
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 16, No. 2, pp. 519-548

DOI: 10.4208/aamm.OA-2021-0326
April 2024

Investigating Droplet and Bubble Deformation under
Shear Flow using the Multi-Pseudo-Potential Scheme
of Lattice Boltzmann Method

Raheleh Sharifi1, Mostafa Varmazyar1,∗ and Arash Mohammadi1

1 Department of Mechanical Engineering, Shahid Rajaee Teacher Training University,
Shahid Shabanloo Ave., Tehran 16788-15811, Iran

Received 25 October 2021; Accepted (in revised version) 19 April 2022

Abstract. In the present study, a multi-pseudo-potential model is used to simulate
the deformation and breakup of bubbles and droplets under simple shear flow. It is
shown that the current model can adjust the amount of surface tension, independent of
the interface thickness, equation of state (EOS), and reduced temperature. Considering
the available findings, no comprehensive study has been performed on all aspects of
deformation of bubbles and droplets under shear flow using numerical methods. Bub-
ble or droplet deformation under simple shear flow depends on two non-dimensional
numbers: capillary number (Ca) and viscosity ratio (λ). In this investigation, various
scenarios, including small deformation, large deformation, and breakup for bubbles
(0.2 < λ < 1) and droplets (1 < λ < 5), are separately studied. Results of the multi-
pseudo-potential model show that the bubble and droplet deformations oscillate un-
der shear flow and undergo elongation and contraction over time to converge to the
final shape. As the capillary increases by more than one, the bubble expands and
shrinks. The bubble tips become sharp, and so-called slender, at a low viscosity ratio
(λ). A detailed comparison is made between the numerical results for deformation pa-
rameters of the present model and the experimental results available in the references.

AMS subject classifications: 76T10, 76T06, 65Z99
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1 Introduction

Multiphase flow is considered a continuum fluid flow with two different phases (i.e.,
gas and liquid) [1-3] and has particular importance in industrial and scientific applica-
tions [4]. Various numerical methods have been developed based on the macroscopic
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approach, all of which require tracking the interface between the two phases in the flow
simulation. However, the methods based on the mesoscopic approach, such as lattice
Boltzmann method (LBM), can automatically detect the border of each phase without
any extra calculations [5-7]. Besides, these methods do not require using the Poisson’s
equation for pressure correction. These specifications of the mesoscopic models make it
possible to model two-phase flows with a more straightforward implementation algo-
rithm and less computational cost than those for the conventional computational fluid
dynamic schemes [8-10].

Color-gradient [11], Shan-Chen [12, 13], and free-energy [14, 15] are the three cate-
gories that have been introduced so far for the multiphase LBMs. Observations show
that the Shan-Chen category has attracted more attention, which is due to the ease of
implementation and robust description of particle interactions [3]. The main concern in
using the Shan-Chen model is to achieve full thermodynamic consistency [16-18], mean-
ing that energy conservation is maintained in the phase transition [16].

In the original Shan-Chen method, the interaction force between the particles is mod-
eled by a pseudo-potential function (ψ). Numerous investigations have been performed
on the relationship between pseudo-potential function and density of phases on the
thermodynamic consistency [2, 3, 17, 19]. He and Doolen’s [20] results demonstrated
that the pseudo-potential function must be defined according to the density (ψ ∝ ρ) to
achieve thermodynamic consistency. However, it is necessary to consider a suitable
relationship between the pseudo-potential function and density in order to accurately
calculate the pressure tensor [21]. Accordingly, Shan and Chen [13] demonstrated that
ψ=ψ0exp−ρ0/ρ could properly model pressure tensor. In another study, Sbragaglia et
al. [22] showed that Shan’s relation increased numerical instability and spurious veloci-
ties near the interface.

As mentioned earlier, the energy conservation must be satisfied in order to obtain a
thermodynamically consistent model. Since the free energy method maintains this cri-
terion, Sbragaglia and Shan tried to coincide the Shan-Chen model with the free en-
ergy method [23]. Their suggestion was to define a pseudo-potential function as ψ =
(ρ/(E+ρ))(1/E), where E is a constant depending on the lattice [23, 24].

Various approaches have been taken to correct the shortcomings of the original Shan-
Chen model, in all of which the idea of using a pseudo-potential function has been pre-
served. The results show this approach cannot take into account all the aspects related to
intermolecular forces. Therefore, it cannot eliminate the thermodynamic inconsistency of
the original Shan-Chen model [25, 26]. Accordingly, in the present study, a multi-pseudo-
potential model is introduced to simulate two-phase flows. Each of the pseudo-potential
functions is responsible for modeling a portion of the intermolecular forces. The sugges-
tion of Sbragaglia and Shan has also been used to satisfy energy conservation. Khajepoor
and Chen [17] represented that the multi-pseudo-potential scheme was utterly consistent
with thermodynamics and could be used for engineering applications. Their results dis-
played this approach could reduce the spurious velocities in the interface of two phases.
The multi-pseudo-potential Shan-Chen model can adjust the amount of surface tension,
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independent of the interface thickness, equation of state (EOS), and reduced temperature.
Therefore, this model can be used for two-phase problems, in which the effects of surface
tension cannot be ignored.

The problem of bubble (droplet) deformation in shear flow is selected to evaluate the
abilities of the present model. The bubble (droplet) behavior in shear flow is investigated
in three categories: small deformation, large deformation, and breakup [27-43]. The cap-
illary number is far less or greater at small and large deformations than one (Ca� 1
and Ca� 1). In the present study, calculations are performed for the wide range of the
capillary numbers (0.05<Ca<8.0).

