤n≤N−1, 1≤ i≤ s,

yn+1=yn+hy′n+h2
s

∑
i=1

bi f
(

t(n)i ,y(n)i ,z(n)i

)
, 0≤n≤N−1,

y′n+1=y′n+h
s

∑
i=1

b̂i f
(

t(n)i ,y(n)i ,z(n)i

)
, 0≤n≤N−1,

(2.4)

where aij, bi, b̂i, cj, (0≤cj≤1) are some real coefficients of the methods and z(n)j is approx-
imated by the (µ+ν+1)-order Lagrange interpolation (cf. [13–16]):

z(n)j =
ν

∑
i=−µ

Li(θj,n)yσn
i,j

, 1≤ j≤ s, 0≤n≤N−1, (2.5)
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in which µ, ν are two nonnegative integers satisfying

−µ<ν< min
(j,n)∈J

(mj,n−δj,n)

with
J ={(j,n) : j=1,2,··· ,s; n=0,1,··· ,N−1}, σn

i,j =n−mj,n+lj,n+i,

and

Li(θj,n)=
ν

∏
k=−µ

k 6=i

θj,n−k
i−k

, −µ≤ i≤ν, 1≤ j≤ s, 0≤n≤N−1. (2.6)

Here and after, when tn, t(n)j or t(n)j −τ(t(n)j )∈[τ0,t0], we always set the approximations yn,

y′n, y(n)j , z(n)j equal to their exact values ϕ(tn), ϕ′(tn), ϕ(t(n)j ), ϕ(t(n)j −τ(t(n)j )), respectively.
Let Id and ⊗ be the d×d identity matrix and Kronecker product, respectively, and

es =(1,1,··· ,1)T∈Rs, Yn =
(

y(n)
T

1 ,y(n)
T

2 ,··· ,y(n)
T

s

)T
, Zn =

(
z(n)

T

1 ,z(n)
T

2 ,··· ,z(n)
T

s

)T
,

F(tn,Ŷn,Ẑn)=

(
f
(

t(n)1 ,y(n)1 ,z(n)1

)T
, f
(

t(n)2 ,y(n)2 ,z(n)2

)T
,··· , f

(
t(n)s ,y(n)s ,z(n)s

)T
)T

,

A=(aij)∈Rs×s, b=(b1,b2,··· ,bs)
T, b̂=(b̂1,b̂2,··· ,b̂s)

T, c=(c1,c2,··· ,cs)
T.

Then scheme (2.4) can be written in a more compact form:
Yn =(es⊗ Id)yn+h(c⊗ Id)y′n+h2(A⊗ Id)F(tn,Yn,Zn), 0≤n≤N−1,
yn+1=yn+hy′n+h2(bT⊗ Id)F(tn,Yn,Zn), 0≤n≤N−1,

y′n+1=y′n+h(b̂T⊗ Id)F(tn,Yn,Zn), 0≤n≤N−1.
(2.7)

3 Error analysis of IRKN methods

This section will focus on error analysis of IRKN methods. For this, we first introduce the
concept of consistency order. An IRKN method (2.4)-(2.5) is called consistent of order p
if there exist constants γ,h0>0 such that

‖y(tn+1)− ŷn+1‖∞≤γhp+1, ‖y′(tn+1)− ŷ′n+1‖∞≤γhp+1, ∀h∈ (0,h0], (3.1)

where ŷn+1 and ŷ′n+1 are determined by
Ŷn =(es⊗ Id)y(tn)+h(c⊗ Id)y′(tn)+h2(A⊗ Id)F(tn,Ŷn,Ẑn), 0≤n≤N−1,

ŷn+1=y(tn)+hy′(tn)+h2(bT⊗ Id)F(tn,Ŷn,Ẑn), 0≤n≤N−1,

ŷ′n+1=y′(tn)+h(b̂T⊗ Id)F(tn,Ŷn,Ẑn), 0≤n≤N−1,

(3.2)
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in which

Ŷn =(ŷ(n)
T

1 ,ŷ(n)
T

2 ,··· ,ŷ(n)
T

s )T, Ẑn =(ẑ(n)
T

1 , ẑ(n)
T

2 ,··· , ẑ(n)
T

s )T and ẑ(n)j =y(t(n)j −τ(t(n)j )).

Besides the concept of consistency order, the following lemmas will also be important for
our analysis.

