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Abstract: Organic optoelectronic materials, owing to their exceptional photoelectronic properties, have extensive applications 

across diverse fields, such as lighting and display, photovoltaic devices, and bioimaging. Machine learning (ML) provides new 

opportunities for advancing research on organic optoelectronic materials. ML leverages existing datasets to establish robust input-

output correlations for predicting material properties, thereby substantially reducing computational costs and enhancing efficiency. 

This review comprehensively explores recent progress on ML applications for organic optoelectronic material. We focused on 

three key aspects. First, we review applications ML in predicting photophysical properties of organic dyes, including absorption/

emission wavelengths, quantum yields, and aggregation-induced emission/aggregation-caused quenching effects. Second, we 

examine ML applications in predicting subcellular targeting of fluorescent probes. Third, we discuss the role of ML in screening 

key descriptors for organic photovoltaics material. The advances in data science position ML as a pivotal tool for elucidating 

intricate structure-property correlations in molecular systems,
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 driving the accelerated innovation of optoelectronic devices.
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1. Introduction

Organic optoelectronic materials have emerged as pivotal 
components in organic light emitting diodes (OLEDs)[1-3], 
fluorescent probes [2,4-5], and organic solar cells (OSCs)[6]. 
These materials have been used across diverse environments, 
including dilute solution, thin films, and crystalline states, 
where critical performance metrics, such as luminescent color, 
quantum efficiency, and lifetime, are highly sensitive to subtle 
change of environments [7-9]. Minor change of chemical 

structures of organic optoelectronic molecules significantly alters 
their macroscopic properties, which brings huge challenges in 
the rational design and performance optimization of organic 
optoelectronic materials. 

Currently, the development of organic optoelectronic materials 
has largely based on experimental trial-and-error approaches, 
which are time-consuming and high-cost. Alternatively, theoretical 
calculation is an effective way to complement experimental 
techniques in molecular design of organic optoelectronic materials. 
Mul tiscale modeling approaches, including quantum mechanism 
(QM) [10-13], quantum mechanics/molecular mechanics (QM/
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and provides a critical evaluation of future directions for ML in 
organic optoelectronic material innovation. 

2. ML predicted luminescent properties of organic dyes

2.1 Prediction of the maximum absorption wavelength of 
organic dyes

Organic fluorescent dyes have great potential in biological detection, 
and their photophysical properties, like λabs, significantly impact 
the quality of bioimaging. Therefore, it is important to training a 
ML model in predict λabs based on chemical structure and solvent 
information to guide the development of organic fluorescent dyes. 
Shao et al. established the SMFluo1 database, comprising 1,181 
solvated small-molecule fluorophores spanning the ultraviolet–
visible–near-infrared (UV–Vis–NIR) absorption window [26]. In 
their protocol, Morgan fingerprints and MACCS fingerprints were 
generated using RDKit, while molecular descriptors were calculated 
via the open-source tool ChemDes [31-32]. These features served as 
input to train deep learning architectures, including fully connected 
neural networks (FCNN) and convolutiona l neural networks (CNN), 
for predicting λabs. Hyperparameter optimization was implemented 
through ten-fold cross-validation in Figure 1a. It is revealed that 
the SMFluo1-DP system, which integrates MACCS and Morgan 
fingerprints through FCNN training, achieved optimal performance. 
The model exhibited a mean relative error (MRE) of 2.87% 
between predicted and experimental λabs values (Figure 1b). Then, 
the SMFluo1-DP model was employed to predict λabs of 120 out-
of-sample solvated fluorescent dyes. It is found that SMFluo1-DP 
achieves the closest agreement with experimental data, exhibiting a 
MRE of 1.52%, significantly lower than the 10.89% MRE reported 
from the online platform ChemFluo[33]. The superior performance 
of SMFluo1-DP model underscores its potential as a robust ML 
modeling in handling molecules containing coumarin, BODIPY, 
rhodamine, squaraine, or cyanine scaffolds and accelerating the 
discovery and rational design of novel fluorescent dyes.

