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Abstract. This article designs a new fifth-order finite volume mapped unequal-sized
weighted essentially non-oscillatory scheme (MUS-WENO) for solving hyperbolic con-
servation laws on structured meshes. One advantage is that the new mapped WENO-
type spatial reconstruction is a convex combination of a quartic polynomial with two
linear polynomials defined on unequal-sized central or biased spatial stencils. Then we
propose the new mapped nonlinear weights and new mapping function to decrease
the difference between the linear weights and nonlinear weights. This method has the
characteristics of small truncation errors and high-order accuracy. And it could give
optimal fifth-order convergence with a very tiny & even near critical points in smooth
regions while suppressing spurious oscillations near strong discontinuities. Com-
pared with the classical finite volume WENO schemes and mapped WENO (MWENO)
schemes, the linear weights can be any positive numbers on the condition that their
summation is one, which greatly reduces the calculation cost. Finally, we propose
a new modified positivity-preserving method for solving some low density, low pres-
sure, or low energy problems. Extensive numerical examples including some unsteady-
state problems, steady-state problems, and extreme problems are used to testify to the
efficiency of this new finite volume MUS-WENO scheme.
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1 Introduction

In this article, a new fifth-order finite volume mapped unequal-sized weighted essen-
tially non-oscillatory (MUS-WENO) scheme is designed for hyperbolic conservation laws.
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We first introduce some features of this finite volume MUS-WENO scheme. Different
from the classic finite volume high-order WENO scheme [35], a new space reconstruc-
tion methodology is used to construct one quartic polynomial and two linear polyno-
mials on unequal-sized spatial stencils. It effectively avoids contact discontinuities or
strong shocks that lie in all equal-sized central or biased spatial stencils [35]. And the lin-
ear weights can be any positive number that summation to 1, which significantly saves
the calculation cost. Based on [23], we design a new mapping function to decrease the
difference between the linear weights and nonlinear weights. It could achieve optimal
fifth-order accuracy with very tiny € even near the critical points in smooth regions while
having sharp shock transitions in discontinuous regions. This new finite volume MUS-
WENO scheme has small numerical errors in L! and L® norms inside smooth regions.
Finally, this finite volume MUS-WENO scheme with a very tiny & can compute some
unsteady-state problems without losing the designed order of accuracy at critical points
in smooth regions, some steady-state problems without introducing big average residue,
and some extreme problems containing low density, low pressure, or low energy, respec-
tively.

So far, many numerical schemes were studied for solve compressible hyperbolic con-
servation laws with various fluid structures. As early as 1984, Colella et al. [6] inno-
vatively designed the piecewise parabolic method that used a four-point central spatial
stencil to represent the interfacial values and the values were applied to suppress non-
physical oscillations at discontinuities. In 1991, Leonard [29] proposed the ULTIMATE
conservative difference scheme for the first time and effectively solved one-dimensional
unsteady advection problems. The results show that the limiting methods could reduce
the accuracy from theoretical optimal order to first-order accuracy even at critical points
in smooth regions. The idea of the PMM method can be traced back to the MUSCL
scheme [39] and Godunov’s scheme [15]. The construction of high-order schemes has al-
ways been the focus of research. Harten and Osher [22] proposed a new TVD scheme [19]
and designed the new ENO schemes. Harten et al. [21] applied the new ENO schemes
to simulate 1D hyperbolic conservation laws problems. In the same year, Harten [20]
innovatively designed a 2D extension of the ENO schemes. In 1992, Casper [4], and
Casper and Atkins [5] presented the ENO schemes for solving hyperbolic conservation
laws. In 1994, Liu et al. [33] first designed a third-order finite volume weighted ENO
(WENO) scheme based on the ENO scheme. In 1996, Jiang et al. [27] proposed a fifth-
order finite difference WENO scheme and extended it to multi-dimensional cases. In
1999, Hu et al. [26] designed the higher-order WENO schemes on unstructured meshes.
In 2004, Titarev and Toro [38] designed the finite-volume WENO schemes for solving 3D
hyperbolic conservation laws. In 2009, Zhang et al. [46] designed the third-order WENO
scheme on the tetrahedral meshes. Due to the construction process of the traditional
high-order WENO schemes, the linear weight may have negative values. So, special han-
dling of negative linear weights was required, which increased the computational cost.
In 2017, Zhu and Qiu [49] overcame this difficulty.

In 2005, Henrick et al. [23] designed a new mapping function to solve the difficulty
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that the classic fifth-order WENO scheme [27,35,36] had only third-order accuracy at crit-
ical points in smooth regions. The main objective of this mapping function is to modify
the nonlinear weights to be the mapped nonlinear weights to obtain the optimal order of
accuracy at the critical point in smooth regions. In 2008, Borges et al. [2] proposed an im-
proved WENO scheme to solve the problem of insufficient accuracy of the classic WENO
scheme at critical points in smooth regions. In 2012, Feng et al. [11] proposed a new
mapped WENO scheme. Their research [23] showed that the mapping function might
amplify the effect of non-smooth stencils and produce a loss of accuracy in non-smooth
regions. Two years later, Feng et al. [12] designed an improved mapped WENO scheme.
In 2006, Bryson et al. [3] designed the mapped weighted power ENO scheme and the
WENO scheme to simulate Hamilton-Jacobi equations. In 2013, Gao et al. [13] proposed
the finite difference mapped hybrid center-WENO scheme to solve the detonation waves
problem. In 2016, Wang et al. [41] proposed the mapped WENO scheme based on the
rational mapping function. Two years later, Vevek et al. [40] designed a mapped WENO
scheme based on a more general rational mapping function. In 2020, Hong et al. [24] im-
proved the traditional mapping WENO scheme and designed a WENO-M scheme that
saved computational cost. It can be seen from the above research results that the intro-
duction of a mapping function can effectively solve the difficulty of the accuracy loss of
the classic WENO scheme [27,35,36] at the critical point in smooth regions. When solving
extreme problems, the negative density and negative pressure may often emerge in the
computing fields. Therefore, it was very important to construct a conservative positivity-
preserving method. In 1991, Einfeldt et al. [8] studied the first-order positivity-preserving
method. Following the idea of [42], Zhang and Shu [43] designed a general framework
for constructing high-order positivity-preserving discontinuous Galerkin methods and fi-
nite volume schemes. In 2011, Zhang et al. [44] presented a simpler positivity-preserving
method for WENO schemes. And many positivity-preserving methods [9, 10, 16, 25, 45]
for solving compressible Euler equations and Navier-Stokes equations have been suc-
cessfully designed and applied in large-scale engineering applications till now.

In this article, we proposed a new fifth-order finite volume MUS-WENO scheme for
solving hyperbolic conservation laws. This finite volume MUS-WENO scheme constructs
one quartic polynomial and two linear polynomials on unequal-sized stencils, thereby
reducing the difficulty of computing the optimal linear weights. However, the differ-
ence between the linear weights and nonlinear weights does not conform to the principle
proposed in [27, 35, 36], which leads to the loss of accuracy in smooth regions. There-
fore a new mapping function is designed to decrease the difference between the linear
weights and the mapped nonlinear weights. It could achieve fifth-order accuracy with
a very tiny € even near critical points in smooth regions. Then we apply a third-order
TVD Runge-Kutta method [37] to the time discretization. The MUS-WENO scheme with
a new modification of the positivity-preserving method could not only compute some
unsteady-state problems or steady-state problems but also compute some extreme prob-
lems, such as multi-dimensional Sedov blast wave problems [28,34] which have strong
discontinuities and low density, one-dimensional Leblanc problem [32] which has weak
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density and strong pressure, and two two-dimensional high Mach number astrophysical
jet problems [14,17,18] which have low density, low pressure, and low energy, respec-
tively.

The organization of the paper is as follows. In Section 2, a new fifth-order finite vol-
ume MUS-WENO scheme is proposed. In Section 3, we design a new modified positivity-
preserving method. In Section 4, some classical numerical tests are used to testify to the
efficiency of the new finite volume MUS-WENO scheme in simulating some unsteady-
state problems, steady-state problems, and extreme problems containing low density, low
pressure, or low energy. Finally, the conclusion remarks are presented in Section 5.