Lemma 3.1 ( [16]). Under condition (2.3), the Lagrange interpolation satisfies the following
estimate: ∥∥∥∥∥ ν

∑
i=−µ

Li(θj,n)y
(

tσn
i,j

)
−y
(

t(n)j −τ
(

t(n)j

))∥∥∥∥∥
∞

≤Mµ+ν+1hµ+ν+1, 1≤ j≤ s, 0≤n≤N−1,

where Mµ+ν+1>0 is a constant indicated in (2.3).

Lemma 3.2 (Discrete Grönwall inequality [17]). Let xn and βn be two real scalar sequences
and α>0 a given constant. If xn+1≤αxn+βn for all n≥0, then

xn≤αn

(
x0+

n

∑
j=1

α−jβ j−1

)
, ∀n≥1.

Based on the above arguments, an error estimate of IRKN methods can be derived as
follows.

Theorem 3.1. Assume that conditions (2.2)-(2.3) are fulfilled and IRKN method (2.4)-(2.5) is
consistent of order p. Then this method is convergent of order min{p,µ+ν+1}, namely, there
exist constant ĥ>0 and nonnegative bounded function c(t) on [t0,T] such that

‖y(tn)−yn‖∞≤ c(tn)hmin{p,µ+ν+1}, 1≤n≤N, h∈ (0,ĥ]. (3.3)

Proof. Write

εn =y(tn)−yn, ε′n =y′(tn)−y′n, ∆Fn =F(tn,Ŷn,Ẑn)−F(tn,Yn,Zn).

Subtracting (2.7) from (3.2) yields that
Ŷn−Yn =(es⊗ Id)εn+h(c⊗ Id)ε

′
n+h2(A⊗ Id)∆Fn, 0≤n≤N−1,

εn+1= εn+hε′n+h2(bT⊗ Id)∆Fn+y(tn+1)− ŷn+1, 0≤n≤N−1,

ε′n+1= ε′n+h(b̂T⊗ Id)∆Fn+y′(tn+1)− ŷ′n+1, 0≤n≤N−1.

(3.4)

Taking l∞-norm on the both sides of each equation in (3.4) and then applying some com-
mon properties of l∞-norm and Kronecker product infer for 0≤ n≤N−1 and h∈ (0,h0]
that

‖Ŷn−Yn‖∞≤‖εn‖∞+h‖ε′n‖∞+h2‖A‖∞‖∆Fn‖∞, (3.5a)

‖εn+1‖∞≤‖εn‖∞+h‖ε′n‖∞+h2‖bT‖∞‖∆Fn‖∞+γhp+1, (3.5b)

‖ε′n+1‖∞≤‖ε′n‖∞+h‖b̂T‖∞‖∆Fn‖∞+γhp+1, (3.5c)
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where condition ‖c‖∞≤1 and p-order consistency conditions (3.1) have been used. Let

L0= max
−µ≤i≤ν

sup
θ∈[0,1)

|Li(θ)|.

With (2.5) and Lemma 3.1, we have for 0≤n≤N−1 that

‖Ẑn−Zn‖∞ =max
1≤j≤s

∥∥∥∥∥ ν

∑
i=−µ

Li(θj,n)yσn
i,j
−y
(

t(n)j −τ
(

t(n)j

))∥∥∥∥∥
∞

≤max
1≤j≤s

∥∥∥∥∥ ν

∑
i=−µ

Li(θj,n)
[
yσn

i,j
−y(tσn

i,j
)
]∥∥∥∥∥

∞

+max
1≤j≤s

∥∥∥∥∥ ν

∑
i=−µ

Li(θj,n)y(tσn
i,j
)−y

(
t(n)j −τ

(
t(n)j

))∥∥∥∥∥
∞

≤L0

ν

∑
i=−µ

max
1≤j≤s

‖yσn
i,j
−y(tσn

i,j
)‖∞+Mµ+ν+1hµ+ν+1

≤L0(µ+ν+1) max
0≤k≤n

‖εk‖∞+Mµ+ν+1hµ+ν+1. (3.6)

This, together with Lipschitz condition (2.2), implies for 0≤n≤N−1 that

‖∆Fn‖∞≤L1‖Ŷn−Yn‖∞+L2‖Ẑn−Zn‖∞

≤L1‖Ŷn−Yn‖∞+L0L2(µ+ν+1) max
0≤k≤n

‖εk‖∞+L2Mµ+ν+1hµ+ν+1. (3.7)

