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Abstract. A shell whose height is far less than the minimum size covering the bot-
tom is called the shallow shell. As a branch of linear elastic shell, it is a special shell
with large span and has been widely applied in engineering fields. The main aim
of this paper is to construct a general nonconforming finite element framework for a
two-dimensional shallow shell model proposed by Ciarlet and Miara. Based on the
different regularities of the displacement components, we give the special properties
satisfied by the general framework and provide several nonconforming finite element
discretization schemes. Then, the existence and uniqueness of the numerical solutions
are proved, with the rate of convergence derived. Finally, numerical experiments are
carried out for the paraboloid, spherical dome and cylindrical bridge, which validates
the theoretical analyses. Moreover, the computing cost of discretizing the shallow shell
model is evidently less than that of discretizing the general shell model with compara-
ble accuracy when the shell is the large span shell.
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1 Introduction

The linearly elastic shallow shell, a branch of the linearly elastic shell, is an important
topic in elastic theory. Shallow shells are frequently used in many engineering fields,
such as the roof, gymnasium, arch bridge, just name a few of them. The locking phenom-
ena [1, 2], i.e., the numerical solution approaches to zero whereas the true solution does
not approaches to zero when the semi-thickness ε of the shell approximates to zero, can
be observed frequently in discretization of the three-dimensional (3D) model. In order to
avoid this phenomenon, the two-dimensional (2D) model has attracted increasing atten-
tion recently. Using the asymptotical analysis, Ciarlet and Miara [3] proved that, as the
thickness of the shell approaches zero, the solution of the 2D shallow shell equation is the
H1-limit of the solutions of scaled 3D equation. Léger and Miara [4] studied the shallow
shells with single-sided contact of obstacles. Raja and Sabu [5] deduced that when the
thickness of material tends to zero, the minimized energy function sequence of the 3D
shallow shell model converges to the minimized energy function sequence related to the
2D model by Γ-convergence method.

For the numerical analyses, [6–8] used the conforming finite element discretization
for the classical shell model and proved the error estimates. In a recent paper, we have
carried out conforming element discretization for shallow shell model [9]. As we all
know, one drawback of conforming element approximation is that the number of the
degrees of freedom is very large and the degrees of the shape function are usually quite
high. Compared with the conforming finite elements, the nonconforming element [10,11]
employs fewer degrees of freedom.

The main purpose of the present work is to design efficient nonconforming finite ele-
ment methods, and investigate the properties of the approximating solution. Motivated
by the different smoothness of the displacement components, the conforming finite ele-
ment (e.g., linear or bilinear elements) is used to approximate the first two components of
the displacement, whereas the nonconforming finite element (e.g., Morley, Zienkiewicz,
Fraeijs de Veubeke, Specht, rectangular Morley and ACM elements) is used to approxi-
mate the third component. It seems interesting to approximate different component of
a vector field by different finite elements. Such idea has been used in problems aris-
ing from the shell model [12], Stokes flow [13], Reissner-Mindlin plate [14] and Maxwell
equations [15]. Moreover, we prove that these numerical schemes have the same rate of
convergence in the energy norm. It is worth mentioning that the discretization cost of
shallow shell model is obviously lower than that of the Koiter’s shell with comparable
accuracy, which may be due to the different coordinate systems employed in these two
types of models.

The rest of this paper is organized as follows. In Section 2, we prove the existence
and the uniqueness of the weak solution of the 2D shallow shell model. In Section 3, we
propose several finite element schemes to approximate the displacement field, and a dis-
cussion on the well-posedness of the numerical solution, and derive the error estimates
for all the schemes. In Section 4, the Morley element is employed as the representative to
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examine the efficiency and the validity of the theoretical results.

2 2D linearly elastic shallow shell model

Our notations are mostly borrowed from [16]. Let ω⊂R2 be a bounded open connected
subset and its boundary γ=∂ω is Lipschitz-continuous with a clamped boundary γ0⊂γ
with meas(γ0)>0, noting that ω is locally on one side of γ.

Let z(x,y) represent the equation of the middle surface of the shell. If it holds:(
dz
dx

)2

�1,
(

dz
dy

)2

�1,

then the shell is called a shallow shell. In other words, the shallow shell has a relatively
small rise as compared to its spans (see Fig. 1).

Define the spaces

~VH(ω)=
{
~ηH =(η1,η2)∈H1(ω)×H1(ω); ~ηH =~0 on γ0

}
and

V3(ω)=
{

η3∈H2(ω); η3=∂νη3=0 on γ0
}

.

