An Explicit Superconvergent Weak Galerkin Finite Element Method for the Heat Equation

Fuzheng Gao^{1,*} and Shangyou Zhang²

- ¹ School of Mathematics, Shandong University, Jinan, Shandong 250100, China
- ² Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

Received 6 November 2023; Accepted (in revised version) 4 June 2024

Abstract. An explicit two-order superconvergent weak Galerkin finite element method is designed and analyzed for the heat equation on triangular and tetrahedral grids. For two-order superconvergent P_k weak Galerkin finite elements, the auxiliary inter-element functions must be P_{k+1} polynomials. In order to achieve the superconvergence, the usual H^1 -stabilizer must be also eliminated. For time-explicit weak Galerkin method, a time-stabilizer is added, on which the time-derivative of the auxiliary variables can be defined. But for the two-order superconvergent weak Galerkin finite elements, the time-stabilizer must be very weak, an H^{-2} -like inner-product instead of an L^2 -like inner-product. We show the two-order superconvergence for both semi-discrete and fully-discrete schemes. Numerical examples are provided.

AMS subject classifications: 65N15, 65N30

Key words: Parabolic equations, finite element, weak Galerkin method, polytopal mesh.

1 Introduction

The weak Galerkin (WG) finite element method [32] solves numerically partial differential equations with discontinuous polynomials on polytopal meshes. The method has been developed for many partial differential equations, cf. [2–4,9,11–16,18–21,24,25,27–30,32,34,35,39,41,43,44,47,50–52].

In the P_k weak Galerkin (WG) finite element method, auxiliary variables of P_{k-1} , or P_k , or P_{k+1} polynomials are introduced on the inter-element edges or face-polygons. The continuity of the these discontinuous polynomials are enforced weakly by an H^1 -stabilizer. However, for the two-order superconvergent WG finite element method in this manuscript, the auxiliary variables must be of P_{k+1} polynomials on triangular or tetrahedral meshes. Also the H^1 -stabilizer must be eliminated from the weak formulation. The

Emails: fzgao@email.sdu.edu.cn (F. Gao), szhang@udel.edu (S. Zhang)

^{*}Corresponding author.

weak continuity on the discontinuous polynomials is achieved by the weak gradient of properly chosen high-degree polynomials, cf. [36–38,40,42,45,46].

For time-dependent problems, for a long time, only the implicit WG finite element methods can be applied, cf. [1,5–8,10,17,22,26,48,49,53–56]. This is because the time direction updates of the auxiliary variables are not possible. Recently, [33] designs an explicit WG finite element method for the parabolic problems where an L^2 -stabilizer is added to the weak formulation. The time derivative is applied inside this L^2 -stabilizer so that time-direction updates of the auxiliary variables are consistent.

In this work, we extend the explicit WG finite element method of [33] to the two-order superconvergent WG finite element method, on triangular or tetrahedral meshes. In order to obtain the two-order superconvergence, the L^2 -like time-stabilizer in [33] is replaced by a very weak $H^{-2}(\Omega)$ -like stabilizer. Of course, the underlying WG finite element space must be a two-order superconvergent one, i.e., in this paper, the P_k - P_{k+1} - P_{k+1}^d WG finite element on triangular or tetrahedral meshes, where the first P_k stands for the polynomial space inside each element, the second P_{k+1} stands for the polynomial space on each edge/triangle between two elements, and the third P_{k+1}^d stands for the discrete space of the weak gradient on each element. Both semi-discrete and fully-discrete numerical schemes are analyzed. Two-order above the optimal-order error estimates are established for both schemes in H^1 -norm. Numerical experiments are presented, confirming the theory.

2 Semi-discrete scheme

2.1 The WG finite element space

Let \mathcal{T}_h be a quasi-uniform triangular or tetrahedral mesh of the domain Ω . Denote by \mathcal{E}_h the set of all edges or triangles in \mathcal{T}_h and $\mathcal{E}_h^0 = \mathcal{E}_h \setminus \partial \Omega$ the set of all interior edges or triangles. For each element $T \in \mathcal{T}_h$, denote by h_T its diameter and $h = \max_{T \in \mathcal{T}_h} h_T$ the mesh size of \mathcal{T}_h . Denote by $P_k(T)$ the space of polynomials of degree less than or equal to k on T. We denote the piecewise bilinear forms in short notations,

$$(u_0, v_0)_{\mathcal{T}_h} = \sum_{T \in \mathcal{T}_h} (u_0, v_0),$$

 $\langle u_b, v_b \rangle_{\partial \mathcal{T}_h} = \sum_{T \in \mathcal{T}_h} \sum_{e \in T} \langle u_b, v_b \rangle_e.$

The P_k WG finite element space V_h on the mesh \mathcal{T}_h is defined as follows, $k \ge 1$,

$$V_h = \{ v = \{ v_0, v_h \} : v_0 |_T \in P_k(T), v_h |_e \in P_{k+1}(e), e \subset \partial T, \forall T \in \mathcal{T}_h \}.$$
 (2.1)

We note that a function $v \in V_h$ has a single value auxiliary v_b on the two sides of $e \in \mathcal{E}_h$. The subspace of V_h consisting of functions with vanishing v_b on $e \subset \partial \Omega$ is denoted as V_h^0 .