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Abstract. In this paper we propose and analyze a numerical scheme coupling a
second-order backward differential formulation (BDF) and the finite element method
(FEM) to solve the incompressible resistive magnetohydrodynamic (MHD) equations.
In the discrete scheme, the pressure variable in the fluid field equation is computed
through a Poisson equation, and a linear and decoupled method is adopted to separate
both the magnetic and the fluid field functions from the original system. As a result,
the original system is divided into several sub-systems for which the numerical so-
lutions can be obtained efficiently. We prove the unique solvability, the unconditional
energy stability, and particularly optimal error estimates for the proposed scheme. Nu-
merical results are presented to validate the theory of the scheme.
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1 Introduction

The MHD system describes the interaction between the conductive fluids and the elec-
tromagnetic fields [16]. It has been widely applied to the industry production, such as
liquid-metal processing, and its numerical solutions are of great significance in science
and engineering [45]. This model is governed by the Navier–Stokes equations and the
Maxwell equations through the Ohm’s law and the Lorentz force. Physically, in order to
consider the further effect of magnetic fields, one can introduce a fourth-order curl oper-
ator on the magnetic fields into the standard incompressible MHD equations, arriving at
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the following so-called incompressible resistive MHD system [65]

∂tH−∇×(u×H)+
η

µ0
∇×(∇×H)+

η2

µ0
∇×(∇×(∇×(∇×H)))=0, (1.1a)

∂tu+u·∇u−µ∆u+∇p+
1
µ0

H×(∇×H)=0, (1.1b)

∇·u=0, (1.1c)

over Ω×(0,T], where Ω is a bounded and convex polygonal domain in R2 (polyhedral
domain in R3), and T is a constant representing the final time. Here, the unknowns u, H
and p denote the velocity field, the magnetic filed, and the pressure variable, respectively.
The constant η represents the resistivity, η2 is the hyper-resistivity, µ is the viscosity of the
fluid and µ0 stands for the magnetic permeability of free space. The initial and boundary
conditions are given by

H|t=0=H0, u|t=0=u0 in Ω, (1.2a)
H×n=0, (∇×(∇×H))×n=0, u=0 on ∂Ω×(0,T]. (1.2b)

It is assumed that the initial data satisfies

∇·H0=∇·u0=0. (1.3)

By taking the divergence of (1.1a), we have ∂t∇·H = 0, which together with the above
divergence-free initial condition indicates that ∇·H=0 for any t>0.

Apparently, taking hyper-resistivity coefficient η2 =0 would reduce the original sys-
tem (1.1a)-(1.1c) into the standard incompressible MHD system. There have been al-
ready many works dedicated to regularity analysis of the incompressible MHD sys-
tem [23, 36, 37, 48]. Concerning finite element methods for the MHD system, many re-
search efforts have been devoted to the use of the H1(Ω) conforming elements, since
the weak solutions of the system are located in H1(Ω). In [22], Gunzburger et al. pro-
posed a numerical scheme and analyzed optimal error estimates for the stationary MHD
system by H1(Ω) conforming elements. The similar results were obtained for the time-
dependent MHD model in [24]. Li et al. developed a strongly convergent finite element
scheme based on the H1(Ω) conforming elements in general domains, which may be
nonconvex, nonsmooth and multi-connected, without any mesh restriction [30]. Wang et
al. designed a second-order temporally accurate finite element scheme with the H1(Ω)
conforming elements, and provided a rigorous proof on optimal error estimates [47].
More works about H1(Ω) conforming elements are referred to [25,47,52,58,60] and refer-
ences therein. An apparent difference between the standard MHD system and the resis-
tive MHD system is the appearance of the fourth-order curl operator, for which many
numerical schemes have been proposed and analyzed. Zheng et al. utilized a non-
conforming finite element involving a small number of degrees of freedom for its so-
lution [65]. Sun proposed a mixed finite element method by introducing an intermediate