Let θ(x1,x2) denote the displacement of the point (x1,x2) in the middle surface. ∂α =
∂/∂xα, ∂αβ = ∂/∂xα∂xβ, δij, ∆ and ∇ denote the Kronecker symbol, Laplace operator and
gradient operator, respectively.
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Figure 1: Shallow shell: z(x,y) represents the equation of the shell middle surface (cf. [17]).
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Problem 2.1. Assume that fi ∈ L2(ω×(−1,1)), gi ∈ L2(ω×{1}⋃ω×{−1}), θ ∈ C3(ω).
The function ~ζ=(ζα,ζ3)∈ ~VH(ω)×V3(ω) solves the following variational system for any
η3∈V3(ω), ηα∈~VH(ω)

−
∫

ω
mαβ∂αβη3dω+

∫
ω

nθ
αβ∂αθ∂βη3dω=

∫
ω

p3η3dω−
∫

ω
sα∂αη3dω,∫

ω
nθ

αβ∂βηαdω=
∫

ω
pαηαdω,

(2.1)

where mαβ∂αβ (α,β=1,2) denotes a summation convention,

mαβ =−
{

4λµ

3(λ+2µ)
∆ζ3δαβ+

4
3

µ∂αβζ3

}
,

nθ
αβ =

4λµ

λ+2µ
eθ

ρρ(~ζ)δαβ+4µeθ
αβ(~ζ),

eθ
αβ(~ζ)=

1
2
(∂αζβ+∂βζα+∂αθ∂βζ3+∂βθ∂αζ3),

pi =
∫ 1

−1
fidy3+g+i +g−i ,

sα =
∫ 1

−1
y3 fαdy3+g+α −g−α .

Theorem 2.1 (Existence and uniqueness of the weak solution). Let ω⊂R2 be a bounded
open connected subset, where the boundary γ=∂ω is Lipschitz-continuous. Assume that γ0 is a
non-empty open subset of γ, fi∈ L2(ω×(−1,1)), gi∈ L2(ω×{1}⋃ω×{−1}) and θ∈C3(ω)
are functions independent of semi-thickness ε. Then, the system (2.1) has a unique solution.

Proof. We define the bilinear operator B(·,·) and linear function f (·) as

B(~ζ,~η)=
∫

ω

4λµ

λ+2µ

(
1
3
(∆ζ3)(∆η3)+eθ

αα(~ζ)e
θ
ββ(~η)

)
dω

+
∫

ω
4µ

(
1
3

∂αβ(ζ3)∂αβ(η3)+eθ
αβ(~ζ)e

θ
αβ(~η)

)
dω,

f (~η) :=
∫

ω
(piηi−sα∂αη3)dω,

respectively. Then, the system (2.1) can be rewritten as: Find

~ζ∈~V(ω)=~VH(ω)×V3(ω)={~ζ=(ζi)∈H1(ω)×H1(ω)×H2(ω); ζi =∂νζ3=0 on γ0},

such that
B(~ζ,~η)= f (~η), ∀~η∈~V(ω). (2.2)
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We define the semi-norms on space ~V(ω) as:

∣∣ηβ

∣∣
1,ω =

{
∑
α

|∂αηβ|20,ω

}1/2

for β=1,2,

and

|η3|2,ω =

{
∑
α,β
|∂αβη3|20,ω

}1/2

,

respectively. It is easy to see that they are equivalent to the norms ‖·‖1,ω and ‖·‖2,ω over
the space ~V(ω) respectively. Then the bilinear form B(·,·) is ~V(ω)− elliptic (cf. Theorem
3.6.1 of [18]). By means of the Lax-Milgram theorem (cf. e.g., [19]), it is guaranteed that
the variational problem (2.2) has a unique solution.

3 Numerical method

Based on the different regularities of the three components of displacement vector field,
we adopt two types of conforming elements to approximate the first two components ζα

of the unknown vector field of displacement, and six types of the nonconforming ele-
ments to approximate the third component ζ3.

To go into detail, let ω̄ be a polygon domain, Th be a shape regular partitions of ω̄
with triangles or rectangles. For a given T∈Th, let

hT =diam(T), h=max
T∈Th

hT and ρT = superior
S⊂T

diam(S),

S is a ball contained in T. Throughout this paper, we assume:

H1. There are at least two continuous points on the common edge of adjacent element;

H2. The partition Th satisfies the inverse assumption (h/hT ≤C, ∀T ∈ Th, C denotes a
positive constant independent of h) and the quasi uniform assumption (hT/ρT≤C,
∀T∈Th) [20–22].

Next, we can use the following six schemes to discretize the displacement in the finite
element space ~Vh :=V1h×V2h×Vh3, where Vαh (α= 1,2) represents the space of the con-
forming linear and bilinear elements, and Vh3 represents the space of the nonconforming
Morley, Zienkiewicz, Fraeijs de Veubeke, Specht, rectangular Morley and ACM elements.

Scheme 3.1 (Linear/Morley element pair). The linear element space is defined by

VP
αh :={ηh∈C0(ω) : ηh|T∈P1(T) for each T∈Th, ηh =0 on γ0}, α=1,2.
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(a) (b)

Figure 2: (a) Linear element; (b) Morley element. •: Vertex, →: The normal derivative of midpoint.

Figure 3: Zienkiewicz element. ©: The first partial derivative.

The Morley element space [23, 24] is defined by

VM
3h :=

{
ηh∈L2(ω) : ηh|T∈P2(T) for each T∈Th;

ηh is continuous at each interior vertex ai, (i=1,2,3),
∂νηh is continuous at mid-point of the interior edge K,

ηh(ai)=∂νηh(aij)=0, 1≤ i< j≤3, for ai∈γ0
}

,

where

aij =
1
2
(ai+aj).

