An Iterative Two-Grid Method of a Finite Element PML Approximation for the Two Dimensional Maxwell Problem

Authors

  • Chunmei Liu
  • Shi Shu
  • Yunqing Huang
  • Liuqiang Zhong
  • Junxian Wang

DOI:

https://doi.org/10.4208/aamm.10-m11166

Keywords:

Maxwell scattering, edge finite element, PML, iterative two-grid method.

Abstract

In this paper, we propose an iterative two-grid method for the edge finite element discretizations (a saddle-point system) of Perfectly Matched Layer (PML) equations to the Maxwell scattering problem in two dimensions. Firstly, we use a fine space to solve a discrete saddle-point system of $H(grad)$ variational problems, denoted by auxiliary system 1. Secondly, we use a coarse space to solve the original saddle-point system. Then, we use a fine space again to solve a discrete $\boldsymbol{H}(curl)$-elliptic variational problems, denoted by auxiliary system 2. Furthermore, we develop a regularization diagonal block preconditioner for auxiliary system 1 and use $H$-$X$ preconditioner for auxiliary system 2. Hence we essentially transform the original problem in a fine space to a corresponding (but much smaller) problem on a coarse space, due to the fact that the above two preconditioners are efficient and stable. Compared with some existing iterative methods for solving saddle-point systems, such as PMinres, numerical experiments show the competitive performance of our iterative two-grid method.

Published

2018-08-10

Issue

Section

Articles