In the next section, the multi-pseudo-potential Shan-Chen model is introduced. Then,
details of the bubble (droplet) deformation problem in the shear flow are stated. First, the
current multi-pseudo-potential Shan-Chen model is evaluated in flat interface and static
droplet in the results section. Finally, the present results of the Shan-Chen model are
compared with the experimental results reflected in previous experimental studies.

2 Multi-pseudo-potential Shan-Chen model

In this section, the multi-pseudo-potential Shan-Chen model is introduced.

2.1 Lattice Boltzmann equation

In the LBM, the microscopic particle behavior of fluid is modeled by the particle probabil-
ity distribution function. The discrete lattice Boltzmann equation based on the Bhatnagar-
Gross-Krook (BGK) approximation in the ith direction can be represented as follows [44]:

fi (x+eiδt,t+δt)− fi(x,t)=− 1
τ

[
fi(x,t)− f eq

i (x,t)
]
+Fi(x,t), (2.1)

where x and t are the location vector and time, respectively. τ is relaxation time, fi is
the one-particle velocity distribution function which travels with velocity ei and Fi is
the discrete form of intermolecular body force [45]. f eq

i is the equilibrium distribution
function, which can be defined as follows:

f eq
i =ωiρ

(
1+

ei ·ueq

c2
s

+
(ei ·ueq)2

2c4
s
− (ueq)2

2c2
s

)
, (2.2)

where ωi are the weighting coefficients and cs=1/
√

3 is the lattice sound. D2Q9 lattice is
chosen for simulations. The weighting coefficients for this lattice are assumed by ωi=4/9
for i=0; ωi =1/9 for i=1–4, and ωi =1/36 for i=5–8. The discrete velocity vectors are
defined as shown below:

ei =


(0,0), i=0,
(±1,0),(0,±1), i=1−4,
(±1,±1), i=5−8.

(2.3)
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Using Chapman-Enskog analysis, the relationship between kinematic viscosity and re-
laxation time can be obtained as follows:

v=C2
s

(
τ− 1

2

)
δt. (2.4)

The density and macroscopic velocity of the fluid can be calculated as shown below:

ρ=∑
i

fi ρ~u=∑
i

fiei. (2.5)

2.2 Multi-pseudo-potential scheme

Multi-pseudo-potentials are used to demonstrate the main interaction potentials in var-
ious extents of the mean free path of particles. This method can accurately model the
cubic EOS. It can be proven that the multi-pseudo-potential scheme is consistent with
thermodynamics [46]. The force term in this model can be defined as follows:

Fi(x,t)=F(1)+F(2)+···+F(n)=
n

∑
j=1
−Gjψj(x,t)

N

∑
i=1

w
(
|ci|2

)
ψj (x+ci,t)ci, (2.6)

here pseudo-potential function (ψj(x,t)) is defined by Eq. (2.7) [46]

ψj(ρ)=

(
ρ

LjEj+Hjρ

)1/Ej

, (2.7)

where Hj, Ej, and Lj are the coefficients obtained separately per EOS. The interparticle
force between node A and its neighbors, as defined in Eq. (2.6), consists of several sub-
forces, as shown in Fig. 1. The number of ψj depends on the selected EOS, which is
specified in Table 1. By comparing the equation of the state with Eq. (2.7), the constant
coefficients of Hj, Ej, and Lj can be obtained as mentioned in Table 1. The pressure in the
multi-phase domain can be defined by Eq. (2.8) [46].

p=ρc2
s +

n

∑
j=1

Gjc2

2

(
ρ

LjEj+Hjρ

)2/Ej

. (2.8)

Using an analytical method, the density gradient in the x-direction can be calculated
using Eq. (2.9) [46]

(c∂xρ)2=

(∫ ρ

ρv

(
p0−ρc2

s−
n

∑
j=1

Gjc2

2
ψ2

j

)
dρ

ρ2

)/(
a2

12ρ4

n

∑
j=1

Ljψ
Ej
j

Gjc2ψ2
j

2

)
, (2.9)

where a2 and p0 are the constant coefficients. By using the force balance (Eq. (2.9)) in the
domain, the first component of the pressure tensor (denoted by Pxx) can be obtained as
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Eq. (2.10b) [46]

∑p·A=∑F, (2.10a)

Pxx =
n

∑
j=1

Gjc2

2
ψ2

j +
Gjc4

12

[(
a1+12∆tsjGj

)(dψj

dx

)2

+a2ψj
d2ψj

dx2

]
, (2.10b)

where a1 and a2 are constant coefficients and depend on the order of isotropy which is
used in the force term. sj is obtained using the following equation:

sj =−
(
Eja2+2a1

)
/24∆tGj. (2.11)

Surface tension can also be calculated by Eq. (2.12)

σ=
c4

12

n

∑
j=1

∫ ρl

ρv

Gj Mj

(
ψ′j

)2
(∂xρ)dρ, (2.12)

where Mj is assumed by Eq. (2.13)

Mj =−3e4
(
Ej+1

)
−

Ej

2
−1, (2.13)

e4 is also a constant and considered as follows

e4=
ω(1)

2
+2ω(2)+8ω(4)+25ω(5)+32ω(8)+··· . (2.14)

For the fourth order isotropy (e4), only ω(1) = 1/3 and ω(2) = 1/12 are enough and
the rest of the coefficients can be used for the methods with higher orders of isotropy.
The fourth order isotropy is employed in the current study; then, e4 becomes 1/3 [19,
47]. In multi-pseudo-potential scheme, Z=(bc2)/a parameter adjusts the interface width
without changing the vapor and liquid densities [17]. Reducing Z leads to a reduction
in the width of the interface between the two phases. Additionally, Z can be used to
increase stability and accuracy of the multi-pseudo-potential scheme.