Scheme 3.2 (Linear/Zienkiewicz element pair). The Zienkiewicz element space [25] is
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Figure 4: Fraeijs de Veubeke element. ⇒: The mean value of the normal derivative along each edge.

defined by

VZ
3h :=

{
ηh∈L2(ω) : ηh

∣∣∣
T
∈P3(T) for each T∈Th;

ηh,
∂ηh

∂x1
and

∂ηh

∂x2
are continuous at each interior vertex ai,

ηh(ai)=
∂ηh

∂x1
(ai)=

∂ηh

∂x2
(ai)=0 for ai∈γ0,

ηh on each T satisfies function φ(ηh)=0
}

,

where

φ(ηh)=6ηh(a0)−2
3

∑
i=1

ηh(ai)+
3

∑
i=1

(ai−a0)·∇ηh(ai), a0=
1
3

3

∑
i=1

ai.

Scheme 3.3 (Linear/Fraeijs de Veubeke element pair). The Fraeijs de Veubeke element
space [23, 26] is defined by

VF
3h :=

{
ηh∈L2(ω) : ηh

∣∣∣
T
∈P3(T) for each T∈Th;

ηh is continuous at each interior vertex ai,
ηh is continuous at mid-point of the edge Ki,

ηh(ai)=ηh(aij)=0, 1≤ i< j≤3,
1
|Ki|

∫
Ki

∂νηhds for ai,Ki∈γ0,

ηh on each T satisfies function ϕ(ηh)=0
}

,
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Figure 5: Specht element. �: The moment of the normal derivative along each edge.

where

ϕ(ηh)=27ηh(a0)−
3

∑
i=1

ηh(ai)−8
3

∑
i=1

ηh(aij)+3
3

∑
i=1

1
|Ki|

∫
Ki

∇ηh ·(ai−a0)ds,

aij =
1
2
(ai+aj), a0=

1
3

3

∑
i=1

ai.

Scheme 3.4 (Linear/Specht element pair). The Specht element space [27, 28] is defined
by

VS
3h :=

{
ηh∈L2(ω) : ηh

∣∣∣
T
∈{Z3(T)+bkP2(T)} for each T∈Th;

ηh,
∂ηh

∂x1
and

∂ηh

∂x2
are continuous at each interior vertex ai,

ηh(ai)=
∂ηh

∂x1
(ai)=

∂ηh

∂x2
(ai)=0 for ai∈γ0,

ηh on each T satisfies function ψ(ηh)=0
}

,

where Z3(T), bk and P2 denote the Zienkiewicz space, cubic bubble function and the
second order Legendre polynomial,

ψ(ηh)=
∫

Ki

P2∂νηhds.

Scheme 3.5 (Bilinear/Rectangular Morley element pair). The bilinear element space is
defined by

VRP
αh :={ηh∈C0(ω) : ηh|T∈P1(T)⊕{x1x2} for each T∈Th, ηh =0 on γ0}.
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(a) (b)

Figure 6: (a) Bilinear element; (b) Rectangular Morley element.

Figure 7: ACM element.

The rectangular Morley element space [29, 30] is defined by

VRM
3h :=

{
ηh∈L2(ω) : ηh

∣∣∣
T
∈P2(T)⊕{x3

1,x3
2} for each T∈Th;

ηh is continuous at each interior vertex ai (i=1,2,3,4),
∂νηh is continuous at the mid-point of the interior edge K,

ηh(ai)=∂νηh(aij)=0, 1≤ i< j≤4, j−i 6=2 for ai∈γ0

}
,

where

aij =
1
2
(ai+aj).

Scheme 3.6 (Bilinear/ACM element pair). The ACM element space [31] is defined by

VA
3h :=

{
ηh∈L2(ω) : ηh

∣∣∣
T
∈P3(T)⊕{x3

1x2,x1x3
2} for each T∈Th;

ηh,
∂ηh

∂x1
and

∂ηh

∂x2
are continuous at each interior vertex ai,

ηh(ai)=
∂ηh

∂x1
(ai)=

∂ηh

∂x2
(ai)=0, i=1,2,3,4, for ai∈γ0

}
.
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For the above-mentioned Morley, Zienkiewicz, Fraeijs de Veubeke, Specht, rectangu-
lar Morley and ACM elements, Pk(T), k≥1, is the polynomial space of degree equal to or
less than k on T. Then, we set the following conditions:

C1) ∀w3h∈Vh3, w3h is continuous at the vertices of T and is zero at the vertices on γ0;

C2) ∀w3h∈Vh3, ∂βw3h is continuous at the vertices of T and is zero at the vertices on γ0;

C3) ∀w3h∈Vh3,
∫

F w3hds is continuous across the element common edge F and is zero on
F∈γ0;

C4) ∀w3h ∈Vh3,
∫

F
∂w3h

∂ν ds is continuous at midpoints of the interior edge and is zero at
midpoints of the boundary edge γ0;

C5) Let Πhw3h∈Vh3 be the finite element interpolation of w3h,

‖w3h−Πhw3h‖h≤Ch‖w3h‖3, ∀w3h∈H2(ω)∩H3(ω),

where

‖·‖h =
(

∑
T∈Th

|·|22,T

)1/2
.

