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Abstract: Mutations that cause structural changes in proteins can sometimes reduce drug efficacy dramatically, a phenomenon 

known as mutation-induced drug resistance. For example, emerging drug-resistant mutations in the SARS-CoV-2 main protease 

(Mpro) threaten the long-term efficacy of nirmatrelvir, the active component of Paxlovid. Various methods have been developed 

to predict the impact of such mutations, with differing levels of reliability. In this study, comparative binding free energy 

calculations using Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) and Alchemical Transformation (also 

known as Free Energy Perturbation, or FEP) were performed to assess five naturally occurring Mpro mutations (SER144ALA, 

MET165ALA, GLU166ALA, HIE172ALA, and GLN192ALA) at the nirmatrelvir binding site. The results reveal a weak 

correlation (RPearson = 0.18) between MM/PBSA predictions and experimental data. In contrast, FEP calculations using either 

the Multistate Bennett Acceptance Ratio (MBAR) or Thermodynamic Integration (TI) yield stronger linear correlations (RPearson 

= 0.56 and 0.57, respectively). This study highlights the superior reliability of FEP in quantifying binding affinity losses 

due to drug resistance and underscores its potential for the proactive surveillance of clinical resistance mutations. Moreover, 

such insights are crucial for advancing antiviral drug development and guiding the design of inhibitors with a reduced risk of 

resistance evolution.
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1. Introduction

The emergence of antiviral resistance is prevalent in the 
treatment of chronic or persistent viral infections, including 
human immunodeficiency virus (HIV), hepatitis B virus (HBV), 

hepatitis C (HCV), herpesviruses, and influenza [1]. In these 
cases, prolonged antiviral therapy, particularly as monotherapy, 
has driven the selection of viral escape mutations, consequently 
reducing therapeutic efficacy and leading to treatment failure 
[2-4]. Resistance to protease inhibitors arises from amino acid 
substitutions occurring either within the substrate-binding pocket 
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with potential immune evasion concerns [10,15,16]. Moreover, 
the absence of a homologous protease in humans enhances the 
specificity and safety of targeting Mpro, making it an attractive and 
promising drug target for antiviral therapy development [17-21]. 

Pfizer’s oral drug Paxlovid which combines the Mpro inhibitor 
nirmatrelvir and its metabolic enhancer ritonavir was granted 
Emergency Use Authorization by the FDA in December of 2021. 
Nirmatrelvir (PF-07321332) has been shown to be a highly 
effective inhibitor of Mpro, with an IC50 of 4 nM. Meanwhile, 
nirmatrelvir exhibits an extraordinary level of selectivity against a 
panel of human proteases, with submicromolar activity observed 
only for cathepsin K (IC50 = 231 nM), underscoring its potential 
as a therapeutic agent with minimal off-target effects [10,22]. The 
active site of SARS-CoV-2 Mpro features a non-canonical catalytic 
dyad, Cys145-His41, where the Sγ atom of Cys145 forms a 
reversible C-S covalent bond with the nitrile carbon of nirmatrelvir. 
In a study by Zhao et al [10]., the electron density map captured 
dual conformations of the catalytic cysteine, further supporting 
the reversibility of the covalent bond. Early administration of 
nirmatrelvir in COVID-19 reduces viral load and decreases the 
risk of progression to severe disease [23,24]. The ease of oral 
administration of nirmatrelvir further establishes it as a favorable 
option for high-risk patients [4]. 

or at distal sites. At the molecular level, this resistance is primarily 
driven by a significant reduction in the binding affinity of the 
inhibitor for mutated protease, while substrate binding remains 
largely unaffected [5]. This change in affinity can be quantitatively 
assessed through binding free energy calculations. Various methods 
have been proposed for the calculations of binding free energies 
between ligands and their target proteins. Among these, Molecular 
Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) 
and Alchemical Transformations (also known as Free Energy 
Perturbation or FEP hereafter) methods are the most widely used in 
both academia and industry today [6-9]. However, each method has 
its own advantages and disadvantages in terms of the accuracy and 
computational cost.