2.3 Discrete form of intermolecular body forces

The force term discretization method in the lattice Boltzmann model directly affects the
accuracy and stability of the solution [12, 48-52]. In 2012, Li et al. [26] examined all the
available discrete forms of intermolecular body forces and found that the Guo method
[53] was the only method that accurately retrieved the Navier-Stokes equation. Indeed,
this method had shallow stability compared with the exact difference method [51]. Ac-
cordingly, Li et al. presented a new model that fully recovered the Navier-Stokes equa-
tions and had the accuracy and stability of the exact difference method simultaneously
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Figure 1: Interparticle pseudo-potentials between node A and its neighbors.

[26]

Fi(x,t)=3ωi∆
(

1− 1
2τ

)[
(eiα−uα)

c2
s

+
3eiαuαeiβ

c4
s

]
Ftotal

α

+
3ωi∆t

2c4
s

n

∑
j

[
sj

τψ2
j

(
3F(j)

α F(j)
β eiαeiβ−c2

s F(j)
α F(j)

α

]
. (2.15)

In this method, the macroscopic and equilibrium velocities used in the force term were
as follows:

uα =ueq
α =∑

i
fieiα+

Fαδt
2ρ

. (2.16)

2.4 EOSs

In this paper, four EOSs of van-der-Waals, Peng-Robinson, Carnahan-Starling, and Soave-
Redlich-Kwong are used.

2.4.1 Van der Waals (VdW)

The van der Waals EOS has long attracted researchers’ and engineers’ attention mainly
because of its simplicity and engineering flexibility. In this EOS, a and b are the parame-
ters to explain the force of attraction and repulsion between molecules in real fluids. This
equation is considered as follows:

p=
ρRT

1−bρ
−aρ2 or

(
p+

a
V2

)
(V−b)=RT. (2.17)
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Table 1: Multi-pseudo-potential scheme parameters for various EOSs.

EOS ψj G f Hj Lj Ej
1 −2/3 0 1/2 2

VdW 2 2Tc−2 −b 1/2 2
3 −2ac−2 0 1 1
1

(
6Tc−2−2

)
/3 0 1/2 2

C-S 2 2bTc−2 −b/4 1 1
3 b2Tc−2/4 −b/4 3/2 2/3
4 −2ac−2 0 1 1
1 −

(
2bc2+6aα

)
/3bc2 0 1/2 2

SRK 2 2Tc−2 −b 1/2 2
3 2aαb−1c−2 b 1/2 2
1 −2/3 0 1/2 2

P-R 2 2Tc−2 −b 1/2 2
3 αac−2/b

√
2 b+b

√
2 1/2 2

4 −αac−2/b
√

2 b−b
√

2 1/2 2

The critical properties for VdW EOS are ρc =1/3b, pc = a/27b2, and Tc =8a/27Rb.

2.4.2 Peng–Robinson (P-R)

The Peng–Robinson EOS was proposed in 1976 to provide reasonable accuracy near the
critical point as shown below:

p=
ρRT

1−bρ
− aρ2α(T)

1+2bρ−b2ρ2 , (2.18a)

α(T)=
[
1+
(
0.37464+1.54226ω−0.26992ω2)(1−

√
T/Tc

)]2
, (2.18b)

where ω is the acentric factor and depends on the kind of fluid; the value of the acentric
factor for water is 0.344. The coefficients (a,b) can be calculated by a=(0.45724R2T2

c )/pc
and b=(0.0778RTc)/pc.

2.4.3 Carnahan-Starling (C-S)

In the Carnahan-Starling approach, the molecules are considered as the hard spheres to
simulate the intermolecular interaction. The Carnahan-Starling EOS can be stated in the
following form:

p=
ρRT

(
1+b ρ

4 +
(
b ρ

4

)2−
(
b ρ

4

)3
)

(
1−b ρ

4

)3 −aρ2, (2.19)

where a and b can be obtained using a=0.4964R2(T2
c )/pc and b=0.1873RTc/pc.
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2.4.4 Soave-Redlich-Kwong (SRK)

Due to its easiness and adequate accuracy, the Soave-Redlich-Kwong EOS is a well-
known EOS in modeling and optimizations, in which vapor-liquid equilibrium prop-
erties are needed

p=
ρRT

1−bρ
− aρ2α(T)

1+bρ
, (2.20a)

α(T)=
[
1+
(
0.48+1.574ω−0.176ω2)(1−

√
T/Tc

)]2
, (2.20b)

where a and b can be obtained using a=0.42748R2(T2
c )/pc and b=0.08664RTc/pc.