2 Finite volume MUS-WENO scheme

We design the MUS-WENO scheme for one-dimensional hyperbolic conservation laws

ut+fx(u) - 0/
{ u(x,0) =up(x). @D

The uniform mesh is divided into some cells I; = [x; 1X with uniform cell sizes

i+%]

._1). We define one-dimensional
2

X 1

— 1
i1 TX = h and the cell centers are x; = 2(xi+% +x

cell averages as

X.
ﬂi(t)::l/ H%u(x,t)dx
X, 1
=2

and use @ to denote the cell averaging operator in the following. We integrate (2.1) over
the target cell [; = and get the integral formulation

di; (¢ 1
0 Fulx )~ fulx ). 22
We approximate (2.2) by the following semi-discrete conservative scheme
di;(t) 1,, A
L= g~y 23)
where the numerical flux f, 11is defined by
in+% :f(”;%r“:r%) (2.4)

with the values ui , obtained by the finite volume MUS-WENO scheme. We use the
2
Lax-Friedrichs flux

Flab)=5f(@)+ f(b) ~a(b-a), 25)

where a=max,|f'(u)| is a constant and the maximum is taken over the whole range of u.
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For simplicity, the finite volume MUS-WENO reconstruction to get 1 _1 to approx-
2

imate u(x;, 1,t) up to fifth-order is received by applying a reconstructlon method with
2
w;=1; for all j that narrated in the following.

Step 1. Select one big stencil S1 = {I;_5,1;i_1,1;,Ii11,1i+2}. We construct one quartic poly-
nomial p;(x) based on the cell averages of S;, which satisfies

Ii/m(x)dx:wj, j=i—2,---,i42. (2.6)
I

Step 2. Select two smaller stencils S,={1;_1,I;} and S3={1I;,I; ;1 }. We construct two linear
polynomials pa(x), p3(x) based on the cell averages of S, and S3, which satisfy

1 . .
E/vaz(x)dx:wjl ]:1_1111 (27)
]

and 1
h/szg(x)dx:wj’ j=1i,i+1. (2.8)

Step 3. Following the approach designed by Levy, Puppo, and Russo for constructing
Central WENO schemes [30,31], we rewrite p;(x) as

3 3
p1(x)=dy (;Pl(x)—égflfw(xv + ) dope(x). (2.9)

(=2

The linear weights d,,£=1,2,3 can be set as any positive numbers on the condition that
Y;_,d,=1. This advantage simplifies the complexity of the spatial reconstruction process
and significantly reduces the computational cost. Following [7,30, 31,47-49], the linear
weights in this paper are set as (1) d; =0.98, d, =0.01, and d3 =0.01; (2) d = %, dr= %, and
d3=1%; (3) d1=0.01, d =0.495, and d3 = 0.495.

Step 4. Similar to [1,27,36], we define the smoothness indicators as

54—Z/A - 1 4" p"( )) dx, 0=1,2,3, (2.10)

where =4 for /=1 and [ =1 for {=2,3, respectively. The B,,{=1,2,3 are

g, =  BPi1+Pia+ 8y ~ D * 781 (201 —Wi =21 +Dig2 |
! 12 20 12
+E 174w; 1 —11w;_, —326w;+174w; 1 —11w; 5 2
3 260
1421461 ( —4; 14+ 6W; — 41 +Wisn ) 2

2275 24 ’ @11
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and

Bor=(W; 1 —w;)?, (2.12a)
B = (W;—W;11)*. (2.12b)

IS

Step 5. Calculate the mapped nonlinear weights based on the linear weights, the smooth-
ness indicators, and a new mapping function. In this article, we define

© =max{p],B3,83}- (2.13)
Then we define
1
wy _ OFf \«
w=———"7) wp=dy| 1+ ( ) , (=123, (2.14)
Yoe-1 @ ( pite

where ¢ is a small positive number to avoid the denominator to become zero. For ex-
ample, « is set as eight in this article. If B, = O(h?), £=1,2,3 in smooth regions, they

satisfy
. O(h47<)
Qo= (H <O(h2'<>+s>

on condition that ¢ < By. Then w,=d;+O(h?), £=1,2,3 in smooth regions. Now, we
designed a new mapping function. It is monotonically increasing with finite slope and
satisfies

A=

) =d+0(h?), (=123, (2.15)

8¢(0)=0, ge(1)=1, Se(dy)=dy,
Mgy _ @) qy_ B\ _ 6
g, (de)=0, g, (de)=0, 8 (dé)—(_lerl)z #0.
So we define ,
2r(w) wdy(d,—1) 1=1,2,3. (2.16)

- d3+w—2d2w—wi+wdy(Bw—2)’

If w=d,+O(h"), we get g/(w)=d,+O(h*). Fig. 1 show this new mapping function for

three different types of the linear weights. We define

WM = Sgg(iwf), (=123 2.17)
Ye—18k(w)

If e < Bx, we obtain
WM =d+0(1°), =123,

in smooth regions.
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Figure 1: The mapping function with ¥ =g,(w), £=1,2,3. Solid line: the identity mapping; solid line with the
symbol 1: d=0.98; solid line with the symbol 2: d=1/3; solid line with the symbol 3: d=0.495; solid line with
the symbol 4: d=0.01.

Step 6. The final reconstruction polynomial w;(x) is
1 3. d >
mu»qém<dpmw—zd%am>+zwwwam. (2.18)
1 (=2"1 (=2

Step 7. We use a third-order TVD Runge-Kutta time discretization [37]
uM ="+ AtL(u"),
u(z)zgu”—l—lu(l)—i—}AtL(u(l)) 219
45 4 4 ’ (2.19)
1 2 2
ntl_ Zyny Z2(2) 4 = 2)
u U +3u +3AtL(u ),

to solve (2.3) and obtain the final discrete scheme.
Now, we study two-dimensional hyperbolic conservation laws

{ up+f(u)x+g(u)y =0,

u(x,,0) = uo(x,9). (220

The grid mesh is set to uniform cells, and the cell sizes are h =x; PN T Yl Y,

with the cell centers

1
(xi,yx) = (5 (xi—% X1 )/E(yk—% F Vst )) .

—_
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Define two-dimensional cells

lije=Tix Je= ;1% 11X Vi1 Vi 1]

and cell averages
- 1 [Yk+1/2 [Xit1/2
ui,k(t)zﬁ/ / M(x/y,t)dx‘iy-
Yk-1/2 Y Xi-1/2

We apply @, @ to denote the cell-average operators in the x-direction and y-direction,
respectively. We integrate (2.20) over the target cell I;, and get

dﬁi,k(t) o 1 yk+% yk*%
2

Y_1
k=3

X

Yyl i+
+/x +3 g(u(x,yk_i_%,t))dx—/

X. 1
=2

%g(u(x,yk_%,t))dx> ) (2.21)

N—

We obtain the semi-discrete conservative form of approximation (2.21)

dit; i (t) 1, . 2 1 5
dt :L(”)i,k:_ﬁ(fzﬁrlk_fz‘f k)_ﬁ(gi,kJr%_gi,kf%)’ (2.22)

1
27 2/

where the numerical fluxes f;, 1, and §;, 1 are expressed as
27 4 2

4
fivgx= L@ (Wl ) (2.232)
4
6 = +
Bikrs = L@y, s s ) (2.23b)
to approximate
L[l g
ﬁ/ Yip 1Y t))dy and h/ ,yk+1 t))dx,
Yy % o %

respectively @, and oy are 4-point Gauss-Lobatto quadrature weights and nodes in the
cell [—1,3]. For the numerical fluxes f(a,b) and g(a,b), we use the s1mple Lax-Friedrichs

flux (2.5). u ko and ui%ﬂ j are the fifth-order approximations of u(x= X;, 1Yo t) and

u(xlwé,yﬂl, ) respectively.
2

However, although the building block of the finite volume WENO scheme is still a
one-dimensional reconstruction method mentioned above, this method needs to be used
multiple times. This way we can “de-cell average” from 2D cell averages i, to point

value uil ki, G at different Gauss-Lobatto quadrature points along cell boundaries.
Lk+oy
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+
. and u.
1+%,k+(7£ l*%,k+(7[

each k, we assume @; =1i;; and apply one-dimensional reconstruction procedure to get
w;(x), then identify

For instance, to get u , the procedure is specified in the following. For

ui+%,k and @

=wi(x;, 1) 17 =wilxiy)

+

respectively, which are the y-cell averages of u at X=X, and at x=x_" ,, respectively. For
2 2

each i+3, we assume Wj=1,_ ; and apply one-dimensional reconstruction procedure to

27

get the polynomial wy(y), then identify

Uity = Wk (yk+o¢h)

at all Gauss-Lobatto quadrature points. Similarly, we assume @; = ﬁ: iy and apply one-

dimensional construction procedure to get the polynomial wy(y), then identify

+
u.
l—%,k-‘rU’[

= wy(yx+o¢h)
at all Gauss-Lobatto quadrature points.

