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Abstract. In this paper, the proof of the global existence of a renormalized or equiv-
alently mild solution of the relativistic Boltzmann equation in a Robertson-Waker
space-time is given for an initial value problem with initial data only satisfying the
conditions of finite mass, energy, inertia and entropy.
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1 Introduction

We are concerned with global existence of solution of the initial value problem for the
following dimensionless relativistic Boltzmann equation (RBE) in a Robertson-Walker
space-time [6]

∂t f + p̂ · ∇x f − 2
Ġ

G
p · ∇p f = Q( f ; f ), (1.1)

where different parts will be addressed below.
About the relativistic case, several authors have studied this problem by taking the

Minkowski spacetime as background. Most of results available concern the study of
mild solutions [1, 3, 8, 9].

In their seminar paper DiPerna and Lions [1], based on new tools and techniques,
have studied the non-relativistic Boltzmann equation. The key concept of their re-
sults is the notion of renormalized solution of the transport equation. By the velocity
averaging, they permit to show the proof of global existence of weak solution via
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compactness arguments. After this result, the desire to extend this method to the rel-
ativistic case becomes a problem. The response came firstly by Dudyński and Ekiel-
Jeżewska in [2], in Minkowski spacetime, with an existence proof based on the causal-
ity property of the relativistic Boltzmann equation. By modifying the assumptions
made on the scattering cross section in [2], more complicated in the relativistic case,
Zhenglu [8, 9] has given the proof of global existence of renormalized solution for the
initial value problem for the relativistic Boltzmann equation using the DiPerna and
Lions method’s in Minkowski spacetime.

The objective of this paper is to use the same approach as in [1, 9] and prove that
there exists a global renormalized equivalently mild solution to the large data Cauchy
problem for the relativistic Boltzmann in Robertson-Walker spacetime under the con-
dition of initial data f0 satisfying (2.32), that is

Theorem 1.1. Let K(g, θ) be the relativistic collision kernel of the RBE (2.14), and Br a ball
with center at the origin and radius r, B(g) =

∫

S2 K(g, θ)dΩ. Assume that

K(g, θ) ≥ 0, a.e. in [0,+∞)× S2, K(g, θ) ∈ L1
loc(R3 × S2), (1.2)

1

(v0)2

∫

Br

B(g)

v0
1

dv1 → 0 as |v| → +∞, ∀ r, t ∈ (0,+∞). (1.3)

Then the RBE (1.1) has a renormalized or equivalently a mild solution f through initial
data f0 with (2.32) satisfying the following properties:

f ∈ C
(

[0,+∞); L1(R3 × R
3)
)

(1.4)

L( f ) ∈ L∞
(

[0,+∞); L1
(

R
3 × Br

))

, ∀ r ∈ (0,+∞), (1.5)

Q+( f , f )

1 + f
∈ L∞

(

[0,+∞); L1
(

R
3 × Br

))

, ∀ r ∈ (0,+∞), (1.6)

sup
t≥0

∫ ∫

R3×R3
f (1 + ln f )dx dp < +∞. (1.7)

The challenge is the form of the Boltzmann equation in this spacetime. In order
to use the DiPerna and Lions method, we base our approach in the transformation of
Eq. (1.1) into a different equivalent form using covariant variables as in [5,6]. Then we
follow the steps of [1,9]. In this work we use the similar assumptions on the scattering
kernel already used in [9], namely

K(g, θ) ≥ 0 a.e., (1.8)

z(1 + z²)K(z, θ) ∈ L1
Loc

(

(0,+∞)× S2
)

, (1.9)

1

(v0)2

∫ ∫

Br×S2

gs
1
2 K(g, θ)

v0
1

dΩdv1 → 0, |v| → +∞, ∀ r, t ∈ (0,+∞), (1.10)

where for r > 0, Br is a ball with its center in the origin and radius r, and where the
other quantities will be specified in the sequel.