Since December 2019, the COVID-19 pandemic caused by 
SARS-CoV-2 has severely impacted global health [10-12]. SARS-
CoV-2 Main Protease (Mpro) plays a crucial role in viral replication 
by cleaving the viral polyproteins pp1a and pp1ab at 11 distinct 
sites, thereby generating nonstructural proteins essential for the 
viral lifecycle [4,13,14]. From an evolutionary perspective, the 
amino acid sequence and three-dimensional structure of Mpro are 
highly conserved across the subfamily Coronavirinae, providing a 
strong mechanistic foundation for the development of therapeutics, 
particularly in response to emerging SARS-CoV-2 variants 

Figure 1: Nirmatrelvir (depicted as sticks) in complex with SARS-CoV-2 Mpro. The Mpro dimer is illustrated using a cartoon representation, 
with the two subunits colored gray and blue.
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However, the emergence of drug resistance mutations 
in Mpro raises the concern of possible alter susceptibility 
of nirmatrelvir and threaten the long-term effectiveness as 
an antiviral treatment for potential future pandemic. Several 
studies have reported the emergence of nirmatrelvir-resistant 
Mpro mutants through viral passage experiments. Mutations in 
residues SER144, GLU166, and ALA173 have direct impact on 
nirmatrelvir inhibition [25-29].

In this study, MM/PBSA and FEP were applied to calculate 
the binding free energies of nirmatrelvir with Mpro mutants 
(SER144ALA, MET165ALA, GLU166ALA, HIE172ALA, and 
GLN192ALA), as well as the wild-type Mpro. These mutants were 
selected based on prior experimental evidence indicating their 
role in conferring resistance to nirmatrelvir [29]. Accordingly, 
the correlation between the calculated binding free energies and 
experimental affinity values was evaluated using the Pearson 
correlation coefficient. Notably, only the binding energy 

differences along the sequence were examined, and entropy 
contributions were assumed to be invariant across the protein 
variants and thus were omitted in the MM/PBSA calculations. 
The Pearson correlation coefficient of 0.18 from the MM/
PBSA calculations shows a weak linear correlation with the 
experimental data. In contrast, FEP calculations using MBAR and 
TI for the alchemical transformation analysis yield correlation 
coefficients of 0.56 and 0.57, respectively, indicating a better 
agreement with the experimental data. The study suggests that 
the FEP calculations strongly correlate with experimental results, 
highlighting the potential of the FEP method as a powerful 
tool for providing accurate affinity values between protein and 
ligand, particularly when considering binding energy differences 
along the sequence. Meanwhile, the MM/PBSA calculations 
remain valuable (probably for pre-screening) due to their lower 
computational cost, especially when precise agreement with 
experimental absolute affinities is not critical. 
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2. Method

2.1 Prepartion of the molecular mystems

The initial coordinates of the protein-ligand complex were obtained 
from the 1.59 Å resolution crystal structure (PDB ID: 7VH8) in the 
Protein Data Bank [10]. The Mpro monomer is intrinsically inactive, 
whereas its biologically active form is a homodimer, with the two 
subunits arranged nearly orthogonally. The dimer structure was 
constructed using PyMOL (Schr¨odinger, LLC) by utilizing the C2 
symmetry [30]. The crystal structure reveals two conformational 
states of Cys145. In the dominant state (80% occupancy), the sulfur 
atom of Cys145 forms a covalent bond with the nitrogen atom of the 
imine group in the ligand molecule. In the alternative state, with 20% 
occupancy, the sulfur atom of Cys145 engages in a hydrogen bond 
with the nitrogen atom of the nitrile warhead of ligand nirmatrelvir. 
Since the populations of the covalent and noncovalent binding states 
differ by only 4 folds, the binding free energies have only a small 
difference in magnitude. As shown in Fig. 1, this study selected the 
noncovalent state of Cys145 to investigate the binding interaction 
between Mpro and nirmatrelvir prior to proton transfer from Cys145 
to His41. To facilitate this transfer, the imidazole ring of His41 was 
rotated to orient the ϵ-nitrogen toward the sulfur atom of Cys145, 
creating a geometrically favorable protonation pathway. The nitrile 
warhead of nirmatrelvir was modified and all hydrogen atoms were 
subsequently added using the Discovery Studio Visualizer [31]. The 
free ligand nirmatrelvir was optimized using Gaussian 16 [32] at 
the B3LYP/6-31G(d) level. The Generalized AMBER Force Field 
version 2 (GAFF2)[33] and AM1-BCC partial charges [34,35] were 
assigned to the nirmatrelvir molecule. The Mpro topology parameters 
were generated using the AMBER14SB force field [36]. All crystal 
water molecules were kept. The Mpro-nirmatrelvir complex was 
solvated in a TIP3P37 water box with a minimum distance of 15 
Å between the complex and the boundary of the unit cell, using 
the LEaP module in AmberTools24 [38]. Finally, the system was 
neutralized and ionized with sodium and chloride ions to maintain a 
physiological salt concentration of 150 mM.