After these point values at associated Gauss-Lobatto quadrature points are received,
we could apply (2.22), (2.23) and the third-order TVD Runge-Kutta time discretization
(2.19) to get the final discrete scheme. We apply local characteristic decomposition to
avoid spurious oscillations in the above reconstruction. This fifth-order finite volume
MUS-WENO scheme is easily developed to arbitrarily high-order accuracy, and in a one-
dimensional, one-dimensional fashion to multidimensional cases. Since the same linear
weights are set at all Gauss-Lobatto integration points on the boundary of the target
cell I;, we could mostly decrease the computation of the spatial reconstruction process
compared to the classical finite volume WENO scheme.

3 A new modification of positivity-preserving method

For the good presentation of the classical positivity-preserving method [42-45], it is as-
sumed that the fluid is inviscid and compressible. In this article, for example, one-
dimensional Euler equations (2.1) are rewritten as

Ui+ F(U), =0, (3.1)

where
2 T
U=(p,mE)T and F(U)z(m,r’;—i—p,(E—i—p)’:).
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In which p is the density, p is the pressure, m = pv is the momentum, v is the velocity,
E is the total energy, and 7y = 1.4 is the ratio of specific heat for the ideal gas. We em-
ploy the original idea [43,44] to design a new modified simple and effective positivity-
preserving method to preserve positive density, positive pressure, and positive energy
for one-dimensional Euler equations. We first set

1m?
P =(r-1(E=37)
to be the pressure function. When p >0, we can easily find that p is a concave function of
U. For Uy = (p1,m1,E1)T and Up = (p2,m32,E2)T, Jensen’s inequality implies (for 0 <w <1)

p(wli+(1—w)Uz) Zwp(Uy)+(1-w)p(Uz), if p1>0, p2>0. (3.2)

We define a set of admissible states as
1m?
G=qU=| m |:p>0 and p=(y—1) E_EF >0. (3.3)

Then G is a convex set. Our objective is to construct the solutions of the new MUS-WENO
scheme in G.

The third-order TVD Runge-Kutta time discretization (2.19) is a convex combination
of the Euler forward equations. Since G is convex, we need only discuss the Euler forward
time discretization method. The first-order Euler forward time discretization of (3.1) as

ar+t=up—A(F

1—F 1), (3.4)

=3

N—

i+
by the MUS-WENO spatial reconstruction algorithm specifie?i in previous section. U is
the approximation to the cell average of the exact solution at time level n. We assume a
polynomial vector Q;(x) = (p;(x),m;(x),Ei(x))" on I;, such that U" is the cell average of
Qi(x) on I;, and

where A = %. The numerical flux is defined as F; /2= E u U:r %) with Ulfr ! acquired

U =Qilxiy) Uy =Qilxiay): (3.5)

=3

In this paper, we use 4-point Gauss-Lobatto quadrature on I; and set the quadrature
points such as
N _ _ sl od _
{xf‘.tx—l,---,él}—{xi_% =X, % —xi+%}.

Similar to [43,44], it is well known that Q; (%% ) €G for all i and « is a sufficient condition for
U?H € G under suitable CFL conditions. We define @, as the Gauss-Lobatto quadrature

weightsin [—1,1] and Y5, @, =1.
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Theorem 3.1 ([43,44]). If Q;(£%) €G for all i and w, then (3.4) is positivity-preserving (U!'! €
G) under the CFL condition

Ml([o]+e)[leo < 1. (3.6)

Proof. The cell average U!" can be written as

4
/ Qi(x)dx = 1@ Qi(41).
Then we obtain

4
07t = Y @ Qi) —A(F(U, U )~ B(U U7 )+ F(U  Ur ) B U ))
2 2 2

3 v A
_ A, A N _ _ _ " B
_;wan(xl)+w4<ul+§_@(P( Z+%,u+%) Fu, ;’ui+;)>>

A .
A, + - + _ . _ +
v (U= (P Uz - Fusur ) )

A /4 A
oo tou- *
Ml—u ) (F(u 1/u+2) F<u 1’u, %)>

2

_ A N
Ms= u1+2 @4 (P(UZ+;,UZ+%)—F(U 1u1+2)>

Since both M; and My are two types of (3.4), M; and M, are in G under the CFL condition
(3.6). So we can easily know that Uf” isin G. O

The vector of approximation polynomials are
Qi(x) = (pi (x),mi(x), Ei(x))",

which are reconstructed by the finite volume MUS-WENO scheme. The cell average is
ur=(p!,m¢,E") € G. To achieve positivity-preserving property, we can modify Q;(x) as

Qi(x)=0(Qi(x)—Uf)+Urf, (3.7)

on condition that 6 is determined by confirming p(£) >0 and p(Q;(£%)) >0 at all Gauss-
Lobatto points £¢, a =1,--,4, respectively. The inequality p(Q;(%%)) >0 can be rewritten
as

ap0*+a10+a; >0, (3.8)
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where

In the following, we show the flowchart of determining 6 in different situations.
(1) Initialize 6 =1.

(2) If p;(£¥) <0, then
o !
0= m¥l.‘}’4{9,

] } (3.9)

(3) Ifap#0and A= al 4apa;>0, we have 01 ,= ”1i\f . Then 6 is determined according
to the distributions of 6; . For example, if ay > 0 A>0,and 6, > 6,

min(6,6,), 0<6,<6;

6=< min(6,6;), 0<6;<6<0y; (3.10)
0, 0, <0<6 or 0<6<0.
IftZ0<0, A>0,and 0, >0,

min(9,92), 0<0,<0;
=< min(6,6,), 0<6;<6<0y; (3.11)
0, 0, <0<6 or 0<6<0.

If ag>0and A <0, then 6=0. If 490 <0 and A <0, then 6 =0.

(4) If ag=0and a; #0, we have 63 =— % Then 6 is determined according to the distri-
bution of 63. For example, if a; >0,

min(6,6;), 0<6;<6;
=< 0, 0;<0<0; (3.12)
0, 0 < 6s.

If a1 <O,
min(9,93), 0<85<0;
=< 0, 03 <0<6,; (3.13)
0, 0 <0s.
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() If ap =0, a1 =0, then 6 is determined according to the value of a,. For example, if
a,>0,0=0.1far, <0, 6=0.

Finally, we obtain ljlift 1= Qi(x, . ! ). Then (3.4) with the positivity-preserving limiter
is

Uf+1:af—A(ﬁ(af O ) — B, U )). (3.14)

Remark 3.1. We describe in detail the design and implementation of a new modi-
fied positivity-preserving method for one-dimensional Euler equations. The positivity-
preserving method for two-dimensional Euler equations can be deduced in a similar way.
Previous positivity-preserving methods required the design of two parameters to achieve
the positivity of density and pressure. In this paper, we only need to design only one pre-
cise parameter 6, which can keep positive density, positive pressure, and positive energy,
respectively. In the next section, we demonstrate the effectiveness of this new modified
positivity-preserving method through extensive extreme problems.

4 Numerical results

In this section, the numerical results of the new fifth-order finite volume mapped
unequal-sized WENO (MUS-WENO) scheme in comparison to the classical fifth-order fi-
nite volume WENO-JS scheme [35], the classical fifth-order finite volume mapped WENO
(MWENO) scheme [23], and the fifth-order finite volume WENO-ZQ scheme [48] are
presented, respectively. The CFL number is 0.6. We set three different types of the lin-
ear weights as: (1) d1=0.98, d,=0.01, and d3=0.01; (2) d1=1, do=3, and ds=1; (3) d1=0.01,
d,=0.495, and d3=0.495, respectively. And we reset the linear weights to be the first type in
the other examples unless specified otherwise. When solving some classical steady-state
problems, the average residue is defined as

Resp =

% |R1i|+|R2;|+|R3;|+|R4;|

N ) (4.1)

i=1

where Rx; are local residuals of different conservative variables

op| Pl —p! o) | (ow)i T —(pu)!
Ri=5¢l.ar R2i==51.7 Af /

_3(po)| _ (po) T~ (pv)} 9| _EM_pEr
Ri==3r|,® At ’ Re=5el ™ ar

and N is the total number of grid cells. In this article, we use a single index i to list all
grid cells in two dimensions.
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Example 4.1. One-dimensional linear advection equation is
urtu,=0, —-1<x<l, 4.2)
with periodic boundary condition and the initial condition

u(x,0) =sin (nx_ sm(rz-[x))’

and where the exact solution is taken as

sin(n(x—t))>‘

u(x,t)zsin(ﬂ(x—t)— -

The final time is t =2. We set ¢ =10"* in this example. The numerical errors and orders
are computed by the fifth-order finite volume MUS-WENO scheme, WENO-ZQ scheme,
MWENO scheme, and WENO-JS scheme in Table 1, respectively. It can be seen that the
finite volume MUS-WENO scheme and MWENO scheme could achieve optimal fifth-
order accuracy, even in the presence of critical points when ¢ is a very tiny number. The
errors incurred at this level of grid refinement by applying the finite volume WENO-JS
scheme and WENO-ZQ scheme with e=10"%" are not good and the errors are third-order
accuracy in the L* norm as shown in Table 1.