Then the approximation of variational problem (2.2) is to find ~ζh∈~Vh such that

Bh(~ζh,~ηh)= f (~ηh), ∀~ηh∈~Vh, (3.1)

where

Bh(~ζh,~ηh)=− ∑
T∈Th

∫
T

mαβ∂αβη3hdx+ ∑
T∈Th

∫
T

nθ
αβ∂αθ∂βη3hdx+ ∑

T∈Th

∫
T

nθ
αβ∂βηαhdx. (3.2)

We define the norm on ~Vh as: for ~ηh =(η1h,η2h,η3h)∈~Vh,

‖~ηh‖ :=∑
α

‖ηαh‖H1(ω)+||η3h‖h.

Lemma 3.1 (Continuity and coercivity). Let ~Vh be the discrete space, then there exist positive
constants α0 and α1, such that

|Bh(~ζh,~ηh)|≤α1‖~ζh‖‖~ηh‖, ∀~ζh, ~ηh∈~Vh, (3.3a)

Bh(~ηh,~ηh)≥α0‖~ηh‖2, ∀~ηh∈~Vh. (3.3b)

Proof. Note that
√

Bh(·,·) is equivalent to the norm ||·|| on space ~Vh. From the Cauchy-
Schwarz inequality, it is clear that (3.3a) holds true.
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On the other hand, for each element T∈Th, applying (3.2) and the generalized patch
test [32]

lim
h→0

sup
~ηh∈~Vh

∣∣∣∣∣ ∑
T∈Th

∫
∂T

φ∂α~ηhνids

∣∣∣∣∣=0, 1≤ i≤2, |α|<2, φ∈C∞
0 , ~ηh∈~Vh,

yields

Bh(~ηh,~ηh)= ∑
T∈Th

∫
T

{
4λµ

λ+2µ

(
1
3
(∆η3h)

2+(eθ
αα(~ηh))

2
)}

dx

+ ∑
T∈Th

∫
T

{
4µ

(
1
3
(∂αβ(η3h))

2+(eθ
αβ(~ηh))

2
)}

dx

≥4µ ∑
T∈Th

∫
T

{
1
3
(∂αβ(η3h))

2+(eθ
αβ(~ηh))

2
}

dx

≥C ∑
T∈Th

(
∑
α,β
|∂αβη3h|20,T+∑

α,β
|(eθ

αβ(~ηh))|20,T

)
.

When nonconforming finite element space satisfies the conditions described in H1 and
H2, we could know by the generalized Korn’s inequality [18, 33–35], that there exists a
constant L>0 independent of h such that

∑
α,β
|eθ

αβ(~ηh)|20,ω≥L∑
α,β
|∂αηβh|20,ω.

Therefore, ∀~ηh∈~Vh, and we have

Bh(~ηh,~ηh)≥C ∑
T∈Th

(
∑
α,β
|∂αβη3h|20,T+∑

α,β
|(eθ

αβ(~ηh))|20,T

)

≥α0 ∑
T∈Th

(
∑
β

|ηβh|21,T+|η3h|22,T

)
≥α0‖~ηh‖2,

which is the desired result of (3.3b). The proof is completed.

Lemma 3.2 (Error estimate). Let ~ζ and ~ζh be the solutions of (2.2) and (3.1) respectively. Then
there exists a constant C>0 independent of h such that for the space Vh3 (Vh3 indicates VM

3h , VZ
3h,

VF
3h, VS

3h, VRM
3h and VA

3h, respectively), it holds

‖ζ3−ζ3h‖h≤C

(
inf

ζ3h∈Vh3

‖ζ3−η3h‖h+ sup
w3h∈Vh3

|Eh(ζ3,wh3)|
‖w3h‖h

)
, (3.4)

where
Eh(ζ3,w3h)= f (w3h)−Bh(ζ3,w3h). (3.5)
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Proof. Let w3h = ζ3h−η3h, and we have

α0‖w3h‖2
h≤Bh(w3h,w3h)=Bh(ζ3h,w3h)−Bh(η3h,w3h)

=Bh(ζ3−η3h,w3h)+Eh(ζ3,w3h),

which lead to for w3h 6=0,

α0‖w3h‖h≤α1‖ζ3−η3h‖h+
|Eh(ζ3,w3h)|
‖w3h‖h

≤α1‖ζ3−η3h‖h+ sup
w3h∈Vh3

|Eh(ζ3,w3h)|
‖w3h‖h

.

Note that ‖ζ3−ζ3h‖h≤‖ζ3−η3h‖h+‖w3h‖h, and we get

‖ζ3−ζ3h‖h≤
(

1+
α1

α0

)
‖ζ3−η3h‖h+

1
α0

sup
w3h∈Vh3

|Eh(ζ3,w3h)|
‖w3h‖h

,

which leads to the desired result of (3.4). The proof is completed.