2.5 Boundary condition

To consider the zero velocity on the moving wall, a bounce-back type of boundary condi-
tion is applied to the non-equilibrium part of the distribution function [54]. Fig. 2 clarifies
the boundary condition employed in the current study. The north wall is coinciding with
the x-axis and is illustrated by the dotted line in Fig. 2. The unknown values of f4, f7,
and f8 pointing outwards with respect to the wall are to be obtained by employing the
after-streaming values of f0, f1, f2, f3, f5, and f6. Assuming that uN and vN are specified
on the northern wall, Eqs. (2.21a)-(2.21c) are used to calculate f4, f7, f8, and ρN

ρN = f0+ f1+ f2+ f3+ f4+ f5+ f6+ f7+ f8, (2.21a)
ρNuN = f1+ f5+ f8− f6− f3− f7, (2.21b)
ρNvN = f5+ f2+ f6− f7− f4− f8, (2.21c)

where subscript N indicates the northern wall, as shown in Fig. 2. From the bounce-back
idea used to the non-equilibrium part of the particle distribution normal to the wall, it
is known that f2− f eq

2 = f4− f eq
4 . This can change the set of Eqs. (2.21a)-(2.21c) to a closed

form, as detailed in Eqs. (2.22a)-(2.22d)

f4= f2−
2
3

ρNvN , (2.22a)

ρN =
1

1+vN
[ f0+ f1+ f3+2( f2+ f6+ f5)], (2.22b)

f7= f5+
1
2
( f1− f3)−

1
6

ρNvN−
1
2

ρNuN , (2.22c)

f8= f6+
1
2
( f3− f1)+

1
2

ρNuN−
1
6

ρNvN . (2.22d)
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2

3
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𝜌𝑁 =
1

1 + 𝑣𝑁
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(2.28) 

𝑓7 = 𝑓5 +
1

2
(𝑓1 − 𝑓3) −

1

6
𝜌𝑁𝑣𝑁 −

1

2
𝜌𝑁𝑢𝑁 (2.29) 

𝑓8 = 𝑓6 +
1

2
(𝑓3 − 𝑓1) +

1

2
𝜌𝑁𝑢𝑁 −

1

6
𝜌𝑁𝑣𝑁 (2.30) 
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3 Bubble and droplet deformation in shear flow

Shear flows are divided into three types: simple shear flow [27, 32-35, 38, 40, 41, 55],
plane hyperbolic (stagnation point) flow [30, 56, 57], and orthogonal-rheometer flow [58-
60]. The shear flow in the present study is of simple shear flow type. Bubbles and droplets
deform when subjected to shear stress, which is affected by the surface tension (σ), sus-
pending or continuous phase viscosity (µ), suspended or dispersed bubble or droplet
viscosity (µ′), shear rate (γ̇), and radius of the bubble or droplet before deformation (r).
Based on Buckingham Pi theorem, the following dimensionless numbers can be used to
analyze the bubble deformation [61]:

Ca=
µγ̇r

σ
, (3.1a)

λ=
µ′

µ
, (3.1b)

where Ca and λ are the capillary number and viscosity ratio, respectively. The shear
rate for the flow between the two parallel moving plates separated by distance H can be
calculated as follows:

γ̇=U/H, (3.2)

where U is the velocity of plates. Taylor [27] introduced parameter D to determine the
amount of bubble and droplet deformation as follows:

D=
L−B
L+B

. (3.3)
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Figure 3: Characteristics of deformed bubble (droplet) geometry at Ca<1.

Parameters L and B are specified in Fig. 3. The value of parameter D varies from zero to
one. For a spherical bubble droplet (without deformation), the value of D is zero. For a
large deformation bubble, this value will be close to one.

3.1 Small deformation (Ca <1)

The stable shape of the bubble or droplet in the small deformation range can be described
using Taylor’s theory, the relation of which is as follows [27]:

D=Ca
19λ+16
16λ+16

. (3.4)

According to Taylor’s article, Eq. (3.4) can be used for all values of the viscosity ratio (λ)-
from zero to infinity and the capillary range of Ca< 1 [36, 57]. Later, Canedo et al. [38]
and Rust and Manga [40] have shown that Eq. (3.4) is only valid for Ca< 0.5 and has a
significant error outside of it [38].

The orientation of the bubble or droplet to the main flow is defined by angle θ be-
tween the principal axis of the bubble (longest dimension) and the wall direction (Fig. 3).
Rallison [34] presented Eq. (3.5) at Ca<1 and λ<1 for parameter θ as follows:

θ=π/4−0.6Ca. (3.5)

Cox conducted an extensive study on the simultaneous capillary number and viscosity
ratio on droplet deformation [29]. He assumed that the viscosity ratio was greater than
one and proposed the following equations for D and θ:

D=
5(19λ+16)

4(λ+1)
√
(20k)2+(19λ)2

, (3.6a)

θ=
π

4
− 1

2
arctan

(
19λCa

20

)
, (3.6b)

where k is the inverse of the capillary number.
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3.2 Large deformation (Ca>1)

The large deformation of the bubble or droplet is entirely dependent on the amount of
viscosity ratio. Torza et al. concluded that the droplet would never undergo a large
deformation assuming λ>1 [31]. Several investigations have been performed about the
deformation of the bubble in the condition of λ < 0.2 [33, 38, 40, 41]. In this situation,
the bubble stretches to a large extent, and observations show that the final length of the
bubble reaches about ten times of the initial radius [31, 33, 38, 40, 41]. In this case, the
bubble’s shape resembles slender, so that the end of the bubble looks like a sharp point.
In the intermediate range (0.2<λ<1), studies have shown that the length of the bubble
eventually reaches four times of the initial radius [31]. In this case, the tip of the bubble
takes on a circular shape. It must also be noted that, in all the cases, from a particular time
onwards, the shape of the bubble no longer changes and reaches a steady state. Hinch
and Acrivos [33] introduced the geometric parameters of the final deformed bubble for
the large deformation model in Fig. 4. They presented the following relations for the
geometric characteristics of the deformed bubble:

L
a
=3.45Ca1/2, (3.7a)

θ=arctan
(

0.359Ca−3/4
)

. (3.7b)

Canedo et al. [38] corrected the dimensionless length relation provided by Hinch and
Acrivos (Eq. (3.7a)) as follows:

L
a
=3.1Ca0.43. (3.8)

It must be noted that Eq. (3.6a) and Eq. (3.6b) are not limited to small deformations and
can be used to calculate parameters D and θ in the large deformation range of a droplet.