Let h1 > 0 be a constant such that 0 < h2L1‖A‖∞ < 1 for all h∈ (0,h1], h2 = min{h0,h1},
L3=

1
1−h2

2L1‖A‖∞
and L4=L0(µ+ν+1). Substituting (3.5a) into (3.7) follows for 0≤n≤N−1

and h∈ (0,h2] that

‖∆Fn‖∞≤L3

(
L1‖εn‖∞+hL1‖ε′n‖∞+L2L4 max

0≤k≤n
‖εk‖∞+L2Mµ+ν+1hµ+ν+1

)
. (3.8)

Combining (3.5b) with (3.8) derives that

‖εn+1‖∞≤
[
1+h2‖bT‖∞L3(L1+L2L4)

]
max

0≤k≤n
‖εk‖∞+h

(
1+h2‖bT‖∞L1L3

)
max

0≤k≤n
‖ε′k‖∞

+‖bT‖∞L2L3Mµ+ν+1hµ+ν+3+γhp+1, 0≤n≤N−1, h∈ (0,h2]. (3.9)

Inserting (3.8) into (3.5c) gives that

‖ε′n+1‖∞≤
(

1+h2‖b̂T‖∞L1L3

)
‖ε′n‖∞+h‖b̂T‖∞L3(L1+L2L4) max

0≤k≤n
‖εk‖∞

+‖b̂T‖∞L2L3Mµ+ν+1hµ+ν+2+γhp+1, 0≤n≤N−1, h∈ (0,h2]. (3.10)
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Define

En =

(
max

0≤k≤n
‖εk‖∞, max

0≤k≤n
‖ε′k‖∞

)T

, Bh =L2L3Mµ+ν+1

(
h‖bT‖∞,‖b̂T‖∞

)T

,

and

Ph =

(
1+h2‖bT‖∞L3(L1+L2L4) h

(
1+h2‖bT‖∞L1L3

)
h‖b̂T‖∞L3(L1+L2L4) 1+h2‖b̂T‖∞L1L3

)
.

A direct computation shows that

‖Bh‖∞ =L2L3Mµ+ν+1‖b̂T‖∞ and ‖Ph‖∞ =1+O(h)

as h→0+. This means that there exist constants ρ0,h3>0 such that

‖Bh‖∞ =L2L3Mµ+ν+1‖b̂T‖∞, ‖Ph‖∞≤1+ρ0h, h∈ (0,h3]. (3.11)

Moreover, by (3.9) and (3.10), it holds that

‖En+1‖∞≤‖Ph‖∞‖En‖∞+‖Bh‖∞hµ+ν+2+γhp+1, 0≤n≤N−1, h∈ (0,h2]. (3.12)

Applying Lemma 3.2 to (3.12) and using condition: ‖E0‖∞ =0 derive that

‖En‖∞≤
n

∑
j=1
‖Ph‖

n−j
∞

(
‖Bh‖∞hµ+ν+2+γhp+1

)
, 1≤n≤N, h∈ (0,h2]. (3.13)

Let ĥ=min{h2,h3,1}. Then, when 1≤n≤N and h∈ (0,ĥ], a combination of (3.11), (3.13),
inequality: 1+x≤exp(x) (x≥0) and equality: nh= tn−t0 generates that

‖En‖∞≤
n

∑
j=1

(1+ρ0h)n−j
(

L2L3Mµ+ν+1‖b̂T‖∞hµ+ν+2+γhp+1
)

≤(1+ρ0h)nnh
(

L2L3Mµ+ν+1‖b̂T‖∞hµ+ν+1+γhp
)

≤exp[ρ0(tn−t0)](tn−t0)
(

L2L3Mµ+ν+1‖b̂T‖∞+γ
)

hmin{p,µ+ν+1}. (3.14)

This, together with the fact:

‖εn‖∞≤ max
0≤k≤n

‖εk‖∞≤‖En‖∞ for 1≤n≤N,

concludes error estimate (3.3) with

c(tn)=exp[ρ0(tn−t0)](tn−t0)
(

L2L3Mµ+ν+1‖b̂T‖∞+γ
)

.

Therefore the theorem is proved.