2.2 Simulation protocols

Prior to conducting MM/PBSA and FEP calculations for all 
complexes, the systems are equilibrated to ensure structural 
relaxation. The simulation protocol for each complex system 
consists of the following steps. First, energy minimization is 
performed for a total of 10,000 steps, comprising 5,000 steps of the 
steepest descent algorithm followed by 5,000 steps of the conjugate 
gradient optimization algorithm. During this stage, positional 
restraints are applied to heavy atoms using a restraining force 
constant of 5 kcal/mol/Å2. This is followed by an additional 10,000 
steps of minimization, again consisting of 5,000 steps of steepest 
descent and 5,000 steps of conjugate gradient optimization, but 
without positional restraints. Subsequently, the system is gradually 
heated from 5 K to 298.15 K, regulated by a Langevin thermostat 
with a collision frequency of 2.0 ps−1. Then, the heated system is 
simulated in NPT simulation for 500 ps, with positional restraints 
applied to heavy atoms, using a restraining force constant 10 kcal/
mol/Å2. Finally, the equilibrated system was simulated under NPT 
conditions for 100 ns on GPUS without positional restraints. The 
SHAKE algorithm [39] was applied to constrain covalent bonds 

involving hydrogen atoms, allowing a time step of 2 fs in all 
simulations. Electrostatic and van der Waals (vdW) interactions 
were truncated at 12.0 Å in real space, while the long-range 
electrostatic interaction were computed using the particle mesh 
Ewald (PME) method [40,41] Snapshots were extracted every 
100 ps from the 100 ns equilibrated simulation for MM/PBSA 
calculations. The relaxed structure from each simulation is used as 
the starting point for subsequent FEP calculations.

2.3 Theoretical background of MM/PBSA

As illustrated in Fig. 2A, MM/PBSA methods [42-45] have become 
widely adopted for estimating binding free energies. MM/PBSA 
method utilize implicit solvation models to calculate solvation 
energy, providing a computationally efficient alternative due to 
their low computational cost and ease of implementation [46]
Extensive and detail explanation of the terms involved in MM/
PBSA calculations can be found elsewhere [47-50], and only a 
brief introduction is provided here. In the general, the binding free 
energy of the protein with ligand in solvent can be expressed as

ΔGbinding = Gcomplex − Gprotein − Gligand, (1)

where Gcomplex, Gprotein and Gligand are the total free energies of the 
protein-ligand complex, the isolated protein, and the ligand in 
solvent, respectively. The free energy of each individual entity, G, 
can be expressed as:

G = Egas + Gsolvation − TSsolute, (2)

in which Egas is the gas-phase energy, Gsolvation is the solvation free 
energy, and TS is the entropic contribution [51]. The gas phase 
energy is usually calculated at the molecular mechanics level as

Egas = EMM = Ebond + Eangle + Edihedral + Evdw + Ecoulomb,       (3)

and the solvation free energy (ΔGsolv) is conventionally decomposed 
into polar (ΔGpolar) and nonpolar (ΔGnonpolar) contributions:

ΔGsolv = ΔGpolar + ΔGnonpolar, (4)

where ΔGpolar is estimated by solving the Poisson-Boltzmann (PB) 
equation [52-54]. Nonpolar contributions are often estimated 
using the solvent-accessible surface area (SASA), one of the most 
widely used nonpolar models.55 The SASA model assumes a linear 
dependence of the nonpolar free energy term (Gnonpolar) on the 
solvent-accessible surface area

