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Abstract. The sedimentation of a particle cluster with heat and mass transfer is stud-
ied with the lattice Boltzmann method. To investigate the effect of thermal convection
and mass transfer on the motion of the particle cluster, four cases are studied, namely,
without heat and mass transfer, with heat transfer, with mass transfer and with heat
and mass transfer. Compared to mass transfer, the effect of thermal convection is more
dominant, which affects the motion of the particle cluster significantly. The particle-
particle interaction is enforced by thermal convection, and the oscillation of the aver-
age settling velocity of the particle cluster is more intense. Besides, with mass transfer
between the particles and the fluid, the mass of the particles decreases, the motion of
the particles is more sensitive to the fluid flow, the velocity fluctuation of the particle
cluster is more intense, the distribution of the particle cluster is more inhomogeneous.
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1 Introduction

The motion of inertial particles in the fluid is ubiquitous, which plays a key role in in-
dustrial and natural sciences, and thus the sediment dynamics is studied by numerous
researchers [1-4]. For example, Feng et al. [1] studied the sedimentation of numerous
circular particles, and reported the Rayleigh-Taylor instability during the sedimentation.
Zaidi et al. [2] investigated the average settling velocity of the particle cluster, and pointed
out that the inhomogeneous particle distribution affected the average settling velocity of
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the particle cluster significantly. Zhang et al. [3] studied the sedimentation of a particle
pair in a shear-thinning power-law fluid with the multiple-relaxation-time lattice Boltz-
mann method, and reported that the particle pair experienced several different move-
ment states depending on the initial geometrical configuration. To deepen the under-
standing of the entrainment mechanism, Li et al. [4] conducted a two-dimensional nu-
merical investigation of the particle entrainment in the presence of a large downstream
circular obstacle. However, under some cases, like coal combustion and food process-
ing, the particle and the fluid are non-isothermal, meanwhile, the particle is composed of
different components, some insoluble while some soluble in the fluid, besides the hydro-
dynamic force, the particle motion is affected by thermal convection and mass transfer.

Some researchers investigated the effect of thermal convection on the particle mo-
tion [5-14]. For example, Gan et al. [5] studied a cold particle settling in a vertical channel
with the finite element method, and reported that the settling behavior of the particle is
significantly different from the isothermal case. Gan et al. pointed out that the settling
behavior of the non-isothermal particle was the competitive result between forced con-
vection and thermal convection. Mandujano et al. [7] studied thermal levitation, namely,
a particle with a density slightly different from the fluid kept still at the steady state due
to thermal convection, and discussed the stability of thermal levitation. Wang et al. [9]
studied convective heat transfer between gas and a particle cluster in a circulating flu-
idized bed riser, and pointed out that the heat flux of the individual particle inside the
cluster was smaller than that of an isolated particle. At the same time, they reported that
the convective heat transfer coefficient increased with the increase of the porosity of the
particle cluster, because more gas passed through the particle cluster.

Though some researchers studied mass transfer between the particle and the fluid,
the focus is limited to the rate of mass transfer [15-19], while the effect of mass transfer
on the particle motion is investigated rarely. For example, Wang et al. [18] studied mass
transfer between air and a particle cluster in a circulating fluidized bed, and pointed
out that the rate of mass transfer was reduced due to the particle clustering, since less
air passed through the particle cluster. In the study, the particle cluster is fixed and the
uniform air flow is imposed at the inlet, thus, the particle motion and mass transfer is
decoupled artificially. However, the reality is that the particle properties, such as density,
mass and moment inertia, will vary with mass transfer between the particle and the fluid,
which affects the particle motion significantly.

During the sedimentation of the particles with heat and mass transfer, like coal com-
bustion and food processing, the temperature and concentration distribution is related
to the fluid flow, which affects the particle motion, conversely, the particle motion affects
the fluid flow, temperature and concentration distribution. Thus, the sedimentation of
the particle cluster with heat and mass transfer is complex, where the fluid flow, particle
motion, thermal convection and mass transfer affect each other.