Lemma 3.3 (Consistency error estimate). Suppose that the solution ζ3 ∈ H2(ω)∩H3(ω).
Then,
(I) for C0 nonconforming elements: Zienkiewicz, Specht and ACM element, if w3h satisfies the
conditions C1), C2), C3) and C5), it holds

|Eh(ζ3,w3h)|≤Ch|ζ3|3,ω‖w3h‖h, (3.6)

(II) for non C0 nonconforming elements: Morley, Fraeijs de Veubeke and rectangular Morley
element, if w3h satisfies the conditions C1), C4) and C5), there holds

|Eh(ζ3,w3h)|≤Ch(|ζ3|3,ω+h‖ f ‖0,ω)‖w3h‖h. (3.7)

Proof. We now start to prove (3.6). In fact, by Green’s formula and (3.5), we get

Eh(ζ3,w3h)= ∑
T∈Th

∫
T
(p3w3h−sα∂αw3h)dx+ ∑

T∈Th

∫
T

mαβ∂αβw3hdx− ∑
T∈Th

∫
T

nθ
αβ∂αθ∂βw3hdx

= ∑
T∈Th

∫
T
(p3w3h−sα∂αw3h)dx+ ∑

∂T∈Th

∫
∂T

mαβ∂βw3hναds

− ∑
T∈Th

∫
T
(∂αmαβ+nθ

αβ∂αθ)∂βw3hdx

≤ ∑
T∈Th

∫
T
(p3−sα−∂αmαβ−nθ

αβ∂αθ)∂βw3hdx+ ∑
∂T∈Th

∫
∂T

mαβ∂βw3hναds, (3.8)
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where ∣∣∣∣∣ ∑
T∈Th

∫
T
(p3−sα−∂αmαβ−nθ

αβ∂αθ)∂βw3hdx

∣∣∣∣∣≤Ch|ζ3|3,ω‖w3h‖h.

Since w3h∈V3h∈C0(ω), and from conditions C1), C2), C3) and C5) we have

|Eh(ζ3,w3h)|≤
∣∣∣∣∣ ∑
∂T∈Th

∫
∂T

mαβ∂βw3hναds

∣∣∣∣∣≤Ch|ζ3|3,ω‖w3h‖h.

(II) Since V3h 6⊂C0(ω) implies V3h 6⊂H1(ω), we modify the expression (3.8) as follows. Let
wI

3h be the continuous piecewise linear or bilinear interpolation of w3h. Then wI
3h⊂C0(ω),

which leads to

Bh(ζ3,w3h)=−∑
T

∫
T

mαβ∂αβwI
3hdx+∑

T

∫
T

nθ
αβ∂αθ∂βwI

3hdx

−∑
T

∫
T

mαβ∂αβ(w3h−wI
3h)dx+∑

T

∫
T

nθ
αβ∂αθ∂β(w3h−wI

3h)dx

= f (wI
3h)−∑

T

∫
T

mαβ∂αβ(w3h−wI
3h)dx+∑

T

∫
T

nθ
αβ∂αθ∂β(w3h−wI

3h)dx

= f (wI
3h)+∑

T

∫
T
(∂αmαβ+nθ

αβ∂αθ)∂β(w3h−wI
3h)dx−∑

T

∫
∂T

mαβ∂β(w3h−wI
3h)ναds.

Thus, we have

Eh(ζ3,w3h)= f (w3h−wI
3h)−∑

T

∫
T
(mαβ+nθ

αβ∂αθ)∂β(w3h−wI
3h)dx

+ ∑
∂T∈Th

∫
∂T

mαβ∂β(w3h−wI
3h)ναds

=E1
h−E2

h+E3
h.

For E1
h, by the interpolation theorem, we have

E1
h≤‖ f ‖0,ω‖w3h−wI

3h‖0,ω≤Ch2|| f ||0,ω‖w3h‖h.

For E2
h, by the Cauchy-Schwarz inequality, it can be estimated as

E2
h≤Ch|ζ3|3,ω‖w3h‖h.

For E3
h, from condition C4), we have

∫
F

[
∂(w3h−wI

3h)

∂ν

]
ds=0,
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where

[∂βw3h]|F :=∂βw3h|T+−∂βw3h|T− , F⊂∂T∩∂ω=∅,

[∂βw3h]|F :=∂βw3h|T, F⊂∂T∩∂ω=γ0.

Then by the Cauchy-Schwarz inequality, trace theorem [36], inverse inequality (Theorems
6.5-2 and 6.8-1 of [37]), Poincaré-Friedrichs inequality [38] and the condition C5), we
obtain

∑
∂T

∑
F∈∂T

∫
F
(mαβ−PF

0 (mαβ))[∂β(w3h−wI
3h)]Fναds

≤
(
‖mαβ−PF

0 (mαβ)‖0,F

)(
‖∂βw3hνα‖0,F

)
≤Ch|ζ3|3,ω‖w3h‖h,

where

PF
0 (mαβ)=

1
|F|

∫
F

mαβds, ||·||0,F =
(∫

F
|·|2ds

)1/2
, ∀F∈∂T.

Finally, we deduce that

|Eh(ζ3,w3h)|≤Ch(|ζ3|+h‖ f ‖0,ω)‖w3h‖h.

This completes the proof.