Gnonpolar = γA + b, (5)

where γ is the coefficient associated with the solvent surface 
tension, A represents the SASA, and b is the offset [49]. Taking 
together, the binding free energy can be written in an ensemble
form as

ΔGbinding = ⟨ΔEgas⟩ + ⟨ΔGsolvation⟩ − T⟨ΔSsolute⟩.             (6)

In this study, the MM/PBSA protocol was adopted while neglecting 
the solute entropic contribution, as our primary focus is the 
differences in the binding free energies caused by mutations. The 
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entropic contribution is typically estimated using quasi-harmonic or 
normalmode analysis [56]. However, it is often omitted due to the 

high computational cost required for fully sampling the free energy 
landscape, and its inclusion remains controversial [57-59].

Figure 2.  (A). Thermodynamic cycle used for MM/PBSA calculations. The protein, ligand, and their complex within the gray rectangle indicate 
a vacuum environment. (B). Thermodynamic cycle used in FEP-based absolute binding free energy (ABFE) calculations, with the paperclip 
symbol indicating the application of restraints. The green ligand signifies the presence of Coulombic and van der Waals interactions with the 
environment, while the white ligand represents a state in which its interactions with the environment are turned off.

2.4 Theoretical background of FEP

The workflow for calculating absolute binding free energy follows 
the well-established thermodynamic cycle, employing the widely 
adopted double decoupling method (DDM), as illustrated in Fig. 
2B [60-67]. As the name suggests, DDM involves sequentially 
turning off (decoupling) van der Waals (vdW) and electrostatic 
interactions between the ligand and its environment in both the 
bulk solvent and the binding pocket. The corresponding free 
energy changes are denoted as ΔG  and ΔG , respectively. 
During the decoupling of the ligand from its environment in 
the binding site, additional harmonic restraints, also known as 
the Boresch-style restraints, are applied on the translational and 
rotational degrees of freedom of the ligand molecule, thereby 
preventing it from wandering around, which may otherwise slow 
down the convergence. ΔG  is the free energy of removing 
the Boreschstyle restraints between the fully interacting ligand and 
the protein in the binding site. Its counterpart in aqueous solution 
ΔG  can be computed analytically [63,65]. Following the 
alchemical transformation path above, the calculated binding free 
energy can be written as

ΔGbinding = ΔG + ΔG − ΔG + ΔG .      (7)

For the alchemical double decoupling process, van der Waals 
(vdW) and electrostatic interactions are turned off simultaneously 
using their respective softcore potentials [68,69]. In the bulk solvent, 
the nonbond interaction potentials are turned off with λ taking the 
sequential values (0.0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0). To ensure 
reasonable phase overlap and comparable computational cost, the λ 
schedule in the binding pocket generally follows the same sequence 
as in bulk solvent: (0.0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0). For the 
wild-type Mpro-nirmatrelvir complex, an additional window at λ = 
0.525 was introduced to improve phase-space overlap, resulting in 
a 21-λ schedule: (0.0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 
0.4, 0.5, 0.525, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0). For the 
HIE172ALA Mpro-nirmatrelvir complex, two additional windows 
at λ = 0.550 and λ = 0.625 were added, giving a 22-λ schedule: 
(0.0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 
0.625, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0). For the nirmatrelvir 
complexes with the SER144ALA, MET165ALA, GLU166ALA, 

Protein(P) Ligand(L) Complex(PL)

A F+
𝚫𝚫𝚫𝚫𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛(𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰)

A F+
𝚫𝚫𝚫𝚫𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛(𝐠𝐠𝐠𝐠𝐠𝐠)

𝚫𝚫𝚫𝚫𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐏𝐏 𝚫𝚫𝚫𝚫𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐋𝐋 𝚫𝚫𝚫𝚫𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐏𝐏𝐏𝐏

(A) MM//PB(GB)SA

A F+

B

C D

E+

+

𝚫𝚫𝚫𝚫𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 −𝚫𝚫𝚫𝚫𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝
𝜟𝜟𝜟𝜟 = 𝟎𝟎