Example 4.2. One-dimensional nonlinear Burgers’ equation is

12

i+ (7) —0, x€(0,2), 4.3)
with periodic boundary condition. And the initial condition is u(x,0) =0.5+sin(7x). The
final time is t =0.5/7t. The numerical errors and orders are computed by the fifth-order
finite volume MUS-WENO scheme, WENO-ZQ scheme, MWENO scheme, and WENO-
JS scheme in Table 2, respectively. It can be seen that the finite volume MUS-WENO
scheme and MWENO scheme could achieve fifth-order accuracy with e=10"%" and the
former scheme could produce less truncation errors in L! and L norms.

Example 4.3. Two-dimensional nonlinear Burgers’ equation is

ut+(”22>x+(”22>y:0, %y € (0,4), (4.4)

with periodic boundary conditions in both directions. And the initial condition is
u(x,y,0) =0.5+sin(r(x+y)/2). The final time is t =0.5/7. The numerical errors and
orders of accuracy are computed by the fifth-order finite volume MUS-WENO scheme,
WENO-ZQ scheme, MWENO scheme, and WENO-JS scheme in Table 3, respectively.
It can be seen that the finite volume MUS-WENO scheme and MWENO scheme could
achieve fifth-order accuracy with &= 10~ and the former scheme could produce less
truncation errors in L' and L® norms. And the other three different finite volume WENO
schemes could not obtain their designed order of accuracy with e=10"%C.
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Table 1: u;+u,=0. MUS-WENO scheme, WENO-JS scheme, WENO-ZQ scheme, and MWENO scheme.
e=10"%0. T=2.

MUS-WENO (1) scheme WENO-JS scheme
grid cells Ll error | order | L® error | order | L error | order | L® error | order
20 2.22E-3 7.29E-3 4.92E-3 1.40E-2
40 7.24E-5 | 4.94 1.91E-4 525 | 3.58E-4 | 3.78 1.09E-3 3.68
60 9.74E-6 4.95 2.66E-5 4.86 6.10E-5 4.36 2.52E-4 3.61
80 2.33E-6 | 4.97 6.37E-6 497 | 1.70E-5 | 4.43 9.00E-5 3.58
100 7.67E-7 4.98 2.10E-6 497 6.36E-6 441 4.11E-5 3.51
120 3.09E-7 | 4.99 8.48E-7 498 | 2.82E-6 | 4.45 2.19E-5 3.46
MUS-WENO (2) scheme MUS-WENO (3) scheme
grid cells L! error | order | L® error | order | L error | order | L® error | order
20 3.46E-2 8.31E-2 4.11E-2 9.82E-2
40 3.54E-4 | 6.61 1.91E-3 544 | 5.26E-4 | 6.29 2.71E-3 5.18
60 2.45E-5 | 6.58 1.31E-4 6.60 | 3.55E-5 | 6.65 1.95E-4 6.49
80 5.11E-6 | 5.46 2.33E-5 6.01 | 7.29E-6 | 5.50 3.47E-5 6.00
100 1.56E-6 | 5.33 6.26E-6 5.89 | 2.21E-6 | 5.35 9.34E-6 5.88
120 5.94E-7 | 5.28 2.26E-6 5.60 | 8.39E-7 | 5.31 3.33E-6 5.66
WENO-ZQ (1) scheme MWENO scheme
grid cells Ll error | order | L® error | order | L error | order | L® error | order
20 2.30E-3 6.46E-3 1.74E-3 5.13E-3
40 1.50E-4 | 3.94 7.88E-4 3.04 | 6.92E-5 | 4.65 2.09E-4 4.61
60 2.42E-5 451 1.67E-4 3.83 9.56E-6 4.88 2.75E-5 5.00
80 5.02E-6 | 5.46 2.62E-5 6.43 | 2.31E-6 | 494 6.57E-6 4.98
100 2.84E-6 2.56 2.39E-5 0.41 7.61E-7 497 2.16E-6 4.99
120 1.45E-6 | 3.68 1.76E-5 1.68 | 3.07E-7 | 4.98 8.69E-7 4.99
WENO-ZQ (2) scheme WENO-ZQ (3) scheme
grid cells L! error | order | L® error | order | L error | order | L® error | order
20 2.90E-2 7.07E-2 3.66E-2 8.69E-2
40 8.68E-4 | 5.06 4.70E-3 391 | 1.14E-3 | 5.00 6.19E-3 3.81
60 1.49E-4 4.35 1.14E-3 3.50 1.81E-4 4.55 1.36E-3 3.74
80 3.15E-5 | 541 3.17E-4 444 | 391E-5 | 5.32 3.69E-4 4.53
100 1.49E-5 3.37 1.64E-4 2.95 1.79E-5 3.49 1.88E-4 3.02
120 7.12E-6 | 4.03 9.38E-5 3.07 | 8.90E-6 | 3.84 1.22E-4 2.37
Example 4.4. One-dimensional Euler equations are
p 5 pu
5l oew )5z put+p | =0, (4.5)
E u(E+p)

where p is the density, p is the pressure, u is the velocity, and E is the total energy with
periodic boundary condition. The initial conditions are p(x,0) =1+0.2sin®(7tx), u(x,0) =
1, and p(x,0) =1. The exact solution of density is p(x,t) = 1+0.2sin®(7r(x—t)). The
computational field is x€10,2]. The final computing time is t=2. The numerical errors and
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Table 2: ut—l—(”—;)x:O. MUS-WENO scheme, WENO-JS scheme, WENO-ZQ scheme, and MWENO scheme.

e=10"%. T=05/m.
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MUS-WENO (1) scheme WENO-JS scheme
grid cells LY error | order | L® error | order | LT error | order | L*® error | order
10 7.34E-3 2.15E-2 5.91E-3 1.71E-2
20 7.69E-4 | 3.26 4.27E-3 234 | 9.88E-4 | 2.58 7.13E-3 1.27
40 418E-5 | 4.20 4.33E-4 3.30 | 8.72E-5 | 3.50 8.05E-4 3.15
80 1.76E-6 | 4.57 2.21E-5 429 | 413E-6 | 4.40 4.12E-5 4.29
160 5.97E-8 | 4.88 7.88E-7 481 | 1.74E-7 | 4.56 1.52E-6 4.76
320 1.92E9 | 4.96 2.53E-8 496 | 7.69E-9 | 4.50 1.68E-7 3.18
MUS-WENO (2) scheme MUS-WENO (3) scheme
grid cells LY error | order | L® error | order | LY error | order | L® error | order
10 3.48E-2 7.97E-2 3.73E-2 8.26E-2
20 3.82E-3 | 3.18 2.37E-2 1.75 | 5.02E-3 | 2.89 2.74E-2 1.59
40 5.51E-5 | 6.12 2.87E-4 6.37 | 6.28E-5 | 6.32 3.57E-4 6.26
80 1.29E-6 | 541 1.67E-5 410 | 1.21E-6 | 5.70 1.39E-5 4.68
160 4.39E-8 | 4.88 6.29E-7 473 | 3.97E-8 | 4.93 5.49E-7 4.67
320 1.45E-9 | 492 2.04E-8 494 | 1.31E-9 | 4.92 1.80E-8 493
WENO-ZQ (1) scheme MWENO scheme
grid cells LY error | order | L® error | order | LY error | order | L® error | order
10 5.39E-3 1.88E-2 2.77E-3 1.04E-2
20 1.33E-3 | 2.02 7.51E-3 1.32 | 6.31E-4 | 2.13 4.70E-3 1.15
40 5.71E-5 | 4.54 4.37E-4 410 | 4.26E-5 | 3.89 441E-4 341
80 2.84E-6 | 4.33 2.23E-5 429 | 1.78E-6 | 4.58 2.23E-5 431
160 1.12E-7 | 4.66 9.04E-7 462 | 6.04E-8 | 4.88 7.93E-7 481
320 5.71E-9 | 4.30 1.07E-7 3.08 | 1.94E-9 | 4.96 2.55E-8 4.96
WENO-ZQ (2) scheme WENO-ZQ (3) scheme
grid cells LY error | order | L® error | order | LY error | order | L® error | order
10 3.07E-2 7.26E-2 3.29E-2 7.50E-2
20 3.22E-3 | 3.26 1.96E-2 1.89 | 3.74E-3 | 3.13 2.32E-2 1.69
40 1.63E-4 | 4.30 9.65E-4 435 | 1.96E-4 | 4.25 1.23E-3 4.24
80 7.96E-6 | 4.36 8.25E-5 3.55 | 9.61E-6 | 4.35 1.04E-4 3.56
160 4.05E-7 | 4.30 9.14E-6 3.17 | 4.85E-7 | 4.31 1.17E-5 3.16
320 1.87E-8 | 4.43 5.28E-7 411 | 2.24E-8 | 4.44 6.75E-7 411