Based on the above lemmas, we have the following main result:

Theorem 3.1 (Existence, uniqueness and convergence of the discrete solution). Let the
assumptions in Theorem 2.1 hold. Then, the variational problem (3.1) has a unique solution. Let
~ζ and ~ζh be the solutions to problems (2.2) and (3.1), respectively. Then, we have

‖~ζ−~ζh‖≤Ch

(
∑
α

|ζα|22+|ζ3|23

)1/2

. (3.9)

Proof. First, according to Lemma 3.1, the bilinear form Bh(·,·) has continuity and coerciv-
ity over the space ~Vh. Judging from the Lax-Milgram theorem, the discrete problem (3.1)
has a unique solution (cf. e.g., [19]).

Next, we prove the error estimate of (3.9). It is divided into two cases.
Case 1. For conforming finite elements, define the interpolation operator Πh : C0(ω)×
C0(ω)→Vαh as

Πh~ζH =(Π1hζ1,Π2hζ2), ∀~ζH∈C0(ω)×C0(ω).

From the interpolation theorem, we have

‖ζα−ζαh‖H1≤ inf
ηαh∈Vαh

‖ζα−ηαh‖H1

≤Ch|ζα|2,ω, (α=1,2), ∀ζα∈H2(ω). (3.10)
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Case 2. For nonconforming finite elements, define the interpolation operator Πh:H2(ω)→
V3h as

Πhζ3=(Π3hζ3), ∀ζ3∈C0(ω).

Then, we have

‖ζ3−ζ3h‖h≤ inf
η3h∈V3h

‖ζ3−η3h‖≤‖ζ3−Π3hη3h‖

≤Ch|ζ3|3,ω, ∀ζ3∈H3(ω),

which together with the conclusion of (3.4) (Strang lemma) and Lemma 3.3 yields

‖ζ3−ζ3h‖h≤Ch|ζ3|3,ω or ‖ζ3−ζ3h‖h≤Ch(|ζ3|3,ω+h‖ f ‖0,ω), ∀ζ3∈H3(ω). (3.11)

Finally, combine (3.10) and (3.11) to get

‖~ζ−~ζh‖=
(

∑
α

‖ζα−ζαh‖2
H1+‖ζ3−ζ3h‖2

h

)1/2

≤Ch

(
∑
α

|ζα|22+|ζ3|23

)1/2

.

The proof is completed.

4 Numerical examples

In this section, we mainly conduct numerical experiments on paraboloid, spherical dome
and cylindrical bridge, and analyze their numerical results.

4.1 Paraboloid

In the Cartesian coordinate system, the equation of the any point (x1,x2) on the paraboloid
S is as follows:

θ= θ(x1,x2)=
x2

1
2
+

x2
2

2
.

The integral domain ω on S is defined by

ω :=
{
(x1,x2)∈R2; x2

1+x2
2≤1

}
,

and γ0=∂ω is the totally clamped boundary.
According to [39], we take the values of the Young’s modulus E and the Poisson ratio

ν as
E=1×107Pa, ν=0.3. (4.1)
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Table 1: Numerical results for paraboloid on four different meshes.

Extremum Mesh steps Reference solution1/40 1/80 1/160 1/320
ζ1max 6.1958e-8 6.1062e-8 6.0564e-8 6.0391e-8 6.0366e-8
ζ1min -6.3397e-8 -6.1242e-8 -6.0502e-8 -6.0393e-8 -6.0365e-8
ζ2max 6.2954e-8 6.0678e-8 6.0156e-8 6.0069e-8 6.0034e-8
ζ2min -6.2952e-8 -6.0810e-8 -6.0731e-8 -6.0565e-8 -6.0537e-8
ζ3max 4.3446e-7 4.1393e-7 4.0747e-7 4.0600e-7 4.0554e-7
ζ3min -1.3748e-7 -6.4401e-8 -3.7925e-8 -1.9733e-8 -0.6341e-8

The Lamé constants (λ≥0, µ>0) can be derived from the following equations (cf. [39]):

λ=
Eν

(1+ν)(1−2ν)
, µ=

E
2(1+ν)

. (4.2)

Plugging (4.1) into (4.2), we yield

λ=5.77×106Pa, µ=3.85×106Pa.

Suppose the applied force at the paraboloid to be p1=p2=0, and p3=200Pa. We apply
the 2D linearly elastic shallow shell model to the paraboloid. The results are shown in
Fig. 8, with its left part (cf. A1, B1, C1, D1) representing the grid of 40, 80, 160 and
320 respectively, and the right part (cf. A2, B2, C2, D2) representing the displacement
deformation of the four different grids on the middle surface. From A2, B2, C2, D2 in
Fig. 8, we could see that the deformation is getting increasingly small from the top to
bottom. The blue bottom in each sub-picture indicates that γ0 portion of the boundary is
fixed. The biggest deformation occurs on the top as illustrated in red. As expected, the
2D linearly elastic shallow shell model is relatively stable, i.e., when the grid becomes
smaller, the deformation remains independent of its size.

