Convergence Analysis of a Weak Galerkin Finite Element Method on a Bakhvalov-Type Mesh for a Singularly Perturbed Convection-Diffusion Equation in 2D

Authors

DOI:

https://doi.org/10.4208/

Keywords:

Weak Galerkin finite element method, convection-diffusion, singularly perturbed, Bakhvalov-type mesh

Abstract

In this paper, we propose a weak Galerkin finite element method (WG) for solving singularly perturbed convection-diffusion problems on a Bakhvalov-type mesh in 2D. Our method is flexible and allows the use of discontinuous approximation functions on the mesh. An error estimate is developed in a suitable norm, and the optimal convergence order is obtained. Finally, numerical experiments are conducted to support the theory and to demonstrate the efficiency of the proposed method.

Author Biographies

  • Shicheng Liu

    School of Mathematics, Jilin University, Changchun, Jilin 130012, China

  • Xiangyun Meng

    School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, China

  • Qilong Zhai

     School of Mathematics, Jilin University, Changchun, Jilin 130012, China

Published

2025-10-04

Issue

Section

Articles