430 C. Zhang, S. Wang and C. Tang / Adv. Appl. Math. Mech., 16 (2024), pp. 423-436

4 Global stability of IRKN methods

In this section, we present an analysis to the global stability of IRKN methods (2.4)-(2.5).
For this purpose, besides problems (2.1), we also need to consider their corresponding
perturbation problems with different initial function ψ(t):

ỹ′′(t)= f (t,ỹ(t),ỹ(t−τ(t))), t∈ [t0,T]; (4.1a)
ỹ(t)=ψ(t), ỹ′(t)=ψ′(t), t∈ [τ0,t0]. (4.1b)

When an IRKN method (2.4)-(2.5) is applied to problems (4.1), we write the approxima-
tions of ỹ(tn), ỹ′(tn), ỹ(t(n)j ) and ỹ(t(n)j −τ(t(n)j )) as ỹn, ỹ′n, ỹ(n)j and z̃(n)j , respectively. An
IRKN method (2.7) is called globally stable if there exists constantsH,h̃>0 such that

‖yn− ỹn‖∞≤H max
τ0≤t≤t0

‖ϕ(t)−ψ(t)‖∞, 1≤n≤N, h∈ (0,h̃].

A global stability criterion of IRKN methods (2.4)-(2.5) can be stated as follows.

Theorem 4.1. Assume that Lipschitz condition (2.2) holds. Then IRKN method (2.4)-(2.5) is
globally stable.

Proof. Write

ηn =yn− ỹn, η′n =y′n− ỹ′n,

Ỹn =
(

ỹ(n)
T

1 ,ỹ(n)
T

2 ,··· ,ỹ(n)
T

s

)T
, Z̃n =

(
z̃(n)

T

1 , z̃(n)
T

2 ,··· , z̃(n)
T

s

)T
,

∆̂Fn =F(tn,Yn,Zn)−F(tn,Ỹn,Z̃n).

With these notations and (2.7), we have that
Yn−Ỹn =(es⊗ Id)ηn+h(c⊗ Id)η

′
n+h2(A⊗ Id)∆̂Fn, 0≤n≤N−1,

ηn+1=ηn+hη′n+h2(bT⊗ Id)∆̂Fn, 0≤n≤N−1,

η′n+1=η′n+h(b̂T⊗ Id)∆̂Fn, 0≤n≤N−1.

(4.2)

It follows from (4.2), ‖c‖∞ ≤ 1 and the common properties of l∞-norm and Kronecker
product that

‖Yn−Ỹn‖∞≤‖ηn‖∞+h‖η′n‖∞+h2‖A‖∞‖∆̂Fn‖∞, 0≤n≤N−1, (4.3a)

‖ηn+1‖∞≤‖ηn‖∞+h‖η′n‖∞+h2‖bT‖∞‖∆̂Fn‖∞, 0≤n≤N−1, (4.3b)

‖η′n+1‖∞≤‖η′n‖∞+h‖b̂T‖∞‖∆̂Fn‖∞, 0≤n≤N−1. (4.3c)
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Based on (2.5), it can be inferred that

‖Zn−Z̃n‖∞≤max
1≤j≤s

ν

∑
i=−µ

‖Li(θj,n)‖∞‖yσn
i,j
− ỹσn

i,j
‖∞

≤L0(µ+ν+1)max
{

max
τ0≤t≤t0

‖ϕ(t)−ψ(t)‖∞, max
0≤k≤n

‖ηk‖∞

}
≤L0(µ+ν+1)

(
max

τ0≤t≤t0
‖ϕ(t)−ψ(t)‖∞+ max

0≤k≤n
‖ηk‖∞

)
, 0≤n≤N−1. (4.4)

Also, by Lipschitz condition (2.2), it holds that

‖∆̂Fn‖∞≤L1‖Yn−Ỹn‖∞+L2‖Zn−Z̃n‖∞, 0≤n≤N−1. (4.5)

Substituting (4.3a) and (4.4) into (4.5) yields for 0≤n≤N−1 that

‖∆̂Fn‖∞≤L1
(
‖ηn‖∞+h‖η′n‖∞+h2‖A‖∞‖∆̂Fn‖∞

)
+L0L2(µ+ν+1)

(
max

τ0≤t≤t0
‖ϕ(t)−ψ(t)‖∞+ max

0≤k≤n
‖ηk‖∞

)
. (4.6)