Figure 4: Characteristics of deformed bubble (droplet) geometry at Ca>1 [33].
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3.3 Breakup

When the capillary number exceeds the critical capillary number, the bubble (droplet)
becomes very thin and, eventually, breaks into a few smaller bubbles (droplets) [34]. The
shape of the remaining bubbles will be fixed after a certain period of time [34]. Torza et
al. [31] concluded that during the interval 0.2≤λ≤3, as the viscosity ratio increased, the
critical capillary number decreased and the bubble (droplet) broke up faster. However,
in the range of λ < 0.2, the bubble became more resistant to breakup and the critical
capillary number decreased with increasing viscosity ratio. Their results also showed
that the bubble did not break up at the viscosity ratio greater than 3. They observed
that the critical capillary number within 0.2≤λ≤2.2 was much smaller than the critical
capillary number in the range of λ<0.2.

4 Results

In this section, a flat interface and static droplet problems are studied by using the multi-
pseudo-potential Shan-Chen model. The relaxation time for these studies is set to one.
The fourth order isotropy is also used to calculate the discretized force term. The con-
stants of the EOS are considered as a = 0.02 and b = 0.3. Boundaries are assumed to be
periodic. The quantities of length and time are in lattice units. The size of lattice for both
kinds of problems is 200×200. Afterwards, the droplet and bubble deformation under
simple shear flow are studied. The VdW EOS is used for these simulations. The con-
stant coefficients of VdW EOS are assumed to be a=9/49 and b=2/21. Calculations are
performed for three capillary number ranges: low (small deformation), medium (large
deformation), and high (breakup) for both droplets and bubbles.

4.1 Flat interface and static droplet problem

In the case of the flat interface, according to the mechanical stability, the total normal
component of the pressure tensor (P0 = Pxx+ρθ) must remain constant in the direction
perpendicular to the interface [62]. As mentioned before, the x component of the pressure
tensor (Pxx) can be obtained from Eq. (2.10b). The results of the total normal component
of the pressure tensor are shown in Fig. 5 for various EOSs. As can be seen, the me-
chanical stability criterion is satisfied and the normal component of the pressure tensor
is constant across the phase interface. The density distribution in the direction perpen-
dicular to the interface can also be calculated analytically using Eq. (2.9). In Fig. 6, the
numerical simulation of density distributions across the phase interface is compared with
the values obtained from the analytical solution for the equation of VdW, P-R, and SRK.
As can be seen, the numerical results are in good agreement with the analytical ones at
different reduced temperatures.

Physical observations show that the thickness of the interface layer between the two
phases is much smaller than the spatial step dimension in the typical numerical sim-
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(a) (b)

(c) (d)

Figure 5: Total normal component of the pressure tensor across the phase interface for the EOS of C-S (a),
VdW (b), P-R (c), and SRK (d).

ulations. Such a small value cannot be captured by the methods which are based on
the diffuse interface theory (e.g., LBM). According to Fig. 7, in the present simulation,
the thickness of the interface layer can be detected from the density distribution results
across the interface. As mentioned earlier, in the current model, the thickness of the in-
terface layer at the constant reduced temperature (Tr) depends only on the parameter of
Z=(bc2)/a. In the following, the effect of parameter Z on the thickness of the interface
layer is investigated. Fig. 7 shows a comparison of the numerical and theoretical results
(Eq. (2.9)) of the density distribution in the direction perpendicular to the interface at
the reduced temperature of 0.75 employing EOS of VdW and P-R. This figure demon-
strates that the numerical and theoretical values are in good agreement with each other.
As mentioned before, based on (Eq. (2.9)), the present model can adjust the thickness of
the interface layer independent of the reduced temperature. In Fig. 7, it is shown that
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(a) (b)

(c)

Figure 6: Numerical and theoretical simulations of density distributions across the phase interface at different
various reduced temperatures for the EOS of VdW (a), P-R (b), and SRK (c).

increasing the value of Z leads to an increment in the interface layer thickness. Current
simulations show that the thickness of the interface layer is effective in the accuracy and
stability of the solution. In other words, increasing Z can cause an increase in stability
and computational accuracy.

The coexistence densities of the vapor-liquid equilibrium are obtained for static
droplets using the multi-pseudo-potential Shan-Chen scheme in Fig. 8. Numerical val-
ues are compared with the values obtained from Maxwell’s solution (which is an ac-
curate solution for calculating coexistence densities in two-phase flows [3]). The re-
sults indicate the present model has thermodynamic consistency up to the density ra-
tio of about 1.26×106 using the EOS of VdW. The effect of interface layer thickness
(Γ = |x(ρ=0.98ρl)−x(ρ=1.02ρv)|) on the amount of two-phase densities is also investigated.
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(a) (b)

Figure 7: Numerical and theoretical simulations of density distributions across the phase interface at Tr=0.75
for the EOS of VdW (a) and P-R (b).

(a) (b)

Figure 8: Comparing the coexistence of the vapor-liquid equilibrium densities between the numerical and
Maxwell’s solution for the equation of VdW (a) and C-S (b).