The rest of the paper is organized as follows. Section 2 describes the problem, Section
3 introduces the numerical method, and Section 4 validates our code. Section 5 are the
results and discussions, where the effect of thermal convection and mass transfer on the
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particle motion is investigated, and Section 6 gives some conclusions.

2 Problem description

Fig. 11is the diagram of the sedimentation of a particle cluster with heat and mass transfer.
The size of the channel is W x H =5cm x50cm. The particle cluster is composed of N
identical particles, which are randomly distributed in a circular domain with diameter
D.=10D;,, where D, =0.25cm is the diameter of the particle.

To generate the random particle cluster, the Hard-Sphere Monte-Carlo (HSMC)
method [20, 21] is adopted. In the HSMC method, the initial positions of the particles
inside the circular domain obey the random distribution, and the overlapping between
the particles is forbidden. Firstly, we generate a pair of random numbers to designate
the initial positions of the particles, then, we need to determine whether there is overlap-
ping between the particles. If there is no overlapping, we add the particle to the circular
domain, otherwise, we delete it and generate a new one, until the particle number is sat-
isfied. Fig. 2 shows the random particle cluster generated with the HSMC method, where
the particle number N =15.

The particle and the fluid are non-isothermal, and there is thermal convection be-
tween them. To observe the long-time effect of thermal convection, the temperature of
the particles is Ts =0, while the temperature of the channel walls and the initial tempera-
ture of the fluid are T;,=1. Besides, to make the problem simple, the particle is composed
of two components, one insoluble while the other soluble, and there is mass transfer be-
tween the particle and the fluid. The insoluble component is undeformable, which forms
the particle shell. The rate of mass transfer across the particle surface is [15]

dms __ 74 DVC -nds, 2.1)
dt T

where m; is the mass of the soluble component in the particle, D is the mass diffusiv-
ity, VC is the concentration gradient of the soluble component, and # is the unit vector

L.

Figure 1: Sedimentation of a particle cluster with heat and mass transfer.
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Figure 2: Initial distribution of the random particle cluster, where the particle number N=15.

normal to the particle surface. With mass transfer between the particle and the fluid, the
mass of the soluble component in the particle decreases, leading to a decreasing concen-
tration of the soluble component at the particle surface, which is determined by the mass
ratio of the soluble component 7y, namely,

CS :’)/: , (22)

where m,(0) is the initial mass of the soluble component in the particle. With mass trans-
fer between the particle and the fluid, the particle mass varies. Initially, the particle mass
is composed of two parts,

my(0) =m;+ms(0), (2.3)

where m; is the mass of the insoluble component in the particle, which is a constant.
With the soluble component diffusing in the fluid, the dissolved volume is occupied by
the fluid, and the particle mass includes three parts,

i (£) = - mg(£) 4 (1), 24)

where 1(t) is the mass of the fluid to occupy the dissolved volume. Assuming that both
the fluid and the soluble component are incompressible, the mass of the fluid is

mf(t):pr, (2.5)

Ps
where p r=1.0g /cm? is the density of the fluid, and p; is the density of the soluble com-
ponent. Since the insoluble component is undeformable, the particle shape and size are
kept unchanged, thus, the density and moment inertia of the particle vary. The parti-
cle is composed of two components, including the density of the insoluble component
p;=1.05g/cm? and the density of the soluble component p;=1.05g/cm?, and the density
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of the composite particle is the volume average of these two components. The soluble
component distributes uniformly inside the particle, and its initial volume fraction is
€)= 0.1.

The relevant dimensionless numbers are

e Prandtl number
Pr=

R

=0.7. (2.6)

e Grashof number

3 _
_8BD(Tw=Ts) oo 2.7)

e Schmidt number
=10, (2.8)

where v =0.1cm?/s is the kinematic viscosity of the fluid, « is the thermal diffusivity of
the fluid, g=980cm/s? is the gravity acceleration, f is the thermal expansion coefficient of
the fluid, and D is the mass diffusivity. The Grashof number reflects the strength of ther-
mal convection, with Gr increasing, thermal convection becomes stronger. The Schmidt
number describes the rate of mass transfer, with Sc increasing, the mass diffusivity de-
creases, thus, mass transfer becomes slower.

