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Abstract. In this paper, we develop a two-relaxation-time regularized lattice Boltz-
mann (TRT-RLB) model for simulating weakly compressible isothermal flows, which
demonstrates superior stability and accuracy over existing models such as the regu-
larized lattice Boltzmann (RLB) and two-relaxation-time (TRT) models. In this model,
a free relaxation parameter, τs,2, is employed to relax the regularized non-equilibrium
third-order terms. Chapman-Enskog analysis reveals that our model can accurately
recover the Navier-Stokes equations. Theoretical analysis and numerical experiments
both confirm the model’s ability to eliminate non-physical numerical slip associated
with the half-way bounce-back scheme. Our simulations of the double shear layer
problem and Taylor-Green vortex flow exhibit pronounced advantages in terms of sta-
bility and accuracy, even under super-high Reynolds numbers as high as Re = 107.
Additionally, the simulation of creeping flow around a square cylinder showcases the
model’s precision in computing ultra-low Reynolds numbers down to Re=10−7. This
robust capability confirms the proposed model as a highly effective and adaptable tool
in computational fluid dynamics.
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1 Introduction

In recent years, the lattice Boltzmann method (LBM) has gained significant attention in
the realm of computational fluid dynamics (CFD) and related fields. Due to its unique
features such as inherent parallelism, ease of handling complex boundary conditions,
physical intuitiveness, and scalability, the LBM is increasingly applied in solving non-
linear partial differential equations [1–3] and simulating complex fluid problems, in-
cluding turbulent flow [4–7], combustion [8–10], multiphase interactions [11–14], evap-
oration and phase change [11, 15–17], fluid-structure interaction [18, 19], porous media
flow [20–22], and chemical reactions [23, 24], among others. Several books [25, 26] and
review articles [11, 27] are recommended for readers seeking a deeper foundational un-
derstanding. However, many challenging issues in the lattice Boltzmann method arise
from the nonlinear collision term, such as numerical instability, lack of Galilean invari-
ance in transport coefficients, and the fixed and unadjustable Prandtl number. Adopting
adaptive multi-resolution or more complex execution schemes, such as those in the se-
ries of works by Thomas Bellotti [28,29], is undoubtedly a promising approach. However,
if we consider only the use of uniform standard lattices and employ the simplest colli-
sion and streaming schemes, improving the implementation of the collision process may
be a universally recognized effective method. The standard approach for handling non-
linear collision terms is to employ the Bhatnagar-Gross-Krook (BGK) approximation [30],
known as the lattice BGK (LBGK) model, which was developed by Qian et al. [31]. In
this model, the probability particle distribution functions relax towards equilibrium at
a single rate, a simplicity that has contributed to its widespread popularity. While the
LBGK model suffices for problems with moderate Reynolds numbers, it tends to become
numerically unstable at very high Reynolds numbers and rapidly loses accuracy at low
Reynolds numbers, ultimately leading to a blow-up.

In order to address the limitations of the standard lattice BGK model and enhance its
robustness and effectiveness, several alternative collision models have been proposed.
The multiple-relaxation-time (MRT) model [32–34] is performed in the moment space,
enabling the independent control of relaxation rates for different moments, resulting in
enhanced accuracy and stability. In the cascaded model [35–38], the relaxation is formu-
lated in the central moment space, with these moments defined in the reference frame
that moves with the local fluid motion. Numerical results [35, 36] demonstrate that the
cascaded model exhibits superior stability compared to the MRT model. It is noteworthy
that Geier et al. [39, 40] further refined their proposed cascaded model and introduced
the so-called cumulant model. Both of these models can be viewed as the MRT-type
model [41], implying that they share some common drawbacks while improving model
stability. The relaxation matrices in these models are controlled not only by the shear
viscosity but also by the bulk viscosity and several free parameters, and a definitive ap-
proach to determining the optimal relaxation matrices is currently lacking. Moreover,
these models incur substantial computational overhead. It is worth noting that the en-
tropy lattice Boltzmann model proposed by Karlin and his coworkers [42, 43] demon-