Accordingly, the thickness of the interface layer has a significant effect on the accuracy
of the present model with the EOS of C-S at low reduced temperatures. In this case, by
considering Γ=60, it is possible to achieve acceptable accuracy at the density ratio of 106.

Next, the Laplace test is performed at a constant reduced temperature (Tr=0.8). This
test is executed to calculate the surface tension values from the numerical results of the
stationary droplet [63]. In this test, the pressure difference between the inside and outside
of the droplet is plotted with the inverse droplet radius. The slope of the drawn line is
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Figure 9: Comparing surface tension calculated by Laplace test (numerical) and theoretical solution using the
EOS of P-R for Tr=0.8.

equal to the surface tension. Comparison of surface tension calculated by the Laplace test
and theoretical solution (Eq. (2.12)) by employing the EOS of P-R is illustrated in Fig. 9.
The results demonstrate that the present model converges to surface tensions from 0.03
to 0.0723 under the mentioned conditions.

The value of the spurious velocity for different EOSs in terms of the reduced temper-
ature is displayed in Fig. 10. As can be seen, the amount of spurious velocity increases
with decreasing the reduced temperature. In this figure, the effect of the interface layer
thickness (Γ) on the amount of spurious velocity is also investigated. The results illus-
trate that with increasing the thickness of the interface layer, the amount of spurious
velocity decreases. By taking into account the equation of VdW and reduced tempera-
ture of 0.35, the value of the spurious velocity is close to 10−3. This shows the present
model could significantly reduce the amount of spurious velocity compared with single-
pseudo-potential Shan-Chen schemes at low reduced temperatures.

4.2 Droplet and bubble deformation under simple shear flow

In this section, bubble (λ<1) and droplet (λ>1) deformation is simulated under a simple
shear flow. Eq. (3.3) is used to calculate parameter D for the droplet (bubble). In Fig. 11,
the variation of the critical capillary number versus the viscosity ratio is investigated for
0.5 < λ < 2.5. Accordingly, as the viscosity ratio increases, the critical capillary values
decrease. In terms of small and large deformation, the numerical results are compared
with the experimental and analytical equations presented in Sections 4.2.1 and 4.2.2.
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(a) (b)

(c) (d)

Figure 10: Spurious velocity in the phase interface employing equation of VdW (a), C-S (b), P-R (c), SRK (d).

4.2.1 Droplet deformation

The simulations show that the droplet shape under the simple shear flow never reaches
the slender body, which has been confirmed by previous experimental studies [29, 31].
Therefore, three configurations for droplet deformation are drawn in Fig. 12. Fig. 12(a)
shows the small deformation of the droplets in different sequences for λ=5 and Ca=0.19.
The results illustrate that the droplet reaches an elliptical shape after 5000 steps and,
then, this shape remains constant. The large deformation of a droplet is depicted for
λ = 1.9 and Ca = 4.6 in Fig. 12(b). Under these conditions, the opposite effect of shear
and surface tension forces is well observed. The figure displays that the droplet reaches
its maximum elongation in the step of about 8000. In this state, the surface tension force
tends to return the droplet to its original shape. Therefore, after about 14000 steps, the
shape of the droplet changes to an elliptical formation. This state is also unstable and
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Figure 11: Critical capillary numbers versus viscosity ratio.

(a) λ=5, Ca=0.19 (b) λ=1.9, Ca=4.6 (c) λ=1.9, Ca=6.5 (d) λ=2.5, Ca=2.056

Figure 12: Droplet deformation in different conditions: (a) small deformation, (b) large deformation, (c), (d)
breakup.

the shear forces cause the droplet to stretch again. Finally, in the time step of 28000, the
last shape of the droplet is obtained. This type of oscillation is seen frequently in the
large deformations of the droplet. The length of the final shape is about four times of the
original radius. As mentioned, this length indicates the droplet shape has not entered
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Figure 13: Droplet oscillation versus time in different capillary numbers and viscosity ratios.

Figure 14: Droplet oscillation at λ=2.5 and Ca=1.5.

the slender state. Figs. 12(c) and (d) illustrate the breakup process of the droplet for
λ=1.9, Ca=6.5 and λ=2.5, Ca=2.056. As can be seen, in both cases, the surface tension
force is not strong enough to hold the droplet as a single droplet and breakup occurs
in the time step of 10000 for λ= 1.9 and Ca= 6.5, and time step of 9500 for λ= 2.5 and
Ca=2.056. The results show that the deformation rate is more dependent on the viscosity
ratio than on the capillary number. As the viscosity ratio increases, the deformation rate
increases as well. On the other hand, the capillary number affects the final deformation.
As expected, increasing the capillary number reduces the elongation of the final shape of
the droplet. The present model results show that in all capillary numbers larger than the
critical capillary number, the droplet is eventually broken up into two parts.

Fig. 13 shows the change in droplet length (L) over time until constant length is
reached at different capillary numbers and viscosity ratios. The droplet is continuously
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(a) (b)

Figure 15: Comparison between numerical and experimental results (Cox 1969 [29] and Taylor 1934 [27]) for
parameters of D (a) and θ (b) at λ=5.

stretched and contracted at all capillary numbers and viscosity ratios to get its constant
size. According to this figure, at the capillary number of 3.8 and viscosity ratio of 1.9, the
droplet length initially reaches the length equal to four times of the initial radius. Eventu-
ally, it converges to the length equal to 2.28 of the initial radius. As the capillary number
decreases, the amplitude of the length fluctuations also diminishes and, eventually, the
final length of the droplet is reduced. Decreasing the capillary number also reduces the
number of droplet length oscillations. It can lead to less time for the droplet to reach the
constant length. Fig. 14 shows a schematic of the droplets at peak and low times for the
capillary number of 1.5 and viscosity ratio of 2.5. As can be seen, after the time of about
37400, the droplet length changes are negligible and it can be assumed that the droplet
reaches the constant length.

