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Abstract. This paper investigates a novel nonlinear singular fractional SI model with
the ®, operator and the Mittag-Leffler kernel. The initial investigation includes the
existence, uniqueness, boundedness, and non-negativity of the solution. We then
establish Hyers-Ulam stability for the proposed model in Banach space. Optimal
control analysis is performed to minimize the spread of infection and maximize the
population of susceptible individuals. Finally, the theoretical results are supported
by numerical simulations.
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1 Introduction

Fractional-order models have attracted considerable interest from researchers in a wide
variety of disciplines. Over the past two decades, these models have found applications
in a wide variety of scientific and engineering fields, including modern physics, signal
theory, control theory, hydrodynamics, viscoelastic theory, fluid dynamics, set theory,
computer networks, biology, etc. Relevant literature on these topics can be found in the
works [15,17,20,26-28, 30, 35,37,41].

Recently, several researchers have studied fractional differential equations (FDEs) with
singularities using various mathematical methods. For example, Bai and Qiu [7] estab-
lished the existence and uniqueness (EU) of the solution to a nonlinear singular boundary
value problem (BVP) of FDEs using the Krasnoselskii and Leray-Schauder fixed point
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theorems. They also demonstrated applications to underscore their results. Agarwal,
O’Regan and Stanék [2] studied the EU for a singular fractional BVP using the Riemann-
Liouville fractional derivative. Bai and Fang [6] studied a singular nonlinear coupled
system of FDEs, using Leray-Schauder and Krasnoselskii fixed point techniques for the
EU of the solution. Vong [40] studied FDEs with singularity and non-local boundary
conditions using the Schauder fixed-point approach and upper-lower solution tech-
niques. Pu et al. [36] studied positive solutions of a multipoint BVP with singularity
and applied their results to a specific example. Khan, Chen and Sun [25] studied non-
linear FDEs with singularity and p-Laplacian to establish the EU of the solution and
performed stability analysis.

Mathematical models have long been indispensable tools for understanding and
predicting the dynamics of infectious diseases. By quantifying the complex interactions
between pathogens and populations, these models enable researchers and policymak-
ers to gain insight into the spread of disease and evaluate potential control strategies.
Some of the pioneering work in epidemic modeling can be attributed to Kermack and
McKendrick [23], who introduced the SIR model in 1927. This model divided the popu-
lation into three compartments: susceptible (S), infectious (I), and recovered (R). Using
differential equations, the model captured the transitions between these compartments
and laid the foundation for subsequent advances in epidemic modeling.

Over time, mathematical models of epidemics have evolved and expanded to incor-
porate additional complexities. Researchers recognized the importance of accounting
for factors such as age structure, spatial heterogeneity, and varying transmission rates.
This led to the development of more sophisticated compartmental models, such as the
SEIR model, which introduced an exposed compartment [4]. For a recent review on epi-
demiological models we refer the interested reader to [18] and the references therein.

In addition, spatial epidemic models and network-based models emerged to
capture the influence of geographic location and social connectedness on disease
spread [22]. In recent years, advanced mathematical techniques have further enhanced
the capabilities of epidemic models. Network theory has provided insights into the role
of social connections in disease transmission, allowing the exploration of targeted inter-
vention strategies. Nonlinear dynamics and chaos theory have shed light on complex
epidemic behavior, including the emergence of periodic outbreaks and bifurcations.

The main goal of this paper is to minimize the number of infected individuals for
the fractional SI model, which describes the evolution of two compartments: susceptible
individuals (S) and infected individuals (I), considering the Atangana-Baleanu fractional
derivative in the Caputo sense (ABC fractional derivative, for short) and the @, opera-
tor. The inclusion of these operators in our epidemic model offers several compelling
motivations. First, the use of the ABC fractional derivative allows for the inclusion
of memory effects in the model and long-range interactions in disease transmission.
Traditional derivative operators assume instantaneous changes, which may not accu-
rately capture the dynamics of infectious diseases. By introducing fractional calculus,
we can account for the persistence of past infection rates, allowing for a more realistic
representation of disease transmission.