Let h1 > 0 be the constant used in the proof of Theorem 3.1 and L̃1 =
1

1−h2
1L1‖A‖∞

. When

h∈ (0,h1], we can obtain from inequality (4.6) for 0≤n≤N−1 that

‖∆̂Fn‖∞≤L̃1
[
L1
(
‖ηn‖∞+h‖η′n‖∞

)
+L0L2(µ+ν+1)

(
max

τ0≤t≤t0
‖ϕ(t)−ψ(t)‖∞+ max

0≤k≤n
‖ηk‖∞

)]
. (4.7)

Substituting (4.7) into (4.3b) yields that

‖ηn+1‖∞≤
[
1+h2‖bT‖∞ L̃1(L1+L0L2(µ+ν+1))

]
max

0≤k≤n
‖ηk‖∞

+h(1+h2‖bT‖∞ L̃1L1)‖η′n‖∞+h2‖bT‖∞ L̃1L0L2(µ

+ν+1) max
τ0≤t≤t0

‖ϕ(t)−ψ(t)‖∞, 0≤n≤N−1, h∈ (0,h1]. (4.8)

A combination of (4.3c) and (4.7) generates that

‖η′n+1‖∞≤
[
1+h2‖b̂T‖∞ L̃1L1

]
‖η′n‖∞+h‖b̂T‖∞ L̃1[L1+L0L2(µ+ν+1)] max

0≤k≤n
‖ηk‖∞ (4.9)

+h‖b̂T‖∞ L̃1L0L2(µ+ν+1) max
τ0≤t≤t0

‖ϕ(t)−ψ(t)‖∞, 0≤n≤N−1, h∈ (0,h1].

Define

En =
(

max
0≤k≤n

‖ηk‖∞, max
0≤k≤n

‖η′k‖∞
)T, Bh =hL̃1L0L2(µ+ν+1)(h‖bT‖∞,‖b̂T‖∞)

T,

Qh =

(
1+h2‖bT‖∞ L̃1(L1+L0L2(µ+ν+1)) h(1+h2‖bT‖∞ L̃1L1)

h‖b̂T‖∞ L̃1[L1+L0L2(µ+ν+1)] 1+h2‖b̂T‖∞ L̃1L1

)
.
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A direct computation gives that ‖Bh‖∞ =O(h) and ‖Qh‖∞ = 1+O(h) as h→ 0+. This
implies that there exist constants ρ1,ρ2,h̃1>0 such that

‖Bh‖∞≤ρ1h, ‖Qh‖∞≤1+ρ2h, h∈ (0,h̃1]. (4.10)

Moreover, when set h̃=min{h1,h̃1}, it can be reached by (4.8) and (4.9) that

‖En+1‖∞≤‖Qh‖∞‖En‖∞+‖Bh‖∞ max
τ0≤t≤t0

‖ϕ(t)−ψ(t)‖∞, 0≤n≤N−1, h∈(0,h̃]. (4.11)

Applying Lemma 3.2 to (4.11) and considering condition: ‖E0‖∞ =0 derive that

‖En‖∞≤
n

∑
j=1
‖Qh‖

n−j
∞ ‖Bh‖∞ max

τ0≤t≤t0
‖ϕ(t)−ψ(t)‖∞, 1≤n≤N, h∈ (0,h̃]. (4.12)

Embedding (4.10) into (4.12) and using inequalities: 1+x≤exp(x) (x≥0) and nh=tn−t0≤
T−t0 (1≤n≤N) deduce for 1≤n≤N and h∈ (0,h̃] that

‖En‖∞≤
n

∑
j=1

(1+ρ2h)n−jρ1h max
τ0≤t≤t0

‖ϕ(t)−ψ(t)‖∞

≤
n

∑
j=1

exp[ρ2(n− j)h]ρ1h max
τ0≤t≤t0

‖ϕ(t)−ψ(t)‖∞

≤exp[ρ2(n−1)h]ρ1nh max
τ0≤t≤t0

‖ϕ(t)−ψ(t)‖∞

≤exp[ρ2(T−t0)]ρ1(T−t0) max
τ0≤t≤t0

‖ϕ(t)−ψ(t)‖∞. (4.13)

Combining (4.13) and fact:

‖ηn‖∞≤ max
0≤k≤n

‖ηk‖∞≤‖En‖∞, (1≤n≤N),

concludes that

‖ηn‖∞≤exp[ρ2(T−t0)]ρ1(T−t0) max
τ0≤t≤t0

‖ϕ(t)−ψ(t)‖∞, 1≤n≤N, h∈ (0,h̃]. (4.14)

This shows that the IRKN method is globally stable. Hence the proof is completed.