Figure 1. (a) Model development for the prediction of λabs using FCNN and DNN. (b) The MRE value of  λabs predicted by the model using 
FCNN and the combination of Morgan and MACCS fingerprints. Copyright (2022) American Chemical Society. 

MM)[14], and molecular dynamics (MD)[15-16] simulations, 
have demonstrated remarkable success in simulating properties of 
organic optoelectronic materials across diverse environments, such 
as dilute solutions, crystalline lattices, and amorphous phase. While 
theoretical calculation face limitations in high-throughput screening 
of optimal-performance molecules among tens of thousands of 
organic compounds [4, 17-18]. In this context, machine learning 
(ML) recently has great progresses across disciplines such as
property prediction and molecular design of organic optoelectronic
materials [19-21] due to its exceptional efficiency in processing
big and complex datasets [22-24]. By extracting molecular features
from extensive databases and constructing input-to-output predictive
models, ML can predict a wide range of properties without requiring 
explicit knowledge of underlying physicochemical mechanisms.
For organic optoelectronic materials, ML can be applied to predict
many key properties, such as luminescent color [25-26], quantum
efficiency [27], and PCEs [28], not only helps accelerate the design
and development of new organic optoelectronic materials, but
also provides new strategies for improving material performance,
injecting new vitality into the continuous progress in the field of
organic optoelectronic materials [29-30].

In this review, we focus on the advancements of ML in organic 
optoelectronic materials, particularly in organic luminescent dyes, 
fluorescent probes, and organic photovoltaic (OPV). For organic 
luminescent dyes, ML models have been successfully developed 
to predict absorption/emission wavelengths, quantum yields, and 
aggregation-induced emission/aggregation-caused quenching (AIE/
ACQ) effects, offering critical insights for designing novel high-
efficiency light-emitting materials. For fluorescent probes, data-
driven studies of structure-property relationship enable ML models 
to predict subcellular organelle targeting, accelerating the precise 
design of fluorescent probes with high performance. Furthermore, 
ML-driven screening of key descriptors about OPV, such as
optical bandgap (Eg) and power conversion efficiency (PCE), has
facil itated the development of strategies to enhance photovoltaic
performance. This work comprehensively reviews these progresses

2.2 Prediction of the absorption and emission spectra of organic 
dyes

Organic dyes, especially AIEgens, show great potential in 
fluorescence imaging due to their tunable spectra properties, 
however, the design of AIEgens with specific optical properties 
has proven challenging due to the dependence of their molecular 
optical properties on solvent polarity. Zhang et al. collected a 

database comprising 1,245 solvated AIEgens. Molecular structures 
and solvent information were converted into molecular descriptors, 
including Morgan circular fingerprints, Daylight fingerprints, 
topological torsion fingerprints, and atom-pair fingerprints [25]. 
Seven machine learning models, including support vector machine 
(SVM), K-nearest neighbors (KNN), multi-layer perceptron (MLP), 
gradient boosted regression trees (GBRT), random forest (RF), 
CNN, and extreme gradient boosting (XGBoost) were trained 
and a multimodal molecular descriptor strategy was proposed for 
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predicting λabs and emission wavelength (λem). It is demonstrated 
that the XGBoost model achieved the optimal performance 
in λabs prediction (Figure 2a), while the CNN model showed 
excellent prediction in λemi (Figure 2b). And the multimodal 
protocol significantly enhanced the model accuracy. Specifically, 
the XGBoost model combined with topological torsion-daylight 
fingerprints exhibited the lowest root mean square error (RMSE) 
of 15.2 nm for λabs prediction (Figure 2c), whereas the CNN model 
with atom-pair-daylight fingerprints achieved an RMSE of 19.2 
nm for λem prediction (Figure 2d). Furthermore, machine learning 
outperformed traditional time-dependent density functional theory 

(TD-DFT) methods in both computational efficiency and prediction 
accuracy (Figure 2e-2f), highlighting its potential for high-
throughput screening of organic fluorescent dyes. Three candidate 
molecules were selected based on ML screening and synthetic 
feasibility. Experimental validation confirmed the strong agreement 
between the predicted and measured λabs and λem across five solvent 
conditions. And the synthetic organic dyes were successfully 
applied in cellular fluorescence imaging and deep-tissue penetration 
imaging experiments, demonstrating the robust capability of 
machine learning in guiding the design and development of 
advanced organic dyes.

