High-Order Well-Balanced Finite Volume WENO Schemes with Conservative Variables Decomposition for Shallow Water Equations

Authors

  • Jiaojiao Li
  • Gang Li
  • Shouguo Qian
  • Jinmei Gao

DOI:

https://doi.org/10.4208/aamm.OA-2020-0138

Keywords:

Shallow water equations, source term, WENO schemes, well-balanced property, hydrostatic reconstruction, conservative variables decomposition.

Abstract

This article presents well-balanced finite volume weighted essentially non-oscillatory (WENO) schemes to solve the shallow water equations (SWEs). Well-balanced schemes are characterized by preservation of the steady state  exactly at the discrete level. The well-balanced property is of paramount importance in practical applications where many studied phenomena are regarded as small perturbations to equilibrium states. To achieve the well-balanced property, numerical fluxes presented here are constructed by means of a suitable conservative variables decomposition and the hydrostatic reconstruction idea. This decomposition strategy allows us to realize a novel simple source term approximation. Both rigorous theoretical analysis and extensive numerical examples all verify that the resulting schemes maintain the well-balanced property exactly. Furthermore, numerical results strongly imply that the proposed schemes can accurately capture small perturbations to the steady state and keep the genuine high-order accuracy for smooth solutions.

Published

2021-04-13

Issue

Section

Articles