orders of the density are computed by the fifth-order finite volume MUS-WENO scheme,
WENO-ZQ scheme, MWENO scheme, and WENO-JS scheme in Table 4, respectively.
The finite volume MUS-WENO scheme with e =104 could obtain fifth-order accuracy
in smooth regions, and other fifth-order WENO schemes could not achieve their designed
order of accuracy with e=10"4.
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Table 3: ut—l—(”;)x—k(”;)y:o. MUS-WENO scheme, WENO-JS scheme, WENO-ZQ scheme, and MWENO
scheme. e=10"%0. T=0.5/7.

MUS-WENO (1) scheme WENO-JS scheme
grid cells | LT error | order | L® error | order | L' error | order | L* error | order
10x 10 | 1.05E-2 3.30E-2 6.37E-3 1.77E-2
20x 20 | 7.30E-4 | 384 | 320E-3 | 336 | 883E4 | 285 | 571E-3 | 1.63
40x 40 | 390E-5 | 423 | 359E4 | 316 | 821E-5 | 343 | 6.74E-4 | 3.08
80x 80 | 1.70E-6 | 452 | 210E-5 | 409 | 408E-6 | 433 | 391E-5 | 411
160x160 | 593E-8 | 4.84 | 7.66E-7 | 478 | 1.74E-7 | 455 | 142E-6 | 4.78
320x320 | 1.91E9 | 496 | 2.52E-8 | 493 | 7.64E-9 | 451 | 154E-7 | 3.21
MUS-WENO (2) scheme MUS-WENO (3) scheme
grid cells | LT error | order | L® error | order | L' error | order | L* error | order
10x 10 | 3.63E-2 9.43E-2 3.91E-2 1.01E-1
20x 20 | 498E-3 | 2.87 | 192E-2 | 230 | 597E-3 | 271 | 212E-2 | 2.25
40x 40 | 571E-5 | 645 | 330E4 | 586 | 6.59E-5 | 6.50 | 4.81E-4 | 546
80x 80 | 1.24E-6 | 553 | 1.60E-5 | 436 | 1.16E-6 | 583 | 1.35E-5 | 5.16
160x160 | 4.36E-8 | 4.83 | 6.04E-7 | 473 | 396E-8 | 4.87 | 524E-7 | 4.69
320x320 | 1.44E9 | 492 | 2.03E-8 | 490 | 1.30E-9 | 493 | 1.78E-8 | 4.88
WENO-ZQ (1) scheme MWENO scheme
grid cells | LT error | order | L® error | order | L' error | order | L* error | order
10x 10 | 8.76E-3 2.84E-2 3.67E-3 1.59E-2
20x 20 | 9.79E-4 | 3.16 | 299E-3 | 325 | 497E-4 | 289 | 3.68E-3 | 2.11
40x 40 | 542E-5 | 418 | 3.62E4 | 3.04 | 400E-5 | 3.63 | 3.66E-4 | 3.33
80x 80 | 452E-6 | 358 | 403E-5 | 317 | 1.73E-6 | 453 | 2.21E-5 | 4.11
160x160 | 6.94E-8 | 6.03 | 7.71E-7 | 571 | 599E-8 | 4.85 | 7.71E-7 | 4.78
320x320 | 927E9 | 290 | 3.93E-7 | 097 | 193E-9 | 496 | 253E-8 | 493
WENO-ZQ (2) scheme WENO-ZQ (3) scheme
grid cells | LT error | order | L® error | order | L' error | order | L* error | order
10x 10 | 3.21E-2 8.80E-2 3.53E-2 9.24E-2
20x 20 | 4.04E-3 | 299 | 159E-2 | 247 | 466E-3 | 292 | 1.75E-2 | 240
40x 40 | 219E4 | 420 | 1.59E-3 | 332 | 257E4 | 418 | 1.80E-3 | 3.28
80x 80 | 1.04E-5 | 439 | 132E-4 | 359 | 1.17E-5 | 445 | 1.52E-4 | 3.56
160x160 | 1.96E-7 | 574 | 545E-6 | 4.60 | 2.31E-7 | 5.67 | 6.65E-6 | 4.52
320x320 | 1.83E-8 | 3.42 | 9.24E-7 | 256 | 2.17E-8 | 341 | 1.19E-6 | 248
Example 4.5. Two-dimensional Euler equations are
; 0 gu 0o
Ofpu | O putp | O puo (4.6)
ot | pv ox puv ay | pv+p
E u(E+p) v(E+p)

where p is the density, p is the pressure, u is the x-directional velocity, v is the y-directional
velocity, and E is the total energy with periodic boundary conditions in two directions.
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Table 4: One-dimensional Euler equations. MUS-WENO scheme, WENO-JS scheme, WENO-ZQ scheme, and

MWENO scheme. e=10"40, T=2.
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MUS-WENO (1) scheme WENO-JS scheme
grid cells L! error | order | L® error | order | L error | order | L® error | order
20 2.06E-2 3.46E-2 2.41E-2 5.99E-2
40 2.84E-3 | 2.86 6.66E-3 2.38 | 5.68E-3 | 2.09 1.58E-2 1.92
60 5.39E-4 | 4.09 1.24E-3 415 | 1.08E-3 | 4.09 3.54E-3 3.69
80 1.39E-4 | 4.71 3.17E-4 473 | 5.18E-4 | 256 1.06E-3 4.19
100 4.70E-5 4.87 1.07E-4 4.87 2.18E-4 3.86 4.16E-4 4.19
120 191E-5 | 493 4.35E-5 493 | 9.60E-5 | 4.51 1.80E-4 4.59
MUS-WENO (2) scheme MUS-WENO (3) scheme
grid cells L! error | order | L® error | order | L error | order | L® error | order
20 2.20E-2 4.29E-2 2.22E-2 4.49E-2
40 3.13E-3 | 281 7.73E-3 247 | 3.25E-3 | 2.77 8.18E-3 2.46
60 5.52E-4 | 4.28 1.35E-3 430 | 5.58E-4 | 4.34 1.41E-3 4.34
80 1.40E-4 | 4.76 3.42E-4 478 | 141E4 | 4.78 3.54E-4 4.80
100 4.73E-5 4.88 1.15E-4 4.89 4.75E-5 4.88 1.19E-4 490
120 1.92E-5 | 4.94 4.65E-5 495 | 1.93E-5 | 4.94 4.80E-5 4.96
WENO-ZQ (1) scheme MWENO scheme
grid cells L! error | order | L® error | order | L error | order | L® error | order
20 2.05E-2 3.65E-2 2.11E-2 4.40E-2
40 3.00E-3 | 2.77 7.23E-3 234 | 1.87E-3 | 3.49 6.26E-3 2.81
60 5.60E-4 | 4.14 1.40E-3 4.04 | 5.08E-4 | 3.22 1.35E-3 3.79
80 1.43E-4 | 4.75 4.10E-4 428 | 1.68E-4 | 3.85 3.75E-4 444
100 4.75E-5 493 1.47E-4 4.59 6.13E-5 451 1.56E-4 3.92
120 1.91E-5 | 5.00 6.90E-5 417 | 2.50E-5 | 4.92 6.62E-5 4.72
WENO-ZQ (2) scheme WENO-ZQ (3) scheme
grid cells LY error | order | L® error | order | LY error | order | L® error | order
20 2.19E-2 4.60E-2 2.21E-2 4.78E-2
40 3.69E-3 | 257 1.04E-2 214 | 3.85E-3 | 2.52 1.11E-2 2.11
60 7.17E-4 | 4.04 2.57E-3 345 | 7.65E-4 | 3.98 2.87E-3 3.34
80 1.83E-4 | 4.75 8.42E-4 3.88 | 1.97E4 | 4.72 9.80E-4 3.73
100 6.17E-5 4.87 3.41E-4 4.05 6.74E-5 4.80 4.06E-4 3.95
120 2.52E-5 | 492 1.67E-4 3.90 | 2.76E-5 | 4.89 1.97E-4 3.96