In order to further analyze the numerical results, we compute the maximal values
and minimal values of the three components of displacement on different meshes, as
shown in Table 1. Since the exact solution cannot be obtained directly, we choose the
result under the extremely fine mesh (1000) as the exact solution. Then we derive the
errors and convergence orders of the numerical scheme (cf. [40]). As presented in Table
2, we compute the absolute error and the convergence order under the ~L2 norm, the ~H1

norm, and the H1×H1×H2 norm, respectively. It is obvious that when the mesh step
becomes smaller, the absolute error also tends to be smaller. The results show that the
finite element numerical scheme for the proposed 2D shallow shell model is stable and
convergent.

In Table 1, ζimax (i=1,2,3) signifies the maximal value of the components of displace-
ment, and ζimin (i=1,2,3) is the minimal value.
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A1 A2

B1 B2

C1 C2

D1 D2

Figure 8: Numerical results for the paraboloid on four different meshes: A1, B1, C1 and D1 denote the mesh of
40, 80, 160 and 320, respectively; A2, B2, C2 and D2 denote the deformation of the corresponding displacement.

4.2 Spherical dome

The equation for the spherical dome (cf. [41]) S at the point (x1,x2) is as follows:

θ= θ(x1,x2)=
√

72−x2
1−x2

2.

The domain ω on S is defined by

ω :=
{
(x1,x2)∈R2;

[
−5
√

2/2,5
√

2/2
]
×
[

0,
√

52−x2
1

]}
.

And

γ0 :=
{
(x1,x2)∈R2; x1∈

[
−5
√

2/2,5
√

2/2
]

, x2=
√

52−x2
1

}
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A1 A2

B1 B2

C1 C2

D1 D2

Figure 9: Numerical results for the spherical dome on four different meshes: A1, B1, C1 and D1 denote the
mesh of 10×14×10, 20×28×20, 40×56×40 and 80×112×80, respectively; A2, B2, C2 and D2 denote the
deformation of the corresponding displacement.

is the clamped boundary, whereas

γ1 :=
{
(x1,x2)∈R2; x1=±x2, x2∈

[
0,5
√

2/2
]}

is the free boundary.
The values of Young’s modulus E, Poisson’s ratio ν and the force applied to the spher-

ical dome are the same as in Subsection 4.1. The results are depicted in Fig. 9, with its the
left part (cf. A1, B1, C1, D1) representing the grid of 10×14×10, 20×28×20, 40×56×40
and 80×112×80 respectively, and the right part (cf. A2, B2, C2, D2) representing the
displacement deformation of the four different grids on the middle surface.

Similar to Subsection 4.1, we compute the maximal values and minimal values of
the three components of displacement on different meshes, as shown in Table 3. Since
the exact solution cannot be obtained directly, we choose the result under the extremely
fine mesh (250×350×250) as the exact solution. As presented in Table 4, we compute
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Table 2: Error and rate of convergence for paraboloid on four different meshes.

Mesh steps 1/40 1/80 1/160 1/320
‖·‖L2×L2×L2error 4.6088e-8 1.1546e-8 2.7031e-9 6.4713e-10

Rate of convergence 1.997 2.095 2.062 \
‖·‖H1×H1×H1error 2.2657e-7 9.4994e-8 4.1100e-8 2.0269e-8

Rate of convergence 1.254 1.209 1.020 \
‖·‖H1×H1×H2error 1.6475e-6 8.3289e-7 4.1313e-7 2.1735e-7

Rate of convergence 0.984 1.012 0.927 \

Table 3: Numerical results for spherical dome on four different meshes.

Extremum Mesh steps Reference solution1/14 1/28 1/56 1/112
ζ1max 1.9005e-3 2.0490e-3 2.1975e-3 2.2597e-3 2.2785e-3
ζ1min -1.8972e-3 -2.0500e-3 -2.1716e-3 -2.2584e-3 -2.2789e-3
ζ2max 3.9192e-2 4.0479e-2 4.0756e-2 4.0824e-2 4.0841e-2
ζ2min -2.1911e-3 -1.9208e-3 -7.2610e-4 -1.4253e-4 -1.6052e-4
ζ3max 9.0987e-2 9.3677e-2 9.4233e-2 9.4372e-2 9.4408e-2
ζ3min -8.6706e-3 -7.6401e-3 -3.9221e-3 -1.7993e-3 -7.1990e-4

Table 4: Error and rate of convergence for spherical dome on four different meshes.

mesh steps 1/14 1/28 1/56 1/112
‖·‖L2×L2×L2error 9.5332e-3 2.1688e-3 5.5079e-4 1.2175e-4

Rate of convergence 2.136 1.977 2.177 \
‖·‖H1×H1×H1error 2.0046e-2 7.7522e-3 3.6803e-3 1.7456e-3

Rate of convergence 1.371 1.075 1.076 \
‖·‖H1×H1×H2error 4.0072e-2 1.9609e-2 1.0188e-2 5.2692e-3

Rate of convergence 1.031 0.945 0.951 \

the absolute error and the convergence order under the ~L2 norm, the ~H1 norm, and the
H1×H1×H2 norm, respectively.

4.3 Cylindrical bridge

We use a portion of the cylindrical surface [42] to represent the geometry of main arch
bridge (Fig. 10). In the rectangular coordinate system, the equation of the cylindrical
surface (generatrix is parallel to the O-xy plane) is as follows:

θ= θ(x1,x2)=
√

52−x2
1.