𝚫𝚫𝚫𝚫𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 −𝚫𝚫𝚫𝚫𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫

Protein(P) Ligand(L) Complex(PL)𝚫𝚫𝚫𝚫𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛(𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰)
(B) FEP-based ABFE



Xiaoxiao Lyu and Ye Mei/ Commun. Comput. Chem., (2025), pp. 171-180175

and GLN192ALA Mpro mutants, the 20-λ schedule was used without 
modification. During ligand decoupling in the binding site, three 
heavy atoms of the ligand and the α-carbon atoms of three protein 
residues are selected for defining the Boresch-style restraints, with 
force constants of 10 kcal/mol/Å2, 100 kcal/mol/rad2, and 100 kcal/
mol/rad2 for bond, angle, and dihedral terms, respectively. These 
restraints are gradually removed with λ values (0.0, 0.01, 0.025, 0.05, 
0.075, 0.1, 0.15, 0.2, 0.35, 0.5, 0.75, 1.0). All the simulations are 
carried out with AMBER24. Parameters related to GPU-accelerated 
thermodynamic integration (GTI)[70,71] and softcore potentials are 
applied with default settings.

For each window with the λ value held constant throughout 
the simulation, energy minimization is performed in two stages. 
The first stage consists of 10,000 steps (5,000 steps of steepest 
descent followed by 5,000 steps of conjugate gradient optimization) 
with positional restraints applied to heavy atoms using a force 
constant of 5 kcal/mol/Å2. In the second stage, 10,000 additional 
steps (5,000 steepest descent and 5,000 conjugate gradient) are 
performed without positional restraints. After minimization, the 
system is heated from 5 K to 298.15 K, regulated by a Langevin 
thermostat with a collision frequency of 2.0 ps−1. Then, a 500 ps 
NPT equilibration is performed with positional restraints applied to 
heavy atoms using a force constant of 5 kcal/mol/Å2, followed by 
100 ps of unrestrained NPT equilibration. Next, a 5 ns production 
simulation is performed under NPT conditions without restraints, 
utilizing GPUs via pmemd.cuda. Electrostatic and van der Waals 
(vdW) interactions are truncated at 12Å in real space, and long-
range electrostatics are computed using the particle mesh Ewald 
(PME) method [40, 41]. The integration timestep is set to 1 fs, and 

snapshots are saved every 1 ps during the production phase. The 
final 4 ns of production trajectories are post-processed to calculate 
free energy differences using the Multistate Bennett Acceptance 
Ratio (MBAR) method [72-74], which is known for its low 
asymptotic variance. To estimate uncertainties, three independent 
simulations are conducted for nirmatrelvir bound to the wild-type 
Mpro and its variants (SER144ALA, MET165ALA, GLU166ALA, 
HIE172ALA, and GLN192ALA). Thermodynamic Integration (TI) 
is also applied and is used for consistency check with MBAR.

3. Results and discussion

The interaction between the wild-type Mpro and nirmatrelvir was 
analyzed to investigate the role of the residues to be mutated. 
Several hydrogen bonds are formed between nirmatrelvir and 
the protein. As shown in Table S1, GLU166 plays a pivotal role 
in the binding pocket, serving as both a donor and an acceptor in 
hydrogen bonding. Specifically, the O3 atom of nirmatrelvir forms 
a hydrogen bond with the main chain nitrogen atom of GLU166, 
while the main chain oxygen atom of GLU166 forms a hydrogen 
bond with the N5 atom of nirmatrelvir. These interactions are 
highly stable, with a survival rate exceeding 98% over a 100-ns 
simulation. Additionally, the N4 atom of nirmatrelvir donates a 
hydrogen bond to the main chain oxygen atom of HIE164, while 
the NE2 atom of HIE163 donates a hydrogen bond to the O1 atom 
of nirmatrelvir. The nitrogen atom of CYS145 donates a hydrogen 
bond to the N1 atom of nirmatrelvir, and the nitrogen atom of 
THR190 donates a hydrogen bond to the O4 atom of nirmatrelvir. 
All these hydrogen bonds have a survival rate greater than 40%.