3 Numerical method

3.1 Lattice Boltzmann method for flows with heat and mass transfer

To couple the fluid flow, heat and mass transfer, the multi-distribution-function lattice
Boltzmann method is adopted, and the evolution equations are

1

fi(x+cidt,t+0t)— fi(x,t) = —T—f( fi— i) +6tF, (3.1a)
1

gi(x+cic5t,t+(5t)—gi(x,t):—T—(gi—gfq), (3.1b)
8

i (x-+cidt t+08) —hi(x,1) :—Tlh(hz-—hfq), (3.10)

where f;(x,t), gi(x,t) and h;(x,t) are the distribution functions of the fluid flow, temper-
ature and concentration fields, respectively, fieq, gfq and hfq are the equilibrium distribu-
tion functions, Tf, Tg and 7, are the dimensionless relaxation times, Jt is the time step,
and F; is the added body force related to the temperature difference. Adopting the D2Q9
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(2-dimension and 9-velocity) model [22], the equilibrium distribution functions are

eq . ciu (ciu)P? uu
fi'(pu) =w;p [1—1— 2 + 208 2 |’ (3.2a)
eq . Ci-u (Ci'u)z_M
8i (Tru)—sz[H- 2 + 20 2 | (3.2b)
. .1)2 .
e N PN (ciru)” wu 5
h(Cu) w,C[ T T a2 (3-2¢)
where
4/9, i=0,
wi=41/9, i=1234, (3.3)
1/36, i=5,6,7,8,
is the weight parameter of the model,
(0,0), i=0,
c; =« c(cos[(i—1)m/2],sin[(i—1)7/2]), i=1,2,34, (3.4)

V2c(cos[(2i—1)7t/4),sin[(2i—1)7t/4]), i=5,6,7,8,

is the discrete velocity of the model, c;=c/ v/3 is the sound speed, c=6x/5t, and dx is the
space step.

To reflect the effect of thermal convection, the Boussinesq approximation is adopted,
where the fluid density depends on the temperature linearly, namely,

pIPO[l_ﬁ(T_Tw)]' (3.5)
The fluid gravity of unit volume is
G=pg=po[l—p(T—~Tw)]g=pog —pogf(T~Tw), (3.6)
where pog is the fluid gravity at the temperature T, and
F=—pogh(T—Ty) (3.7)

is the added body force related to the temperature difference, which is discretized with
Guo’s scheme [23], namely,

Fi:wi(Ci_u—FC;;luCi)'F. (3.8)

ct g
To acquire the density, velocity, temperature of the fluid and concentration of the
soluble component, we calculate the moment of the distribution functions, namely,

P:Zfir u::) (Zcifi—f—(gl:), (3.9a)
T=) gi C=) h. (3.9b)
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With the multi-scale analysis [24], the macroscopic governing equations are acquired,
namely,

gfz+v. (o) =0, (3.10a)
Jou 1 2

g—i—(u-V)u:—EVp%—vV u+F, (3.10b)
oT

E—I—V‘(Tu):V(szT), (3.10¢)
aaf+v- (Cu)=V-(DVC), (3.10d)

where the first two equations are the Navier-Stokes equations, which describe the fluid
flow, and the third and forth equations are the convection-diffusion equations of the tem-
perature and concentration fields. The macroscopic transport coefficients are related to
the dimensionless relaxation times, namely,

v=c? <Tf— ;) ot, (3.11a)
n=c? (rg—D St, (3.11b)
D=c? <~ch—;> ot. (3.11c)

3.2 Unified iterative scheme for moving boundaries

For the sedimentation of the particle cluster, the treatment of moving boundaries is cru-
cial [25,26]. In the lattice Boltzmann method, the moving boundary treatment is classified
into two categories, including diffuse boundary treatment [1,27,28] and sharp boundary
treatment. In the diffuse boundary treatment, the thickness of the boundary is nonzero,
and the numerical boundary is not always the physical boundary, comparatively, the
sharp boundary treatment is of better numerical accuracy. In the present study, the sharp
boundary treatment is adopted, where the Euler grid is fixed, and two types of nodes
need to be specified, including boundary nodes around the particle and fresh fluid nodes
due to the movement of the particle. Fig. 3 depicts these two types of nodes. To treat these
two types of nodes consistently, the unified iterative scheme for moving boundaries [29]
is adopted.