In the following, we will examine the effect of capillary number on the final shape
of the droplet. Fig. 15 shows the numerical and experimental results of D and θ for low
capillary numbers. In Fig. 15(a), numerical results of D are compared with the experi-
mental values obtained from the Taylor relation [27] and Cox equation [29] at Ca < 0.5
and λ=5. As can be seen, the numerical results for parameter D are in acceptable agree-
ment with the Taylor relation (Eq. (3.4)). However, the numerical values of D parameter
deviate significantly from the Cox equation (Eq. (3.6a)). It shows that the Cox relation is
not suitable for estimating parameter D in the capillary number less than 0.5. Fig. 15(b)
indicates the variation of θ versus the capillary number. The numerical and experimental
methods estimate the depicted values of θ. Results show that the numerical results of θ
are in reasonable agreement with the Cox values, which are calculated by Eq. (3.6b).

Fig. 16 shows the effects of capillary number and viscosity ratio on the value of pa-
rameters of D and θ in the middle range of capillary number. According to Fig. 11, the
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(a) λ=2.5 (b) λ=2.5

(c) λ=1.9 (d) λ=1.9

Figure 16: Comparison between numerical and experimental results (Cox 1969 [29] and Taylor 1934 [27]) for
parameters of D (a), (c) and θ (b), (d) at λ=2.5 (a), (b) and λ=1.9 (c), (d).

critical capillary number for λ=2.5 and λ=1.9 is close to 2.1 and 5.9, respectively. There-
fore, Figs. 16(a) and (b) are drawn in the interval of 0.5<Ca<1.85 and Figs. 16(c) and (d)
are illustrated in the interval of 1<Ca<5.9. As can be seen, the numerical values of D and
θ are consistent with the results of the Cox relation [29]. However, as the amount of cap-
illary numbers increases, the distance between D’s numerical and experimental values
increases. At λ=1.9, the numerical results of D are still in good agreement with the Cox
relation values. However, the calculated values of θ at λ<2 are close to the experimental
results by Hinch and Acrivos [33]. At λ>2, the results of θ are placed between the Cox
and Hinch and Acrivos estimations, so that as λ increases, the numerical values of θ tend
to the Cox relation.
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4.2.2 Bubble deformation

In this section, the deformation of the bubble with the viscosity ratio in the interval
of 0.2 < λ < 0.6 is examined. Taylor equation (Eq. (3.4)), Hinch and Acrivos equation
(Eq. (3.7a)), and Canedo equation (Eq. (3.8)) are used to evaluate the geometric parame-
ters related to the bubble deformation. As mentioned, Taylor relation is helpful for small
deformations, while Hinch and Acrivos and Canedo equations are applied for large de-

Figure 17: Bubble deformation in different conditions: (a) small deformation, (b) large deformation, and (c)
breakup.



R. Sharifi, M. Varmazyar and A. Mohammadi / Adv. Appl. Math. Mech., 16 (2024), pp. 519-548 541

formations. Fig. 17 shows the bubble deformation in three categories small deformation,
large deformation, and breakup, respectively. As shown in Fig. 17(a), the final shape of
the bubble at λ = 0.2 and Ca = 0.3 is elliptical. The results show that the bubble shape
gradually turns into an elliptical formation in the small deformation interval. However,
during the large deformation, it oscillates between the initial and final formations. An ex-
ample of this oscillation for a bubble with λ=0.5 and Ca=7.5 is illustrated in Fig. 17(b). In
this model, the length of the bubble is stretched until the time step of 9000 reaches about
five times of the initial radius. Afterwards, the length of the bubble decreases and, then,
increases until reaching the equilibrium at the length equal to about four times of the ini-
tial radius. Compared with the droplet results, it can be concluded that a higher capillary
number is needed for the bubble to achieve the same final formation as the droplet. Ac-
cording to Fig. 11, the value of the critical capillary number for λ=0.5 is about 11.2. Thus,
the bubble breakup is simulated for Ca=11.2, which is shown in Fig. 17(c). As shown in
the figure, the bubble eventually breaks up into three parts.

For the bubbles, the deformation parameters of D and θ in different capillary numbers
are shown in Fig. 18. For the lower capillary numbers, the numerical results are in good
agreement with the Taylor relation (Eq. (3.4)). For capillary numbers greater than 0.5 to
about 4, the relation of Hinch and Acrivos (Eq. (3.7a)) is suitable. In capillary numbers
larger than 4, the results are entirely consistent with the Canedo equation (Eq. (3.8)). The
value of angle θ is plotted versus the capillary number for the bubble in an equilibrium
state. As can be seen, the results obtained in values of capillary numbers lower than one
are in good agreement with the Rallison relationship (Eq. (3.5)) and, in values of capil-

(a) (b)

Figure 18: Comparison between numerical and experimental results for the parameters of D (a) and θ (b) versus
capillary numbers.
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Figure 19: Bubble oscillation at different capillary numbers and viscosity ratios.

lary numbers higher than one, they are consistent with the Hinch and Acrivos relation
(Eq. (3.7b)).