Figure 3. (A). A close-up view of the wild-type Mpro interacting with Nirmatrelvir. The residue labels in red correspond to the mutations 
studied (SER144ALA, MET165ALA, GLU166ALA, HIE172ALA, and GLN192A). (B). A 2D representation of the interaction between 
Nirmatrelvir and Mpro.
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Mutations in key residues such as SER144ALA,MET165ALA, 
GLU166ALA, HIE172ALA, and GLN192ALA (as shown in Fig. 3) 
within the binding pocket directly influence nirmatrelvir inhibition. 
The binding free energies between the mutated Mpro and nirmatrelvir 
were calculated using the MM/PBSA and FEP based ABFE methods. 
This analysis was complemented by calculating the binding free 
energy of the wild-type Mpro-nirmatrelvir complex to assess how 
these mutations disrupt binding affinity.

The binding free energy of nirmatrelvir in complex with wild-
type Mpro was calculated using the MM/PBSA method on snapshots 

taken every 100 ps from a 100-ns equilibrated simulation. As 
shown in Fig. 4A, the wild-type complex displays stable behavior, 
with RMSD values remaining consistently below 3 Å, indicating a 
well-behaved structure that has likely reached proper equilibration. 
Similarly, for each mutant variant (SER144ALA, MET165ALA, 
GLU166ALA, HIE172ALA, and GLN192ALA), the Mpro 
-nirmatrelvir complex also reaches equilibrium, as evidenced by
RMSD values in their respective figures (Fig. 4B-F). These findings
suggest that while mutations may alter local binding interactions,
the overall complexes remain stable over the simulation period.
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Figure 4. Root-mean-square deviation (RMSD) analysis of the 100-ns equilibrium simulations for the complexes of nirmatrelvir with the 
wild-type Mpro and its mutants (SER144ALA, MET165ALA, GLU166ALA, HIE172ALA, and GLN192ALA).

Figure 5. (A) Comparison of predicted (A) MM/PBSA binding free energies, (B) FEP (MBAR) binding free energies and (C) FEP (TI) 
binding free energies with experimental values for complex systems. The deviation bounds of 1 kcal/mol and 2 kcal/mol are represented by 
the gray and light-gray regions, respectively. In (A), the original data (round dots) are systematically shifted (triangle) during fitting.

To assess the reliability of the FEP method, convergence 
analysis of free energy simulations was visualized and plotted 
using the alchemlyb software, following the guidelines established 
by Klimovich et al [75]. As illustrated in Fig. S1, example plots are 
provided for the alchemical transformation substage simulations of 
the decoupling free energy ΔG , corresponding to the complex 
calculation of the molecule nirmatrelvir bound to the wild-type 
Mpro. The computed free energy differences (with error bars) are 
visualized as a function of simulation time in Fig. S1A to assess 
equilibration and convergence. The forward and reverse free 
energy estimates, derived from equilibrium trajectory snapshots, 
exhibit partial reflection symmetry around the final value ΔGfinal 
and converge from opposite directions. Once the system reaches 
full equilibration, these forward and reverse free energy estimates 
agree within statistical uncertainty. As shown in Fig. S1A, the 
calculations have approximately converged around t = 0.8 of 
the total simulation time. To assess phase space overlap, the 
distribution of energy differences between neighboring windows 
is plotted (Fig. S1D). The overlap matrix, also visualized in this 
figure, is crucial for accurate free energy calculations. It should 
be at least tridiagonal with nonzero elements along the main and 
adjacent diagonals to ensure reliable results. Values below 0.03 
indicate insufficient overlap. As shown in Fig. S1D, the criterion 

is satisfied, ensuring reliable results. Meanwhile, as shown in 
Fig. S1B, the plot of ⟨ ⟩ versus λ for thermodynamic integration 
displays a smooth variation in slope, validating the chosen λ 
settings. The filled areas represent free energy estimates obtained 
using the trapezoidal rule, with color intensity varying by λ index. 
Moreover, Comparing MBAR and TI results can help identify 
insufficient sampling or overly wide λ spacing. As shown in Fig. 
S1C both methods yield similar free energy differences between 
adjacent states, with error estimates provided. Similarly, Fig. S2 to 
Fig. S6 show the alchemical transformation substage simulations 
of the decoupling free energy ΔG  for the nirmatrelvir-
SER144ALA, MET165ALA, GLU166ALA, HIE172ALA, and 
GLN192ALA Mpro complexes, respectively. In summary, all FEP 
results in this study underwent these consistency checks, helping to 
identify convergence issues, sampling problems, and other potential 
pitfalls, thereby bolstering the reliability of the FEP results.