The initial conditions are p(x,y,0) =1+0.2sin®(7r(x+v)), u(x,y,0) =1, v(x,y,0) =1, and
p(x,y,0) = 1. The exact solution of density is p(x,y,t) = 1+0.2sin®(7r(x+y—2t)). The
computational field is (x,y) € [0,2] x [0,2]. The final computational time is t =2. The nu-
merical errors and orders of density are computed by the fifth-order finite volume MUS-
WENO scheme, WENO-ZQ scheme, MWENO scheme, and WENO-]JS scheme in Table 5,
respectively. The new finite volume MUS-WENO scheme could maintain good numeri-
cal results in smooth regions, and the other three WENO schemes could not achieve their
designed order of accuracy with e=10"%" once again.
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Table 5: Two-dimensional Euler equations. MUS-WENO scheme, WENO-JS scheme, WENO-ZQ scheme, and
MWENO scheme. e=10"%0. T=2.

MUS-WENO (1) scheme WENO-JS scheme
grid cells | L! error | order | L® error | order | L! error | order | L* error | order
20x 20 | 2.10E-2 4 .48E-2 3.42E-2 7.95E-2
40x 40 | 412E-3 | 235 | 1.05E-2 | 210 | 1.31E-2 | 1.39 | 3.71E-2 | 1.10
60x 60 | 9.23E-4 | 3.69 | 217E-3 | 3.88 | 440E-3 | 2.69 | 1.19E-2 | 281
80x 80 | 247E-4 | 457 | 571E-4 | 4.65 | 2.15E-3 | 2.48 | 4.89E-3 | 3.08
100x100 | 8.45E-5 | 4.81 1.94E-4 485 | 1.16E-3 | 2.76 3.07E-3 2.09
120x120 | 3.46E-5 | 490 | 790E-5 | 492 | 6.94E-4 | 283 | 1.70E-3 | 3.23
MUS-WENO (2) scheme MUS-WENO (3) scheme
grid cells | L! error | order | L® error | order | L! error | order | L* error | order
20x 20 | 2.14E-2 5.22E-2 2.18E-2 5.42E-2
40x 40 | 4.42E-3 | 228 | 1.18E-2 | 214 | 454E-3 | 227 | 124E-2 | 213
60x 60 | 943E-4 | 381 | 235E-3 | 398 | 955E-4 | 385 | 243E-3 | 4.01
80x 80 | 2.51E-4 | 460 | 6.09E-4 | 4.69 | 2.53E-4 | 462 | 629E4 | 4.70
100x100 | 8.52E-5 | 4.84 2.06E-4 486 | 8.56E-5 | 4.85 2.12E4 4.86
120x120 | 348E-5 | 491 | 839E-5 | 493 | 349E-5 | 492 | 8.64E-5 | 494
WENO-ZQ (1) scheme MWENO scheme
grid cells | L! error | order | L® error | order | L! error | order | L* error | order
20x 20 | 2.10E-2 4.69E-2 2.75E-2 5.90E-2
40x 40 | 427E-3 | 229 | 1.13E2 | 205 | 1.07E-2 | 1.36 | 3.03E-2 | 0.96
60x 60 | 9.61E-4 | 368 | 248E-3 | 3.75 | 506E-3 | 1.84 | 1.58E-2 | 1.60
80x 80 | 2.57E-4 | 459 | 716E-4 | 432 | 236E-3 | 265 | 6.64E-3 | 3.01
100x100 | 8.62E-5 | 4.89 2.39E-4 491 | 1.23E-3 | 294 3.41E-3 2.99
120x120 | 348E-5 | 498 | 1.09E4 | 434 | 702E4 | 3.06 | 1.87E-3 | 3.29
WENO-ZQ (2) scheme WENO-ZQ (3) scheme
grid cells | L! error | order | L® error | order | L' error | order | L* error | order
20x 20 | 2.27E-2 5.77E-2 2.34E-2 6.01E-2
40x 40 | 4.70E-3 | 227 | 153E2 | 192 | 4.84E-3 | 227 | 1.61E-2 | 1.90
60x 60 | 1.21E-3 | 335 | 407E-3 | 326 | 127E-3 | 329 | 453E-3 | 3.12
80x 80 | 3.14E-4 | 468 | 1.32E-3 | 391 | 335E4 | 464 | 149E3 | 3.86
100x100 | 1.07E-4 | 4.83 5.27E-4 411 | 1.15E4 | 4.80 6.22E-4 3.92
120120 | 7.88E-8 | 4.88 | 143E-6 | 4.08 | 474E-5 | 485 | 3.06E-4 | 3.89
Example 4.6. One-dimensional Euler equations are
o P 9 ou
ol WA R pu>+p | =0, 4.7)
E u(E+p)

where p is the density, p is the pressure, u is the velocity, and E is the total energy with
periodic boundary condition. The initial conditions are p(x,0) =1+0.99sin(x), u(x,0)=1,
and p(x,0) =1. The exact solution of density is p(x,t) =1+0.99sin(x—t). The computa-
tional field is x € [0,277]. The final computing time is t =0.1. The numerical errors and
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Table 6: 1D Euler equations: initial data p(x,0) =1+40.99sin(x). MUS-WENO scheme, WENO-JS scheme,
WENO-ZQ scheme, and MWENO scheme. e=10"%0. T=0.1.

MUS-WENO (1) scheme WENO-JS scheme

grid cells | LT error | order | L® error | order | L' error | order | L® error | order
20 5.08E-4 8.49E-4 9.81E-4 5.71E-4

40 1.82E-6 | 813 | 6.00E-6 | 7.15 | 3.03E-5 | 5.02 | 1.90E-5 | 4.91

60 132E-7 | 647 | 515E-7 | 6.05 | 403E-6 | 498 | 2.53E-6 | 4.97

80 228E-8 | 6.11 6.57E-8 716 | 9.70E-7 | 4.95 6.25E-7 4.86

100 747E9 | 5.00 1.88E-8 | 5.60 | 3.17E-7 | 5.01 2.06E-7 | 497
120 3.00E-9 | 5.00 7.64E-9 495 | 1.28E-7 | 5.00 8.26E-8 5.01

MUS-WENO (2) scheme MUS-WENO (3) scheme
grid cells | LT error | order | L® error | order | L' error | order | L® error | order
20 7.69E-3 1.27E-2 9.67E-3 1.60E-2
40 453E-5 | 741 | 1.34E-4 | 656 | 6.66E-5 | 718 | 1.99E-4 | 6.33
60 150E-6 | 8.41 | 553E-6 | 7.86 | 2.09E-6 | 854 | 7.81E-6 | 7.99
80 2.28E-8 | 1455 | 543E-8 | 16.07 | 2.2E-8 | 15.71 | 543E-8 | 17.27

100 747E9 | 5.00 1.88E-8 | 4.75 | 747E-9 | 5.00 1.88E-8 | 4.75
120 3.00E9 | 5.00 | 7.64E-9 | 495 | 3.00E-9 | 5.00 7.64E-9 | 495

WENO-ZQ (1) scheme MWENO scheme
grid cells | LT error | order | L® error | order | L' error | order | L* error | order
20 2.04E-3 2.07E-3 1.34E-4 6.40E-5
40 7.56E-5 | 476 | 117E-4 | 415 | 420E-6 | 5.00 | 2.10E-6 | 4.93
60 1.05E-5 | 486 | 212E-5 | 421 | 573E-7 | 491 | 2.86E-7 | 4091
80 8.19E-6 | 0.88 | 2.88E-5 | -1.06 | 1.38E-7 | 496 | 6.88E-8 | 4.95