Figure 2. Mean absolute error (MAE) of (a) λabs and (b) λem of ML models with various molecular descriptors using 10-fold cross-validation. 
(c) The prediction results of λabs based on the XGB model with topological torsion-daylight fingerprints. (d) The prediction results of λem 

based on the CNN model with atom pair-daylight fingerprints. (e) The time cost for one molecule. (f) Comparison of MAE for predicting λabs

between ML and TDDFT. Copyright (2023) BioMed Central.

2.3 Prediction of the quantum yield and spectra of organic dyes

Fluorescence quantum yield is also key parameter of organic 
fluorescent dyes. Ju et al. constructed a database containing 
over 4,300 solvated organic fluorescent dyes encompassing 
approximately 3,000 distinct compounds [33]. By systematically 
evaluating six molecular fingerprints (MACCS, CDK, CDK 
extended (CDKex), Morgan, E-state, and PubChem) in conjunction 
with seven machine learning algorithms (SVM, KRR, MLP, KNN, 
RF, LightGBM, and GBRT), see Figure 3a-3b. They developed a 
functionalized structural descriptor (FSD) and a comprehensive 
general solvent descriptor (CGSD) to efficiently encode molecular 
structures and solvent characteristics into the ML models [34]. It is 
demonstrated that the GBRT model achieved the best performance 
in predicting both λem (MAE=14.30 nm (0.066 eV)) and λabs

(MAE=10.47 nm (0.070 eV)), and LightGBM model achieved the 
best performance in photoluminescence quantum yields (PLQYs) 
(MAE=0.11). Additionally, the capability of LightGBM/FSD 

model in predicting PLQYs under varying solvent conditions 
was evaluated by repartitioning the dataset. It is predicted that 
the PLQY values varied significantly for identical compounds 
across different solvent conditions, which closely aligns with 
experimental results, demonstrating the robust ability of the model 
in evaluating solvent effects, see Figure 3c-3d. Furthermore, to 
seek higher reliabilities than the regressors, a binary classifier 
for PLQY prediction was developed using the LightGBM/FSD 
model. Using the median of the experimental PLQY (0.25) as the 
threshold to divide the database into two groups, achieving to a 
satisfactory overall accuracy (86.8%). To verify the generalization 
ability of the GBRT/FSD model, they conducted an independent 
dataset containing 116 fluorescent dyes that were not included in 
the training set, for predicting λem. By incorporating a small portion 
(<17%) of the coumarins and naphthalimides molecules from 
the test set into the training set and retraining the ML model, the 
updated GBRT/FSD model demonstrated excellent performance 
(MAE=0.142), which shows the generalizability of GBRT/FSD 
model across diverse molecular systems (Figure 3e). In order to 
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further assess the performance of GBRT/FSD and LightGBM/FSD 
model, they collected 30 heterocyclic fluorescents, which are ionic 
as an additional test set. For PLQY prediction, the LightGBM/FSD 

model demonstrated robust performance with a MAE of 0.21 and 
an accuracy of 80%. Nevertheless, these are good results given the 
difficulty of  PLQY predictions.

Figure 3. MAE testing results of (a) λem and (b) λabs by combining different ML models with different descriptors as inputs. (c) Linear correlation 
between experimental PLQY and LightGBM-predicted values. (d) Chemical structures and quantum yield of several typical compounds in 
different solvent conditions. (e) Schematic illustration for ML models improvement. Copyright (2021) American Chemical Society.

For λabs, λem, and quantum yields prediction of organic dyes, 
Mahato and Kumar et al. identified quadratic support vector 
machine (QSVM) as the optimal model for λabs and λem (R2 > 
0.929), while cubic support vector machine (CSVM) indicated 
superior performance on quantum yield estimation using Morgan 
fingerprints and five solvent parameters as input features.
[35] Additionally, Bi et al. found that the combined molecular
fingerprints and RF and Gradient Boosting Regression (GBR)
algorithms showed the best performance in predicting quantum
yields (Area Under the Curve (AUC) > 0.84) and wavelengths (λabs 

MRE= 5.07%, λem MRE= 4.31%) [27].