After a time step, the distribution functions at fluid nodes and boundary nodes with
links to other fluid nodes are updated. At a boundary node or a fresh fluid node, the
unknown distribution functions are constructed with two steps, namely, prediction step
and correction steps. In the prediction step, the unknown distribution functions are ap-
proximated with those at their neighboring nodes, namely, fi(xs) = fi(xsf). To reflect
the boundary effect, the correction step is conducted, where the distribution functions
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Figure 3: Boundary nodes around the particle (a) and fresh fluid nodes due to the movement of the particle

(b).

are decomposed into their equilibrium parts and non-equilibrium parts. After the pre-
diction step, the unknown distribution functions at node x £ are approximated, thus, the
fluid density and velocity at node x are known, including the equilibrium parts fl(x )
and non-equilibrium parts f/*(x). The fluid density at point x,, is approximated with
that at node x¢, namely, p,, = pr, and the fluid velocity at point x;, is calculated with
Uy = Up+wp X (xw—xp), where u, and w, are the translational and rotational veloci-
ties of the solid particle, respectively, and x, is the position of the solid particle. With
the fluid density and velocity at point x;, known, the equilibrium parts f;’(x) are ac-
quired, and the non-equilibrium parts are approximated with those at node xy, that is,
fl(xw) = fI(x f). Then, the fictitious distribution functions at point x;, are constructed,
namely, fi(xy)= fieq (xw)+f/*(xy). To correct the unknown distribution functions at node
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Xf,a tirst-order interpolation is adopted, namely,

filxr)=[afi(xsr) + fi(xw)]/ (g +1), (3.12)

where g = [xf—xy|/|xf —xs| is the fraction of the intersected link in the fluid region. To
improve the numerical accuracy and decrease the inconsistency between the constructed
distribution functions and those evolutionary ones, the enforced iteration is adopted. In
each iteration step, the correction step is executed, and the unknown distribution func-
tions at node xy are updated.

Though the unified iterative scheme for moving boundaries is designed for flows
without heat and mass transfer, extending it to the temperature and concentration bound-
aries is straightforward [30]. Similarly, to construct the unknown distribution functions
at node xy, the prediction step and correction step are conducted. In the prediction step,
we approximate the unknown distribution functions at node x ¢ with those at their neigh-
boring nodes. In the correction step, instead of the fluid density, we use the temperature
and concentration at point x;, to construct the equilibrium distribution functions. After
the unknown distribution functions are constructed, the enforced iteration is adopted.

3.3 Hydrodynamic force on a solid particle

To update the velocity and position of the particle accurately, evaluating the hydrody-
namic force on a solid particle is crucial. Here, the Galilean invariant momentum ex-
change method is adopted [31]. As depicted in Fig. 4, the momentum carried by the fluid
particle toward the solid surface before the collision is (¢;—uy) ff (xf,t) relative to the
solid surface, while the relative momentum is (c_;—uy)f_i(xf,t+0t) after the collision
with the solid surface, where f;" (x ,t) is the post-collision distribution function at time ¢,
and f_;(xf,t+0t) is the updated distribution function at time ¢+46t. Thus, the hydrody-
namic force on the solid particle is

F=)_) [(cimua)fi* (xpt) = (c—i—mw) fi(xp,t +0t)], (3.13)

X f 1
and the torque is

T= ZZ{ (20 —2xp) ¥ [ (¢ —uw)fi+ (xf,t) = (ci—uw)fi(xfp,t+5t)]. (3.14)

.‘X'fi
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Figure 4: Sketch of the Galilean invariant momentum exchange method.
3.4 Particle-particle and particle-wall interaction

During the sedimentation of the particle cluster, to avoid the particle-particle overlap-
ping, the particle-particle interaction is treated with the collision model [32],