100 1.64E-6 | 720 | 5.39E-6 751 | 452E-8 | 4.99 2.26E-8 | 4.99
120 6.61E-7 | 4.99 229E-6 | 470 | 1.82E-8 | 4.98 9.11E9 | 499

WENO-ZQ (2) scheme WENO-ZQ (3) scheme
grid cells | LT error | order | L® error | order | L' error | order | L® error | order
20 9.63E-3 9.82E-3 1.15E-2 1.18E-2
40 416E-4 | 453 | 655E-4 | 391 | 492E-4 | 454 | 7.80E-4 | 391
60 558E-5 | 495 | 1.15E4 | 429 | 6.83E-5 | 487 | 141E-4 | 4.22
80 3.96E-5 | 1.19 1.44E-4 | -0.78 | 497E-5 | 1.10 1.81E-4 | -0.88

100 1.33E-5 | 4.88 | 4.94E-5 479 | 1.68E-5 | 4.85 6.26E-5 | 4.77
120 4.06E-6 | 6.52 1.60E-5 6.18 | 541E-6 | 623 | 2.14E-5 5.87

orders of the density are computed by the fifth-order finite volume MUS-WENO scheme,
WENO-ZQ scheme, MWENO scheme, and WENO-JS scheme in Table 6, respectively. It
can be seen that the MUS-WENO scheme, WENO-JS scheme and MWENO scheme could
achieve fifth-order accuracy with e=10"%". But when the grid is dense, the MUS-WENO
scheme could produce less truncation errors in L! and L® norms.
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Example 4.7. Two-dimensional Euler equations are

d 4 d gu d -
a9 ou a9 ouc+p a9 ouv _
E u(E+p) v(E+p)

where p is the density, p is the pressure, u is the x-directional velocity, v is the y-directional
velocity, and E is the total energy with periodic boundary conditions in two directions.
The initial conditions are p(x,y,0) = 1+0.99sin(x+y), u(x,y,0) =1, v(x,y,0) =1, and
p(x,y,0) =1. The exact solution of density is p(x,y,t) =1+0.99sin(x+y—2t). The com-
putational field is (x,y) € [0,277] x [0,277]. The final computational time is t = 0.1. The
numerical errors and orders of density are computed by the fifth-order finite volume
MUS-WENO scheme, WENO-ZQ scheme, MWENO scheme, and WENO-]JS scheme in
Table 7, respectively. It can be seen that the MUS-WENO scheme, WENO-JS scheme and
MWENO scheme could achieve fifth-order accuracy with e=10"%. But when the grid is
dense, the MUS-WENO scheme could produce less truncation errors in L! and L* norms.

Example 4.8. One-dimensional Sedov blast wave problem [28,34]. This problem has
strong shocks and low density. The initial conditions are p =1, =0, and E=10"12
everywhere except that the energy in the center cell is 329, The computing field is
x € [—2,2]. The final time is t =0.001. The inlet and outlet conditions are imposed on the
left and right boundaries. The classical fifth-order finite volume WENO-JS scheme does
not work well for this example. The density, velocity, and pressure computed by the new
MUS-WENO scheme are shown in Fig. 2. And the finite volume MUS-WENO scheme

with =104 performs well for this extreme problem.

800000

@
3
3

600000 [~

re

4qooo -

Density
Velocity
°

Pres:

200000 |~

&
3
3

ol

0
X

Xof

Figure 2: One-dimensional Sedov blast wave problem. T=0.001. From left to right: density; velocity; pressure.
Solid line: exact solution; squares: MUS-WENO scheme. £=10"40. 400 grid cells.

Example 4.9. Two-dimensional Sedov problem [28, 34]. The initial conditions are p =

1, u=00v=0, and E=10"12 everywhere unless the energy is O'ﬁ‘fyw at the lower left
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Table 7: 2D Euler equations: initial data p(x,y,0)=1+0.99sin(x+y). MUS-WENO scheme, WENO-JS scheme,
WENO-ZQ scheme, and MWENO scheme. e=10"%0. T=0.1.

MUS-WENO (1) scheme WENO-JS scheme
grid cells | LT error | order | L® error | order | L' error | order | L® error | order
20x 20 | 8.25E-3 2.72E-3 4.08E-3 8.11E-4
40x 40 | 291E-5 | 815 | 151E-5 | 750 | 144E-4 | 482 | 3.35E-5 | 4.60
60x 60 | 3.33E-6 | 535 | 1.30E-6 | 6.05 | 1.94E-5 | 495 | 4.81E-6 | 4.79
80x 80 793E-7 | 4.99 1.53E-7 743 | 4.64E-6 | 4.97 1.17E-6 4.92
100x100 | 2.60E-7 | 499 | 4.14E-8 | 585 | 1.53E-6 | 498 | 3.80E-7 | 5.04
120x120 | 1.05E-7 | 4.99 1.67E-8 499 | 6.16E-7 | 499 1.50E-7 511
MUS-WENO (2) scheme MUS-WENO (3) scheme
grid cells | LT error | order | L® error | order | L' error | order | L® error | order
20x 20 | 6.17E-2 2.01E-2 7.02E-2 2.26E-2
40x 40 | 6.20E-4 | 6.64 | 3.02E-4 | 6.05 | 8.67E-4 | 634 | 430E-4 | 571
60x 60 | 1.66E-5 | 893 | 1.21E-5 | 794 | 229E-5 | 896 | 1.71E-5 | 7.95
80x 80 793E-7 | 10.57 | 1.26E-7 | 1585 | 7.93E-7 | 11.69 | 1.26E-7 | 17.07
100x100 | 2.60E-7 | 499 | 4.14E-8 | 499 | 2.60E-7 | 499 | 414E-8 | 4.99
120x120 | 1.05E-7 | 4.99 1.67E-8 498 | 1.05E-7 | 4.99 1.67E-8 4.98
WENO-ZQ (1) scheme MWENO scheme
grid cells | LT error | order | L® error | order | L' error | order | L* error | order
20x 20 | 1.65E-2 5.26E-3 5.90E-4 9.94E-5
40x 40 | 3.06E-4 | 575 | 145E-4 | 5.18 | 2.03E-5 | 486 | 4.01E-6 | 4.63
60x 60 | 1.39E-4 | 195 | 997E-5 | 093 | 2.76E-6 | 493 | 5.56E-7 | 4.88
80x 80 1.83E-5 | 7.04 1.74E-5 6.07 | 6.62E-7 | 4.96 1.35E-7 | 4.92
100x100 | 8.03E-6 | 3.68 | 9.06E-6 | 293 | 2.18E-7 | 497 | 444E-8 | 4.98
120x120 | 1.05E-6 | 11.14 | 1.53E-6 9.75 | 8.79E-8 | 4.99 1.79E-8 4.98
WENO-ZQ (2) scheme WENO-ZQ (3) scheme
grid cells | LT error | order | L® error | order | L' error | order | L® error | order
20x 20 | 5.24E-2 1.73E-2 5.67E-2 1.88E-2
40x 40 | 2.03E-3 | 4.69 | 9.67E-4 | 416 | 242E-3 | 455 | 1.16E-3 | 4.02
60x 60 | 6.00E-4 | 3.00 | 471E-4 | 1.77 | 718E4 | 299 | 5.62E-4 | 1.78
80x 80 2.30E-4 | 3.33 2.38E-4 237 | 292E4 | 3.12 3.03E-4 2.14
100x100 | 7.00E-5 | 534 | 7.66E-5 | 508 | 824E-5 | 567 | 898E-5 | 5.46
120x120 | 2.91E-5 | 4.81 4.18E-5 3.32 | 3.80E-5 | 425 5.48E-5 271

corner. The reflective boundary conditions are applied on the left boundary and the
bottom boundary, and the outlet conditions are applied on the right boundary and the top
boundary, respectively. The computational time is t =1. The results of density computed
by the fifth-order finite volume MUS-WENO scheme are shown in Fig. 3. Again, the new
finite volume MUS-WENO scheme with e=10~%" performs well for this extreme problem.

Example 4.10. Two two-dimensional high Mach number astrophysical jet problems [14,
17,18].
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Density

Figure 3: Two-dimensional Sedov problem. T =1. From left to right: 30 equally spaced density contours
from 0.9 to 5.0; density projects to radial direction. Solid line: exact solution; squares: MUS-WENO scheme.

e=10"%0. 160 x 160 grid cells.

