A Weak Galerkin Finite Element Method for a $H({\rm curl})$-Elliptic Problem

Authors

  • Jie Peng
  • Yingying Xie
  • Yage Xu
  • Liuqiang Zhong

DOI:

https://doi.org/10.4208/aamm.OA-2023-0101

Keywords:

$H({\rm curl})$-elliptic problem, weak Galerkin finite element method, weak curl operator, error estimate.

Abstract

In this paper, we develop and analyze a weak Galerkin (WG) finite element method for solving a $H({\rm curl})$-elliptic problem. With the aid of the weak curl operator and a stabilizer term, we first design a WG discretization. Then, by using an auxiliary problem and establishing an error equation, we achieve the optimal order error estimates in both the energy norm and $L^2$ norm for the WG method. At last, we report some numerical experiments to confirm the theoretical results.

Published

2025-07-19

Issue

Section

Articles