0, di,j>Dp+C/
1 2
Pfj_ a(xi—xj)(Dp‘FC—di,j)/ Dp<dij<Dp+¢, (3.15)
1
eT(xi—xj)(Dp_di,j)/ di,]-<Dp,
p

where d; ;= |x; —x;| is the distance between the particles, { is the threshold of the particle-
particle interaction, which is set to be dx, €, = (6x)? and G;, =Jx are the stiff parameters.
Similarly, to avoid the particle-wall overlapping, the collision model of the particle-wall
interaction is

0, d;>Dp+,
1

j ?w(xi_xf)(Dp+€_d§)2/ Dp<d;<D,+¢, (3.16)
1

(xi—x})(Dp—d}), d; <D,,

/
610

where x] is the image position of the particle about the wall, d; = |x; —x]| is the distance
between the particle and its image, e, =€, /2 and €;, =¢),/2 are the stiff parameters of the
particle-wall interaction.
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3.5 Particle motion equations

To update the velocity and position of the particle, the particle motion equations are

du: N

mi%:mg—l—ﬁb—l—ﬁh%— Y E+EY, (3.17a)
j=Lj#i

dw; dx; do;

where u; and w; are the translational and rotational velocities of the i-th particle, respec-
tively, x; and 0; are the translational and rotational positions, respectively, m; and I; are
the mass and moment inertia, respectively, F’ is the buoyancy force, F/ is the hydrody-
namic force, Zjl\il,j;éi Flp] and F" are from the particle-particle and particle-wall interaction,
respectively.

4 Code validation

To validate our code, two problems are selected, namely, a cold particle settling in a verti-
cal channel and a particle with concentration convection-diffusion moving in a horizontal
channel.

4.1 A cold particle settling in a vertical chanel

The problem was firstly investigated by Gan et al. [5] with the finite-element method,
after that, many researchers validated their numerical methods with the problem [10-
14]. A particle with diameter D, =25dx is located in a vertical channel with width W =
4D, and height H =320D,. Initially, the particle is positioned off the centerline of the
channel by half the diameter. The density ratio of the particle to the fluid is p, =p,/pf=
1.00232. The reference Reynolds number Re, = D,U, /v is set to be 40.5, where U, =

\/ m(Dp/2)(0r—1)g is the reference velocity. The temperature of the particle is kept at

Ts =0, and the temperature of the channel walls is kept at T,, =1. Fig. 5 shows the
time history of the lateral position of the particle at different Gr. At 810 < Gr <2150, the
centerline of the channel is not the equilibrium position of the particle, instead, a steady
settling of the particle closer to the side wall is observed, which is in agreement with
Gan’s report [5] qualitatively.

4.2 A particle with concentration convection-diffusion moving in a horizontal
channel

Furthermore, a particle with concentration convection-diffusion moving in a horizontal
channel is simulated [33]. A particle with diameter D, = 806x moves in a horizontal
channel with width W =2D,, along the centerline with a constant velocity Uy =5x1072.
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Figure 5: Time history of the lateral position of the particle at different Gr.
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Figure 6: Concentration distribution around the particle surface (top) and concentration profile along the
centerline (bottom).

The concentration at the particle surface is fixed at C; =1.1, while the concentration at
the channel walls is kept at C;, =1.0. At the inlet and outlet of the channel, the periodic
boundary condition is adopted. Fig. 6 shows the concentration distribution around the
particle surface and the concentration profile along the centerline. The concentration
distribution about the particle is asymmetric, which is from the effect of the convection
on the diffusion process. It is observed that the agreement of the concentration profile
along the centerline between our result and the literature data [33] is great.
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5 Results and discussions

To investigate the effect of thermal convection and mass transfer on the motion of the
particle cluster, four cases are studied, namely, without heat and mass transfer, where the
motion of the particle cluster is affected by the fluid flow, with heat transfer, where the
motion of the particle cluster is affected by the fluid flow and thermal convection, with
mass transfer, where the motion of the particle cluster is affected by the fluid flow and
mass transfer, and with heat and mass transfer, where the motion of the particle cluster
is affected by the fluid flow, thermal convection and mass transfer.