5 Application to an IBVP of nonlinear delay wave equations

In order to give a numerical verification to the computational effectiveness and accuracy
of IRKN methods (2.4)-(2.5), we consider an application to the following IBVP of nonlin-
ear delay wave equations:

utt(x,t)=
1

200
uxx(x,t)+

1
10

u(x,t−e−t)+
1

1+u2(x,t)
+ f̃ (x,t), (x,t)∈ [0,π]×[0,2],

u(x,t)=sin(x)exp(−2t), ut(x,t)=−2sin(x)exp(−2t), (x,t)∈ [0,π]×[−1,0],
u(0,t)=0, u(π,t)=0, t∈ [0,2],

(5.1)
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where f̃ (x,t) is a given function such that problem (5.1) has the exact solution u(x,t)=
e−2t sin(x). For numerically solving problem (5.1), in what follows, we will first use a
fourth-order compact difference scheme (see e.g., [18]) to discretize the spatial variable
in (5.1) and then solve the derived second-order delay-initial-value problem by IRKN
methods (2.4)-(2.5).

According to reference [18], one has the following fourth-order compact difference
scheme with spatial stepsize ∆x = π

k (k ≥ 4) and mesh points xj = j∆x (1≤ j≤ k) for
approximating uxx(xj,t):

uxx(xj,t)≈
(

1+
∆x2

12
δ2

x

)−1

δ2
xuj(t), j=1,2,··· ,k−1, (5.2)

where

uj(t)≈u(xj,t) and δ2
xuj(t)=

uj−1(t)−2uj(t)+uj+1(t)

∆x2 .

Let

y(t)=(u1(t),u2(t),··· ,uk−1(t))
T , L̂1= tridiag

{
1

12
,
5
6

,
1
12

}
, L̂2=

tridiag{1,−2,1}
200(∆x)2 ,

L= L̂−1
1 L̂2, f̂ (y(t))=

(
1

1+u2
1(t)

,
1

1+u2
2(t)

,··· , 1
1+u2

k−1(t)

)T

,

f̃ (t)=( f̃ (x1,t), f̃ (x2,t),··· , f̃ (xk−1,t))T, ϕ(t)= e−2t (sin(x1),sin(x2),··· ,sin(xk−1))
T ,

g(t,y(t),y(t−e−t))=
1

10
y(t−e−t)+ f̂ (y(t))+ f̃ (t).

Then, with the above notations and (5.2), problem (5.1) can be discretized as the following
second-order delay-initial-value problem:

y′′(t)=Ly(t)+g(t,y(t),y(t−e−t)), t∈ [0,2]; (5.3a)
y(t)= ϕ(t), y′(t)= ϕ′(t), t∈ [−1,0]. (5.3b)

It can be checked that the right-function f (t,y,z) :=Ly+g(t,y,z) of problem (5.3) satisfies
Lipschitz condition (2.2) with L1 = 1+ 0.03

(∆x)2 and L2 = 0.1. This shows that problem (5.3)
is stiff with respect to the second variable y of f (t,y,z) and its stiffness becomes stronger
with the decrease of ∆x. Moreover, it follows from Theorem 3.1 and Theorem 4.1 that
IRKN methods (2.4)-(2.5) of order p are convergent of order min{p,µ+ν+1} and globally
stable for problem (5.3).

In the following, we present a numerical illustration to the above theoretical results.
For convenience, we write an IRKN method (2.4)-(2.5) with p-order consistency and q-
order interpolation as IRKN(p,q), where q = µ+ν+1, and use the following formulaes
to compute the global errors err(h) and convergence orders p(h) of IRKN methods with
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Table 1: Global errors of IRKN(p,q) (p,q=2,3,4) for problem (5.3).