(1) A Mach 80 problem. The initial conditions are (p,u,v,p,7)7=(0.5,0,0,0.4127,5/3)T.
The computational field is (x,y) € [0,2] x [—0.5,0.5]. The final time is =0.07. The outflow
boundary conditions are used for the right boundary, top boundary, and bottom bound-
ary, respectively. For the left boundary, the initial conditions are

(5,30,0,0.4127,5/3)T, y€[—0.05,0.05],

T
(oropy) {(0.5,0,0,0.4127,5/3)T, otherwise.
The density, pressure, and temperature computed by the new MUS-WENO scheme are
shown in Fig. 4.

(2) A Mach 2000 problem. The initial conditions are (p,u,v,p,7)" = (0.5,0,0,0.4127,g)T.
The computational field is (x,y) € [0,1] x [—0.25,0.25]. The final time is t =0.001. The
outflow boundary conditions are used for the right boundary, top boundary, and bottom
boundary, respectively. For the left boundary, the initial conditions are

T

(puv,p,7)" = {(5’800’0'0'4127’5/ 3)", y€[-005,005],

(0.5,0,0,0.4127,5/3)T,  otherwise.

The density, pressure, and temperature computed by the new MUS-WENO scheme are
shown in Fig. 5. It is observed that the finite volume MUS-WENO scheme with e =104
performs well for both extreme problems.

Example 4.11. The shock reflection problem. The computational domain is (x,y) €
[0,4] % [0,1]. The boundary conditions are that of a reflection condition along the bottom
boundary and supersonic outflow along the right boundary and Dirichlet conditions on
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Figure 4: The Mach 80 jet problem. Scales are logarithmic. T =0.07. From top to bottom: 40 equally
spaced density contours from —2 to 3; 40 equally spaced pressure contours from —0.5 to 5; 40 equally spaced

temperature contours from —2 to 4.5. e=10"%0. 448 x 224 grid cells.

the other two sides:
T
(o00,p)7) = (1.0,2.9,0,1.0/1.4)T| o, 1, 19)
Y (1.69997,2.61934,—0.50632,1.52819) 7| 1 7.
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Figure 5: The Mach 2000 jet problem. Scales are logarithmic. T =0.001. From top to bottom: 40 equally
spaced density contours from —2 to 3; 40 equally spaced pressure contours from —2 to 11; 40 equally spaced

temperature contours from —3 to 12.5. e=107%0. 640 x 320 grid cells.

Initially, the solution for the entire domain is set to the solution for the left boundary.
Figs. 6 and 7 show the density contours after numerical steady state is reached. The
history of the residue (4.1) as a function of time is also shown in Figs. 6 and 7. The
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WENO-JS MWENO

Log10(ResA)
Log10(ResA)

MUS-WENO MUS-WENO

Figure 6: The shock reflection problem. 15 equally spaced density contours from 1.10 to 2.57. From top to
bottom: MUS-WENO scheme; WENO-JS scheme; MWENO scheme; the evolution of the average residue.

e=10"°. 120 x 30 grid cells.
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WENO-JS
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485

Figure 7: The shock reflection problem. 15 equally spaced density contours from 1.10 to 2.57. From top to
bottom: MUS-WENO scheme; WENO-JS scheme; MWENO scheme; the evolution of the average residue.

e=10"% 120 x 30 grid cells.
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difference between the fifth-order finite volume MUS-WENO scheme, MWENO scheme,
and WENO-JS scheme could be easily observed from the residue history. It is obvious that
the average residuals of the finite volume WENO-JS scheme and the MWENO scheme
with ¢ =107% and ¢ =10"%° can only drop to a value around 10~%. And the average
residuals of the MUS-WENO scheme with e =107¢ and ¢ =107 can drop to a value
around 107129, close to machine zero.

Example 4.12. A supersonic flow past a two-dimensional plate with an attack angle of
a=15° problem. The initial conditions are p = %, p=1,u=cos(a), and v=sin(a). We
set the free stream Mach number to 3. The ideal gas goes from the left toward the plate.
The computational field is (x,y) €[0,10] x [—5,5]. The plate is set at x € [1,2] with y=0. We
impose a slip boundary condition on the plate. Of course the physical values of the inflow
and outflow boundary conditions are used in different directions. The numerical results
are given when the solutions reach their steady state. Figs. 8 and 9 show the spaced
pressure and the time history of the residue (4.1) in the computational domain for the
fifth-order finite volume MUS-WENO, WENO-JS, and MWENO schemes. It is obvious
that the average residuals of the finite volume WENO-JS scheme [35] and the MWENO
scheme [23] with e=10"° and e=10"% can only drop to a value around 1073. And the
average residuals of the finite volume MUS-WENO scheme with e=10"% and ¢=10"%

Log10(ResA)
Log10(ResA)

60 20 40
Time

20
Time

Figure 8: A supersonic flow past a plate problem. 30 equally spaced pressure contours from 0.02 to 0.23. From
left to right and top to bottom: MUS-WENO scheme; WENO-JS scheme; MWENO scheme; the evolution of

average residue. e=10"%. 200 x 200 grid cells.



Y. Zhang and J. Zhu / Adv. Appl. Math. Mech., 16 (2024), pp. 459-492 487
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Figure 9: A supersonic flow past a plate problem. 30 equally spaced pressure contours from 0.02 to 0.23. From
left to right and top to bottom: MUS-WENO scheme; WENO-JS scheme; MWENO scheme; the evolution of

average residue. e=10740. 200 x 200 grid cells.

can drop to a value around 10713, close to machine zero. Although the boundary of this

problem is relatively far from the plate, all waves (both shocks and rarefaction waves)
propagate towards the far field boundaries. It usually causes the residuals to be difficult
to reduce to machine zero for higher-order finite volume schemes, and does not cause
any difficulty for the new fifth-order MUS-WENO scheme at all.

Example 4.13. A supersonic flow past two plates with an attack angle of «=15° problem.
The initial conditions are p = ﬁ, p=1, u=cos(a), and v=sin(a). We set the free stream
Mach number to 3. The ideal gas goes from the left toward two plates. The computational
field is (x,y) €[0,10] x [—5,5]. Two plates are set at x€[2,3] with y=—2 and at x€[2,3] with
y=2. We impose the slip boundary condition on two plates. Of course the physical values
of the inflow and outflow boundary conditions are used on the left, right, top, and bottom
boundaries, respectively. The numerical results are given when the solutions reach their
steady state. Figs. 10 and 11 show the spaced pressure and the time history of the residue
(4.1) for the fifth-order finite volume MUS-WENO, WENO-JS, and MWENO schemes. It
is obvious that the average residuals of the finite volume WENO-JS scheme [35] and the
MWENO scheme [23] with e=10"% and e=10"% can only drop to a value around 1073.
And the average residuals of the finite volume MUS-WENO scheme with ¢ =10~° and
e=10"% can drop to a value around 10135, close to machine zero.
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WENO-JS. MWENO .
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Figure 10: A supersonic flow past two plates problem. 30 equally spaced pressure contours from 0.02 to 0.23.
From left to right and top to bottom: MUS-WENO scheme; WENO-JS scheme; MWENO scheme; the evolution

of average residue. e=10"%. 200 x 200 grid cells.

5 Concluding remarks

In this article, a new fifth-order finite volume MUS-WENO scheme is proposed for solv-
ing multi-dimensional hyperbolic conservation laws on structured meshes. The cru-
cial advantages of this finite volume MUS-WENO scheme are its robustness and effec-
tiveness. We use three unequal-sized spatial stencils and can choose any positive lin-
ear weights in the process of spatial reconstructions. And we design a new mapping
function and reconstruct associated new mapped nonlinear weights. We also design
a new positivity-preserving method which is a modification of the classical positivity-
preserving methods [42-45]. And this new finite volume MUS-WENO scheme with a
very tiny € can compute some unsteady-state problems without losing the designed or-
der of accuracy at critical points in smooth regions, some steady-state problems without
introducing big average residue, and some extreme problems containing low density, low
pressure, or low energy, respectively. Extensive benchmark examples are used to verify
the good presentations of this new finite volume MUS-WENO scheme. Upcoming work
should aim to extend the ideas of this article to compute some steady-state problems and
some unsteady-state extreme problems on triangular meshes and tetrahedral meshes.
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Figure 11: A supersonic flow past two plates problem. 30 equally spaced pressure contours from 0.02 to 0.23.
From left to right and top to bottom: MUS-WENO scheme; WENO-JS scheme; MWENO scheme; the evolution

of average residue. e=10"%0. 200 x 200 grid cells.
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