2.4 Prediction of the AIE/ACQ properties of organic dyes

Organic dyes with AIE characteristics emit intense fluorescence 
in the aggregated state, it’s exceptional features and adaptability 
are significant in biomedical imaging and optoelectronic devices.
[36] The demand for efficient design of novel AIE materials
with desired photophysical properties is growing. Developing
a ML model for distinguishing AIE from ACQ efficiently is
urgent. Xu et al. established a database containing 356 AIE/
ACQ molecules and evaluated five machine learning algorithms

(logistic regression (LR), KNN, GB, gradient boost (RF), and 
MLP) using four molecular fingerprints (Morgan, daylight, atom-
pair, and topological) alongside quantitative 108 1D and 2D 
molecular descriptors [37]. By comparing different ML algorithms 
that take different combinations of  descriptors as input, studies 
demonstrated that the quantitative RF/Daylight model has the best 
accuracy on the test set. And they developed a predictive ensemble 
voting strategy to improve the overall prediction performance by 
combining the prediction results of multiple models. Research 
demonstrated that the test accuracy of this ensemble method 
reached 93.83% (Figure 4a). Experimental validation was 
conducted on three structurally similar AIE/ACQ molecules. 
Notably, predictions from both the single-modal (RF/quantitative 
descriptors) and the multi-modal (ensemble model) approach 
perfectly aligned with experimental outcomes (Figure 4b), 
confirming the reliability of the model in predicting AIE properties. 
This methodology provides a robust strategy for accelerating the 
discovery of AIE materials. 

Zhao et al. constructed a dataset comprising 3,074 AIE/ACQ 
molecules and developed a ML model for predicting AIE/ACQ 
properties using five molecular fingerprints (CDK, CDKex, E-state, 
substructure, and substructure count fingerprints) and six ML 
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algorithms (LightGBM, RF, LR, Decision Tree, MLP, and KNN), 
see Figure 5a [38]. It is demonstrated that the lightGBM model 
combining with three fingerprints (CDKex fingerprints, substructure 
fingerprints, and substructure count fingerprints) simultaneously 
as input features achieved the highest accuracy of 97.4% on the 
independent test set, surpassing the 93.83% accuracy reported in 
the prior work by Bin et al [37]. and it exhibited superior F1 scores 

compared to other models (Figure 5b). Then high-throughput 
screening using the above optimal-performing model identified 
four candidate molecules (Figure 5c), three of them (molecules 1-3) 
exhibited AIE characteristics, while the remaining one (molecule 
4)demonstrating ACQ feature. Experimental results confirmed
the ML predictions, demonstrating its capability on rapidly and
accurately predicting AIE properties.

Figure 4. (a) ML Flowchart of the prediction of AIE/ACQ properties and experimental validation. (b) The chemical structures of three 
designed molecules. (c) Comparison of the prediction results and experimental results of different ML strategies for three molecules. 
Copyright (2022) Wiley-VCH.

Figure 5. (a) ML model frameworks for the prediction of AIE property. (b) F1 score results of different ML methods. (c) Three AIE molecules 
(1-3) and one ACQ molecule (4) molecule identified through high-throughput screening protocol. Copyright (2024) Elsevier Science B.V.



Recent Progress of Machine Learning on Organic Optoelectronic Materials 186

3. ML predicted subcellular targeting selectivity of
fluorescent probes

Organe l le -spec i f ic  f luorescen t  p robes  a re  c ruc ia l  fo r 
studying cellular organelles, but the relationship between the 
physicochemical properties of probes and their selectivity 
toward specific organelles is still unclear [39-40]. Park et 
al. constructed a quantitative structure-activity relationship 
(QSAR) model using the RF algorithm to predict the target 
organelles of fluorescent probes [41]. This model was trained on 
a dataset of 350 organelle-specific fluorescent probes, with 786 
descriptors generated via JChem and PreADMET calculations. 
The model achieved 75% accuracy in classifying probes into 
nine categories: cytosol, endoplasmic reticulum (ER), Golgi 