Firstly, to describe the motion of the particle cluster quantitatively, the average settling
velocity of the particle cluster is calculated,

u=(1,7) :%Zui. (5.1)

Fig. 7 shows the time history of the average settling velocity of the particle cluster in the
horizontal and vertical directions. In the horizontal direction, it is observed that u oscil-
lates around zero. At the beginning, the particles distribute closely, the particle-particle
interaction is strong, which is apt to disperse the particles. However, with the particles
moving toward the channel walls, the confinement of the channel walls becomes signif-
icant, which suppresses the dispersion of the particles, consequently, the particles are
forced to move toward the channel centerline, and #u oscillates around zero. Further-
more, compared to the cases without heat transfer, the oscillation of % of the cases with
heat transfer is much more intense. In the vertical direction, 7 experiences two phases,
namely, monotonic increase and oscillation. At the beginning, the particle cluster moves
like a single particle, and 7 increases monotonically.

With the settling velocity of the particles increasing, the drag force increases rapidly,
which decelerates the particles, after a transient overshoot, the particle-particle interac-
tion becomes stronger, and the particles move disorderly, which leads to the oscillation
of 7. Compared to the cases without heat transfer, it is observed that v of the cases with
heat transfer oscillates much more intensely, which is attributed to thermal convection
between the particles and the fluid.

Fig. 8 shows the vortex distribution around the particles at t/ (Df,/ v)=2. Itis ob-
served that the vortex distribution around the particles of the cases with heat transfer is
quite different from that of the cases without heat transfer. Compared to the cases with-
out heat transfer, under the effect of thermal convection, the particles distribute much
loosely. Furthermore, Fig. 9 shows the temperature distribution around the particles at
t/ (Df, /v)=2. The temperature of the particles is lower than that of the fluid, and the fluid
around the particles is cooled. With the fluid temperature decreasing, the fluid density
increases, which leads to an added body force, namely, thermal buoyancy force. Under
the effect of thermal buoyancy force, a downward fluid flow occurs, namely, thermal con-
vection, which pushes the particles to move downward, consequently, v of the cases with
heat transfer is larger than that of the cases without heat transfer. Meanwhile, with the
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Figure 7: Time history of the average settling velocity of the particle cluster in the horizontal (a) and vertical
(b) directions.
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Figure 8: Vortex distribution around the particles at t/(D%/V) =2.

settling velocity of the particles increasing, the particle-particle interaction is enforced,
which leads to the more intense oscillation of T of the cases with heat transfer.

Next, to describe the variance of the motion of the particle cluster, the velocity fluctu-
ation of the particle cluster is calculated,

Ei(ui_fc)Z‘ (52)

1= (1,5) = Y=
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(a) With heat transfer (b) With heat & mass
transfer

Figure 9: Temperature distribution around the particles at t/(D%/V) =2.

Fig. 10 shows the time history of the velocity fluctuation of the particle cluster in the hor-
izontal and vertical directions. It is observed that both 7 and ¥ experience two phases,
namely, monotonic increase and oscillation. At the beginning, the particles distribute
closely, the strong particle-particle interaction is apt to disperse the particles, conse-
quently, 7 and 7 increase monotonically. With the particles colliding with each other,
the particles move disorderly, which leads to the oscillation of i and ¢. Furthermore,
compared to the cases without heat transfer, i and ¢ of the cases with heat transfer are
much larger, namely, the motion of the particles is more inhomogeneous. The downward
thermal convection pushes the particles to move downward, the average settling veloc-
ity of the particles is larger, and the particles collide with each other more frequently,
consequently, 7 and @ of the cases with heat transfer are much larger.

Since the particles are composed of two components, one insoluble while the other
soluble, with mass transfer, the mass and moment inertia of the particles decrease, and
the result is that the motion of the particles is more sensitive to the fluid flow. Fig. 11
shows the concentration distribution around the particles at ¢/ (D%, /v)=2. Without heat
transfer, the concentration distribution around the particles is obvious, while the rate of
mass transfer is approaching zero under the effect of thermal convection, namely, the
rate of mass transfer of the case with heat transfer is higher than that of the case without
heat transfer. The average settling velocity of the particles of the case with heat transfer
is larger, where the convection mass transfer is enforced, consequently, the rate of mass
transfer of the case with heat transfer is higher.