Figure 5A highlights significant differences between MM/
PBSA and experimental values. MM/PBSA estimates significantly 
overestimate the binding free energy compared to experimental 
values, which range from -12 to -9 kcal/mol, while computed 
values fall between -50 and -40 kcal/mol. This notable discrepancy 
is attributed primarily to the omission of entropic contributions in 
the MM/PBSA calculations. Conversely, as shown in Fig. 5B and 
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C, FEP calculations processed with MBAR and TI exhibit strong 
agreement with experimental data. For the mutations SER144ALA, 
GLU166ALA, HIE172ALA, and GLN192ALA, the computed 
results deviate by no more than 2 kcal/mol from the measured 
values. Notably, HIE172ALA and GLU166ALA show deviations 
within 1 kcal/mol from the experimental data, while MET165ALA 
diverges slightly above 2 kcal/mol. All detailed values comparing 
the MM/PBSA and FEP calculations with experimental data, 
including uncertainty estimates, are presented in Table S2 of the 
supporting information.

As shown in Table 1, the analysis of the hydrogen bonds 
between Mpro and nirmatrelvir with a survival rate greater than 
0.5 in the molecular dynamics simulations provides insights into 
the mechanistic basis of changes in binding affinity. In the wild-
type Mpro-nirmatrelvir complex, fiveMpro atoms-GLU166@N, 
GLU166@O, HIE164@O, HIE163@NE2, and CYS145-@N-form 
stable hydrogen bonds with nirmatrelvir. The MD simulations 

of the mutated Mpro-nirmatrelvir complexes reveals differential 
binding patterns. In the SER144ALA mutant, hydrogen bonds 
involving GLU166@N, GLU166@O, and HIE163@NE2 are 
retained, whereas those with HIE164@O and CYS145@N 
disappear, reducing the total number of stable hydrogen bonds 
to three. For the MET165ALA and GLN192ALA mutants, the 
interactions involving GLU166@N, GLU166@O, and HIE163@
NE2 are retained, while the hydrogen bonds with HIE164@O and 
CYS145@N are substituted by THR190@N. For the GLU166ALA 
mutant, the hydrogen bond donors/acceptors GLU166@N and 
GLU166@O are replaced by ALA166@N and ALA166@O. 
Additionally, the bonds with HIE164@O and CYS145@N are 
substituted by PHE140@O. In the HIE172ALA mutant, the 
hydrogen bondinvolving CYS145@N disappears. In summary, 
the mutations alter the native binding pattern, reduce the number 
of stable hydrogen bonds, and thereby contribute to the observed 
losses in binding affinity.

Atoms involved in hydrogen bonding to nirmatrelvir

Wild Type

SER144ALA

MET165ALA

GLU166ALA

HIE172ALA

GLN192ALA

GLU166@N, GLU166@O, HIE164@O, HIE163@NE2, CYS145@N

GLU166@N, GLU166@O, HIE163@NE2

GLU166@N, GLU166@O, THR190@N, HIE163@NE2

ALA166@N, ALA166@O, PHE140@O, HIE163@NE2

GLU166@N, GLU166@O, HIE164@O, HIE163@NE2

GLU166@N, GLU166@O, THR190@N, HIE163@NE2

Table 1. Hydrogen bonds with a survival rate > 0.5 in the molecular dynamics simulations of the Mpro-nirmatrelvir complexes. Atoms are 
labeled as “residue name@atom name”.