Fig. 19 shows the change in the length of bubbles (L) over time until reaching constant
length at different capillary numbers and viscosity ratios. For a bubble at the capillary
number of 6.6 and viscosity ratio of 0.5, the length initially reaches five times of the initial
radius. Eventually, it converges to about 3.56 times of the initial radius. As the capillary
number decreases, the amplitude of the length fluctuations also decreases, leading to
a reduction in the final length of the bubble. The number of bubble oscillations until
reaching the final length is less than the droplet. Fig. 20 shows a schematic of the bubble
at peak and bottom times for the capillary number of 3.3 and viscosity ratio of 0.4. As
expected, the bubble deformation is greater than the droplet deformation under similar
conditions.

5 Conclusions

In the present study, we first evaluated the combination of a multi-pseudo-potential LBM
with the discrete form of intermolecular body force of Li et al. in the flat interface and
static droplet problems. It was shown this model had excellent thermodynamic consis-
tency using the EOS of van der Waals. Current results demonstrated that the thickness
of the interface layer had a significant effect on the accuracy and stability of the multi-
pseudo-potential model. Moreover, the present model could adjust the thickness of the
interface layer and surface tension independent of the reduced temperature and EOS.
Therefore, the present model had the potential to simulate different problems under dif-
ferent conditions with acceptable accuracy.
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Figure 20: Bubble oscillations at λ=0.4 and Ca=3.3.

Secondly, the droplet and bubble deformation and breakup were investigated by the
presented multi-phase LBM. When a bubble or droplet was subjected to a shear flow,
it underwent an oscillating deformation. The droplet and bubble underwent a series
of elongations and contractions to reach their final length. Various scenarios, including
small deformation, large deformation, and breakup for bubbles (0.2<λ<1) and droplets
(1<λ< 5) were separately studied. In this study, the viscosity ratios of 0.2<λ< 8 and
capillary numbers of 0<Ca<12 were investigated. The deformation characteristics were
accurately evaluated and more appropriate theoretical and experimental relationships
were introduced for different ranges of capillary numbers and viscosity ratios.

The droplet and bubble would be elliptical in the small deformation interval (Ca<1),
as confirmed by all the experimental references. The current numerical results were
in good agreement with the results of Taylor’s theory. In the droplet problem, when
the capillary was less than 0.5, the value of D was consistent with the Taylor equation
(Eq. (3.4)); when the capillary was greater than 0.5, it was consistent with the Cox rela-
tion (Eq. (3.6a)). For parameter θ, the results of the present model corresponded to the
Cox equation (Eq. (3.6b)) and Hinch and Acrivos equation (Eq. (3.7b)) for λ>2 during all
the capillary numbers and λ<2 within Ca>1, respectively. For the bubble deformation,
parameter D with respect to Ca < 1, 1<Ca < 4, and Ca > 4 corresponded to the Taylor
relation (Eq. (3.4)), the Hinch and Acrivos relation (Eq. (3.7a)), and the Canedo relation
(Eq. (3.8)), respectively. For angle θ, the numerical results were consistent with the Ral-
lison relation (Eq. (3.5)) and the relation of Hinch and Acrivos (Eq. (3.7b)) considering
Ca<1 and Ca>1, respectively. In a large deformation scenario, if the viscosity ratio was
less than 0.2, the bubble stretched and its tip sharpened. When the viscosity ratio was
greater than 0.2, unlike the previous case, the tip of the bubble and droplet took on a
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circular shape. The results showed that the number of oscillations of the bubble until
reaching the final length was less than the droplet and the bubble reached the final shape
in less time than the droplet.

Nomenclature

Coefficients of pressure tensor equation a1,a2

Constant parameters in the EOS a,b,c
The smallest diameter of deforming bubble and droplet B
Lattice speed c
Capillary number Ca
Lattice speed of sound cs

A parameter for determining the amount of bubble (droplet) deformation D
Second-order isotropy coefficient e2

Fourth-order isotropy coefficient e4

Lattice velocity vectors ei

Particle probability distribution function fi

Equilibrium distribution function f eq
i

Discrete form of intermolecular body force Fi

The nth part of the intermolecular force term F(n)

Inter-particle interaction strength G
Distance between two parallel plates H
Inverse of the capillary number k
The largest diameter of deforming bubble (droplet) L
Parameters related to pseudo-potential functions Lj,Ej,Hj

A parameter used in surface tension Mj

Pressure p
Saturation pressure p0

Critical pressure pc

First component of the pressure tensor pxx

Radius of the bubble or droplet before deformation r
Ideal gas constant R
A free parameter used in Pxx sj
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Time t
Temperature T
Critical temperature Tc

Reduced temperature Tr

Microscopic velocity −→u
Velocity components of the northern moving wall uN ,vN

The αth component of macroscopic velocity uα

The αth component of equilibrium velocity ueq
α

Location vector x

A parameter which is calculated by a, b, and c Z=bc2/a
A variable defined in EOS α

Shear rate γ̇

Angle between the principal axis
of the bubble (longest dimension) and the wall direction θ

Viscosity ratio λ

Dynamic viscosity µ

Kinematic viscosity ν

Density ρ

Critical density ρc

Reduced density ρR

Surface tension σ

Relaxation time τ

Pseudo-potential function ψ

Acentric factor ω

Weighting coefficients ωi

Interface layer thickness Γ
BGK Bhatnagar Gross and Krook
C-S Carnahan-Starling
EOS Equation of state
LBM Lattice Boltzmann method
P-R Peng-Robinson
SC Shan-Chen
SRK Soave-Redlich-Kwong
VdW Van der Waals
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