body, lipid droplet (LD), lysosome, mitochondria, nucleus, 
plasma membrane (PM), and no entry (Figure 6a). By using 
mean decrease impurity (MDI) analysis, they identified 38 key 
descriptors, including LogD, pKa, hydrophilic-lipophilic balance 
(HLB), and topological polar surface area (TPSA), and so on 
(Figure 6b), that significantly influence on their selectivity to 
organelles. For instance, LD and PM targeting probes exhibited 
high hydrophobicity, while no-entry probes were characterized 
by permanent charges and elevated hydrophilicity. Nucleus-
targeting probes typically carried positive charges, whereas 
mitochondria-targeting probes combined hydrophobicity with 
positive charges. These findings provide critical insights into 
the organelle-targeting mechanisms of fluorescent probes and 
offer a foundation for rational design of novel organelle-specific 
fluorescent probes.

Figure 6. (a) Classification into 9 target organelles for database containing 350 fluorescent probes. (b) A visual representation of significant 
characteristics of probes that influence their localization, acquired through MDI analysis of the model. Copyright (2023) Multidisciplinary 
Digital Publishing Institute.

4. ML predicted key descriptors of OPV materials

4.1 Key descriptors of exciton binding energy

OPV materials are semiconductors that convert light energy into 
electricity via the photovoltaic effect [42-44]. Eb is a critical 
factor in determining the performance of organic optoelectronic 
devices, particularly in OSCs. A smaller Eb is beneficial for 
reducing energy loss and improving the efficiency of these 
devices. Previous theoretical calculations lack key descriptors, 
which linking Eb to molecular structures, restricting the 
advancement of OPV materials. Zhu et al. employed a data-driven 
ML approach to systematically screen the most critical descriptors 
for predicting the solid-state exciton binding energy (Es

b) of OPV 
materials from eight initial descriptors, including gas-phase exciton 
binding energy (Eg

b), electrostatic components of polarization 
energy fo negative charge (Pelst−) and for positive charge (Pelst+), 
molecular dipole moment (µ), quadrupole moment (Θ), molecular 
polarizability (α), crystal density (ρ), and the ratio of void 
fraction to backbone packing coefficient (ηvoid/BB)[45]. A database 
comprising 135 data points was constructed, which included the 
Es

b values of molecular crystals and eight associated descriptors. 
Pearson correlation analysis between these descriptors and Es

b 
indicated that six descriptors (Eg

b, Pelst−, µ, Θ, α, ηvoid/BB)with high 
correlation coefficient were preliminarily identified (Figure 7a). 
Subsequently, five ML models (including LR, KNN, GBRT, 
RF, and XGBoost) were utilized to further evaluate descriptor 

importance. It was revealed that four descriptors (Eg
b, Pelst−, µ, 

and ηvoid/BB) displayed high importance in the XGBoost model. 
To further identify the most important descriptors, they remove 
the descriptors iteratively to observe the change in prediction 
performance. After removing the Pelst- and µ, the ML models 
retained excellent predictive performance (Pearson’s correlation 
coefficient (r)>0.90), which indicates that Eg

b and ηvoid/BB are 
indispensable key descriptors. Models relying solely on these two 
descriptors still maintained high prediction accuracy (r≈0.84), with 
XGBoost and GBRT achieving optimal performance (r=0.90), 
see Figure 7b. It is worth noting that both descriptors exhibited 
comparable importance in the XGBoost and GBRT algorithms 
(Figure 7c). Ultimately, Eg

b and ηvoid/BB were conclusively identified 
as the core descriptors for predicting E s

bwith high accuracy 
(Figure 7d). And the model was also successfully employed to 
predict the Es

b of two thin-film materials. Temperature-dependent 
photoluminescence spectra obtained experimentally validated 
predictive accuracy of the model, offering critical insights for 
the rational design of high-performance organic photovoltaic 
materials.