h IRKN(2,2) IRKN(3,2) IRKN(4,2) IRKN(2,3) IRKN(3,3) IRKN(4,3) IRKN(2,4) IRKN(3,4) IRKN(4,4)
1/10 2.0282e-02 7.1401e-04 7.3003e-04 1.9786e-02 8.2095e-06 1.5288e-05 1.9773e-02 8.0025e-06 9.4535e-07
1/20 5.1122e-03 1.6464e-04 1.7093e-04 4.9411e-03 8.4806e-07 1.7257e-06 4.9392e-03 9.3155e-07 5.9548e-08
1/40 1.2765e-03 4.2518e-05 4.4425e-05 1.2348e-03 9.6404e-08 2.0582e-07 1.2346e-03 1.1357e-07 3.7154e-09
1/80 3.1943e-04 1.0188e-05 1.0389e-05 3.0865e-04 1.0201e-08 2.3909e-08 3.0863e-04 1.4013e-08 2.3326e-10
1/160 7.9433e-05 2.2860e-06 2.3401e-06 7.7159e-05 1.3245e-09 3.0714e-09 7.7156e-05 1.7453e-09 1.4368e-11

Table 2: Convergence orders of IRKN(p,q) (p,q=2,3,4) for problem (5.3).

h IRKN(2,2) IRKN(3,2) IRKN(4,2) IRKN(2,3) IRKN(3,3) IRKN(4,3) IRKN(2,4) IRKN(3,4) IRKN(4,4)
1/10 – – – – – – – – –
1/20 1.9881 2.1166 2.0945 2.0016 3.2750 3.1471 2.0012 3.1027 3.9887
1/40 2.0018 1.9532 1.9440 2.0006 3.1370 3.0677 2.0003 3.0361 4.0025
1/80 1.9986 2.0612 2.0964 2.0002 3.2405 3.1057 2.0001 3.0188 3.9935

1/160 2.0077 2.1560 2.1503 2.0001 2.9451 2.9606 2.0000 3.0052 4.0210

stepsize h:

err(h)= max
0≤n≤N

‖y(tn)−yn‖∞, p(h)= log2

[
err(2h)
err(h)

]
.

The subsequent numerical experiments will based on nine kinds of implicit IRKN(p,q)
(p,q = 2,3,4), where the coefficients of the corresponding p-order main schemes (2.4)
can be obtained by the order conditions in Shi, Zhang & Wang [12] and the interpola-
tion coefficients in (2.5) can be determined by setting (µ,ν)=(1,0),(1,1),(2,1) in formula
(2.6), respectively. Taking spatial stepsize ∆x = π

200 and temporal stepsizes h = 2
N (N =

20,40,80,160,320), and then applying the above nine kinds of IRKN(p,q) (p,q = 2,3,4)
to solve problem (5.3), respectively, the generated global errors and convergence orders
are displayed respectively in Table 1 and Table 2. Moreover, in Fig. 1, we also plot the
global errors of IRKN(p,q)(p,q=2,3,4) versus stepsizes h, which are plotted in Log-Log
scale. These numerical results further confirm the computational effectiveness of IRKN
methods and the theoretical accuracy shown in Theorem 3.1.

Next, we give an insight into the global stability of IRKN methods (2.4)-(2.5). For this,
besides problem (5.3), we also consider its perturbation problem with initial perturbation
εsin(t)◦ek:

ỹ′′(t)=Lỹ(t)+g(t,ỹ(t),ỹ(t−e−t)), t∈ [0,2]; (5.4a)
ỹ(t)=ψ(t), ỹ′(t)=ψ′(t), t∈ [−1,0], (5.4b)

where 0<ε≤1, ek=(1,1,··· ,1)T∈Rk−1, ψ(t)=ϕ(t)+εsin(t)◦ek and ◦ is the Schur product.
A simple computational gives that

max
−1≤t≤0

‖ϕ(t)−ψ(t)‖∞ =εsin(1).
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Figure 1: Global errors of IRKN(p,q) (q=2,3,4) against h in Log-Log scale for problem (5.3).

Let

M(ε,tn)=

{
‖yn− ỹn‖∞/εsin(1), 0<ε≤1,
0, ε=0,

1≤n≤N :=
2
h

,

where yn and ỹn are the numerical solutions of problems (5.3) and (5.4) solved by an
IRKN method with stepsize h, respectively. As an example, applying IRKN(4,4) with
h= 1

160 to solve problems (5.3) and (5.4), we can derive that

max
0≤ε≤1

max
1≤n≤320

M(ε,tn)≈2.2367,

which implies that IRKN(4,4) with h= 1
160 for problem (5.3) is globally stable with stability

constant H≈2.2367. For the other IRKN methods, we can conclude from the above sim-
ilar approach that they are all globally stable for problems (5.3). This further illustrates
the global stability result stated in Theorem 4.1.
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