The domain ω on S is defined by

ω :=
{
(x1,x2)∈R2; −π≤ x1≤π, −1≤ x2≤1

}
.
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Figure 10: Krk bridge, Yugoslavia.

And

γ0 :={(x1,x2)∈R2; x1=−π and x1=π, x2∈ [−1,1]}

is the clamped boundary, whereas

γ1 :=
{
(x1,x2)∈R2; x1∈ [−π,π], x2=−1 and x2=1

}
is the free boundary.

The value of Young’s modulus E is 3.45×1010 Pa and Poisson’s ratio ν is 0.2 (cf. [42]).
The force applied to the cylindrical bridge is the same as in Subsection 4.1. The deforma-
tion results are shown in Fig. 11.

Similarly, we compute the maximal values and minimal values of the three compo-
nents of displacement on different meshes, as displayed in Table 5. Since the exact so-
lution cannot be obtained directly, we choose the result under the extremely fine mesh
(570×190) as the exact solution. As illustrated in Table 6, we compute the absolute error
and the convergence order under the~L2 norm, the ~H1 norm, and the H1×H1×H2 norm,
respectively.

To summarize, under the error of the L2×L2×L2 norm, the convergence rates of
paraboloid, spherical dome and cylindrical bridge at different grid steps are approxi-
mately second order. This can be found in Fig. 12. Under the error of the H1×H1×H1

norm and H1×H1×H2 norm, the convergence rates of paraboloid, spherical dome and

Table 5: Numerical results for cylindrical bridge on four different meshes.

Extremum Mesh steps Reference solution1/36 1/72 1/144 1/288
ζ1max 3.1626e-9 3.1389e-9 3.1361e-9 3.1341e-9 3.1336e-9
ζ1min -3.1603e-9 -3.1384e-9 -3.1359e-9 -3.1341e-9 -3.1336e-9
ζ2max 1.0319e-9 9.1995e-10 8.9236e-10 8.8556e-10 8.8388e-10
ζ2min -4.3416e-10 -4.7781e-10 -4.8967e-10 -4.9281e-10 -4.9364e-10
ζ3max 2.9686e-8 2.9395e-8 2.9317e-8 2.9297e-8 2.9292e-8
ζ3min -2.6741e-9 -1.3393e-9 -6.7058e-10 -3.3559e-10 -1.6965e-10
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A1 A2

B1 B2

C1 C2

D1 D2

Figure 11: Numerical results for the cylindrical bridge on four different meshes: The left part (A1, B1, C1, D1)
denotes the meshing of 36×12, 72×24, 144×48 and 288×96, respectively; The right part (A2, B2, C2, D2)
denotes the deformation of the corresponding displacement.

cylindrical bridge at different grid steps are nearly linear, which can be found in Fig. 13
and Fig. 14. The numerical results of the convergence order further validate the results
of Theorem 3.1.

Table 6: Error and rate of convergence for cylindrical bridge on four different meshes.

Mesh steps 1/36 1/72 1/144 1/288
‖·‖L2×L2×L2error 1.2680e-10 3.2570e-10 7.9757e-11 1.6263e-11

Rate of convergence 1.9610 2.0210 2.2941 \
‖·‖H1×H1×H1error 2.4648e-9 9.4351e-10 3.9201e-10 1.8588e-10

Rate of convergence 1.3853 1.2671 1.0765 \
‖·‖H1×H1×H2error 7.9593e-9 4.0735e-9 2.0414e-9 1.1173e-9

Rate of convergence 0.9664 0.9967 0.8696 \
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Figure 12: Rate of convergence with ‖·‖L2×L2×L2error.
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Figure 13: Rate of convergence with ‖·‖H1×H1×H1error.
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Figure 14: Rate of convergence with ‖·‖H1×H1×H2error.
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Table 7: Comparison of CPU for two models.

Models Meshes The fine mesh36×12 72×24 144×48 288×96
Shallow shell model 1.322s 2.427s 7.078s 29.399s 152.953s

Koiter’s model 2.308s 6.264s 23.171s 90.952s 382.696s

Meshes

0 20,000 40,000 60,000 80,000 100,000 120,000

C
P

U
 /

 s

0

50

100

150

200

250
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350

400

Koiter's model

shallow shell model

Figure 15: CPU of shallow shell and Koiter’s models.

Besides, we also compare the computation time of the shallow shell model with that
of the classic Koiter’s model [43] under the same meshes, see Table 7. It clearly show that
the shallow shell model greatly improves the calculation time in Fig. 15.

5 Conclusions

In this paper, we have provided a series of robust numerical schemes (linear/Morley,
Zienkiewicz, Fraeijs de Veubeke, Specht element pair; Bilinear/Rectangular Morley, ACM
element pair) to discretize the 2D linearly elastic shallow shell model, and offered a rig-
orous proof of the existence, uniqueness as well as error estimate of numerical solutions.
The numerical simulation results show that our numerical method is stable and conver-
gent. Based on the above results, we can extend our research to engineering fields in the
future.
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