4.2 Key descriptors of power conversion efficiency

Screening the descriptors most relevant to photovoltaic 
performance is the key to advancing OPV technology. Han 
et al. proposed the ΔEST as a critical molecular descriptor for 
predicting the efficiency PCE of OPV materials [28]. Utilizing 
a dataset of 515 OPV devices, they constructed a database 
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containing three molecular descriptors, including Eg, charge-
transfer driving force (ΔEDA), and ΔEST (Figure 8a). These 
descriptors were analyzed by using three ML algorithms (LR, 
KNN, and GBRT). Correlation analysis between these descriptors 
and four photovoltaic parameters, including open-circuit voltage 
(VOC), short-circuit current density (JSC), fill factor (FF), and 
power conversion efficiency (PCE), revealed that ΔEST exhibited 
a significantly higher Pearson correlation coefficient with 

Figure 7. (a) Pearson’s correlation coefficients among the selected descriptors. (b) Plots of ML predicted Es
b by using Eg

b and ηvoid/BB with 
GBRT model versus self-consistent quantum mechanics/embedded charge (sc-QM/EC) calculated Es

b. (c) The descriptor importance analysis 
of Eg

b and ηvoid/BB with GBRT and XGBoost algorithm. (d) Illustration of the screening process from six, to four, then to two descriptors. 
Copyright (2024) Wiley-VCH.

PCE (r = 0.72) compared to Eg (r = 0.65) and ΔECT (r = 0.53), 
highlighting its superior predictive accuracy for PCE. Predictions 
of four photovoltaic parameters using different combinations of 
molecular descriptors via three ML methods demonstrated that 
GBRT model achieved the best performance. Notably, when 
employing a single descriptor, ΔEST yielded higher prediction 
accuracy for PCE (r = 0.72) than Eg (r = 0.65) and ΔEDA (r = 
0.53). Further investigation into the combined use of all three 

Figure 8. (a) Illustration of the role of machine learning in OPV prediction. (b) Predicted PCE by GBRT with all three combined descriptors 
versus experimental measured values. (c) The importance of three descriptors in four photovoltaic parameters in the GBRT models. Copyright 
(2022) Wiley-VCH.
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descriptors showed a remarkable improvement in PCE prediction 
accuracy, achieving a Pearson’s correlation coefficient of 0.81 
(Figure 8b). At the same time, descriptor importance analysis 
confirmed that ΔEST dominated the prediction of PCE (Figure 8c). 
These results not only validate ΔEST as a pivotal descriptor for 
PCE prediction, but also demonstrate that integrating multiple 
descriptors significantly enhances predictive performance.

5. Summary and outlook

In this review, we highlight significant advancements in the 
application of ML in organic optoelectronic materials, focusing 
on three pivotal domains: organic light-emitting materials, 
fluorescent probes, and OPVs. Studies have demonstrated that ML 
accurately predicts absorption/emission wavelengths, quantum 
yields, and AIE/ACQ properties of organic dyes; identifies key 
molecular descriptors governing OPV performance; and predicts 
the subcellular localization of fluorescent probes, thereby 
providing critical guidance for the design of novel materials. By 
constructing models that autonomously extract data features, ML 
establishes complex correlations between molecular structures 
and material properties, significantly reducing computational costs 
while enhancing efficiency in processing large-scale datasets. 
However, challenges still persist. Current ML models exhibit 
limitations in predictive accuracy and interpretability, hindering 
a deeper mechanistic understanding of structure-property 
relationships. Future research should prioritize the development 
of robust and interpretable ML frameworks, expansion of high-
quality databases, and exploration of advanced molecular 
descriptors to capture the intricate physicochemical behaviors of 
organic materials [46-47]. What’s more, multi-fidelity methods 
that integrate experimental data with DFT and ML results 
may assist in closing the gap between theoretical and practical 
applications, the combination of DFT and ML will become the 
future trend in the research of organic optoelectronic materials 
research [48]. With advancements in computational power and 
data science, ML is poised to emerge as a transformative tool 
for the discovery and optimization of organic optoelectronic 
materials, accelerating the development of next-generation 
optoelectronic devices.
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