Besides the average settling velocity and the velocity fluctuation, to represent the
inhomogeneity of the distribution of the particles, the ensemble dispersion of the particle
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Figure 10: Time history of the velocity fluctuation of the particle cluster in the horizontal (a) and vertical (b)

directions.
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Figure 11: Concentration distribution around the particles at t/(D%,/v):Z

cluster is calculated,

Li(xi—xc)?
N
where x,=) ;x;/ N is the average position of the particle cluster. It is clear that the smaller
the ensemble dispersion is, the more homogeneous the distribution of the particle cluster
is, while the distribution of the particle cluster is more inhomogeneous with the ensem-
ble dispersion increasing. Fig. 12 shows the time history of the ensemble dispersion of

D= (Dy,Dy)= , (5.3)
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Figure 12: Time history of the ensemble dispersion of the particle cluster in the horizontal (a) and vertical (b)
directions.

the particle cluster in the horizontal and vertical directions. In the horizontal direction,
after a transient monotonic increase at the beginning, D, oscillates. At the beginning,
the particles distribute closely, the strong particle-particle interaction is apt to disperse
the particles, and the result is that the distribution of the particles is more inhomoge-
neous. With the particles approaching the channel walls, D, reaches its maximum, and
the wall confinement suppresses the dispersion of the particles, pushing the particles to-
ward the channel centerline. Finally, the dispersion of the particles and the confinement
of the channel walls compete with each other, the distribution of the particles reaches a
dynamic equilibrium, and D, oscillates. Compared to the cases without heat transfer,
Dy of the cases with heat transfer increases more rapidly at the beginning. Firstly, ther-
mal convection makes the particle-particle interaction become stronger, and the particles
become more disperse. Besides, the mass of the particles decreases due to mass transfer,
and the motion of the particles is more easily affected by the fluid flow, the distribution of
the particles is more inhomogeneous, namely, D, increases more rapidly. In the vertical
direction, after a transient decrease, D, increases monotonically. Compared to the cases
without heat transfer, D, of the cases with heat transfer increases more rapidly. The parti-
cles are cold while the fluid is hot, the downward thermal convection pushes the particles
to move downward. Since the average settling velocity of the particles of the cases with
heat transfer is larger than that of the cases without heat transfer, the particle-particle
interaction becomes stronger, and the particles collide with each other more frequently,
which is conducive to the dispersion of the particles, compared to the cases without heat
transfer, the inhomogeneity of the distribution of the particle cluster increases.
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6 Conclusions

The sedimentation of a particle cluster with heat and mass transfer is studied with the
lattice Boltzmann method, where the effect of thermal convection and mass transfer on
the motion of the particle cluster is investigated. Compared to the cases without heat
transfer, the motion of the particle cluster of the cases with heat transfer is quite differ-
ent, including the average settling velocity, velocity fluctuation and ensemble dispersion.
Specifically, the following conclusions are drawn:

e compared to mass transfer, the effect of thermal convection is more dominant,
which affects the motion of the particle cluster significantly;

e the average settling velocity of the particle cluster oscillates around zero, which is
the competitive result between the particle dispersion and the wall confinement;

e the particle-particle interaction is enforced by thermal convection, and the velocity
fluctuation of the particle cluster is much more intense;

e with mass transfer, the mass and moment inertia of the particle decrease, and the
motion of the particle cluster is more sensitive to the fluid flow, the distribution of
the particle cluster is more inhomogeneous.

Since the motion of the particle cluster with heat and mass transfer is complex, the present
study is limited. For example, the conjugate heat transfer between the particles and the
fluid, the density and initial volume fraction of the soluble component, are not consid-
ered. To deepen our understanding of the non-isothermal and volatile particulate flows,
numerous detailed works should be conducted in the future.
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