The correlation between computational methods and 
experimental data in binding free energy calculations was analyzed 
using Pearson correlation coefficients. For MM/PBSA predictions, 
a weak correlation (RPearson = 0.18) with experimental values was 
observed, indicating limited agreement. In contrast, Free Energy 
Perturbation (FEP) calculations employing Multistate Bennett 
Acceptance Ratio (MBAR) and Thermodynamic Integration 
(TI) demonstrated significantly stronger linear correlations, with 
Pearson coefficients of 0.56 and 0.57 respectively. These results 
highlight the enhanced accuracy achievable through FEP methods 
when combined with appropriate post-processing techniques, 
underscoring their superiority over MM/PBSA in capturing binding 
free energy trends accurately.

While the overall Pearson correlation coefficient for MM/
PBSA is approximately 0.4 points lower than that of FEP, it has 
a significant cost advantage. Specifically, MM/PBSA requires 
only one 100-ns simulation to represent both bound and unbound 
ensembles, whereas FEP-based on Alchemical Free Energy (ABFE) 
method demands simulations for 33 alchemical windows, each 
running for 5 ns on a GPU. On an NVIDIA GeForce RTX 3080, 
the computational costs are substantial: FEP calculations take 
around 4.85 hours per GPU window, while MM/PBSA requires 
approximately 17.57 hours for simulation plus an additional 1.40 
hours for post-processing using 32 CPU cores. For non-equilibrated 
simulations performed on CPUs (using Intel(R) Xeon(R) Gold 5320 
CPUs @ 2.20 GHz), each 500 ps FEP window for the complex 
takes about 5.43 hours, with an additional 20 windows needed for 
the ligand, totaling 105.86 hours. In contrast, MM/PBSA requires 

only one simulation per complex.
In this study, the simplest and most commonly used 

MM/PBSA protocol is employed, incorporating two major 
approximations: neglecting the configurational entropy 
contribution to binding free energy and excluding explicit water 
molecules. Advanced MM/PBSA approaches, such as quasi-
harmonic or normal-mode analysis[56], require significantly 
higher computational costs. Meanwhile, the FEP-based ABFE 
simulations in this study did not prioritize computational efficiency, 
leaving room for optimization in both setup preparation and 
simulation settings. Furthermore, utilizing user-friendly tools such 
as BFEE2 [76-78] and FEP-SPell-ABFE [79], which automate 
ABFE workflows and minimize human intervention, facilitates the 
calculations of ABFE.

4. Conclusion

This study assesses nirmatrelvir resistance in the SARS-CoV-2 
main protease Mpro by examining the loss of binding affinity 
using the application of Molecular Mechanics/Poisson-Boltzmann 
Surface Area (MM/PBSA) and Free Energy Perturbation (FEP) 
based Absolute Binding Free Energy (ABFE) methods. The 
results can be summarized as follows: (1) FEP calculations exhibit 
stronger correlations with experimental affinities compared to 
MM/PBSA, highlighting their potential for precise determination 
of protein-ligand binding energies, especially when analyzing 
differences in binding energy across sequences. (2) Given lower 
computational expense, MM/PBSA methods remain valuable, 
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particularly when precise agreement with experimental absolute 
affinities is not critical. (3) The comparative study presented 
in this work advocates for the judicious application of MM/
PBSA approximations in computational studies of protein-ligand 
binding interactions. While MM/PBSA maintains computational 
efficiency, its inherent limitations necessitate careful consideration 
of application scenarios. For instance, when computational 
resources are moderate, MM/PBSA is well suited to quickly 
generate approximate rankings of a large number of complexes in 
the pre-screening stage. In contrast, FEP offers greater accuracy in 
calculating protein-ligand binding free energies. Meanwhile, FEP 
calculations require strict adherence to established alchemical or 
geometric transformation protocols. It is also essential to perform 
a thorough convergence analysis of the simulation data to confirm 
the reliability and reproducibility of the results. Notably, while 
accuracy is a key strength of FEP, this accuracy depends critically 
on the quality and correctness of the initial given structure. 
In this work, the absence of crystal structures for the mutants 
necessitated structural optimization based on the wildtype crystal 
structure, which required comparatively long molecular dynamics 
simulations to reach the equilibrium of the mutant structure; 
shorter simulations risked inadequate representation of the mutant 
structure. In the future, integrating AI-driven techniques with FEP 
could efficiently reduce computational costs and maximize the 
value and potential of FEP.

Supporting information

The online version contains supplementary material available at website 
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