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Abstract: Accurately modeling the dynamics of open quantum systems is critical for advancing quantum technologies, yet 

traditional methods often struggle with balancing accuracy and efficiency. Machine learning (ML) offers a promising alternative, 

particularly through recursive models that predict system evolution based on the past history. While these models have shown 

success in predicting single observables, their effectiveness in more complex tasks, such as forecasting the full reduced density 

matrix (RDM), remains unclear. In this work, we extend history-based recursive ML approaches to complex quantum systems, 

comparing four physics-informed neural network (PINN) architectures: (i) single-RDM-predicting PINN (SR-PINN), (ii) SR-

PINN with simulation parameters (PSR-PINN), (iii) multi-RDMs-predicting PINN (MR-PINN), and (iv) MR-PINN with 

simulation parameters (PMR-PINN). We apply these models to two representative open quantum systems: the spin-boson (SB) 

model and the Fenna-Matthews-Olson (FMO) complex. Our results demonstrate that single-RDM-predicting models (SR-

PINN and PSR-PINN) are limited by a narrow history window, failing to capture the full complexity of quantum evolution 

and resulting in unstable long-term predictions, especially in nonlinear and highly correlated dynamics. In contrast, multi-

RDMs-predicting models (MR-PINN and PMR-PINN) provide more accurate predictions by extending the forecast horizon, 

incorporating long-range temporal correlations, and mitigating error propagation. Surprisingly, including simulation parameters 

explicitly, such as temperature and reorganization energy, in PSR-PINN and PMR-PINN does not consistently improve accuracy 

and, in some cases, even reduces performance. This suggests that these parameters are already implicitly encoded in the RDM 

evolution, making their inclusion redundant and adding unnecessary complexity. These findings highlight the limitations of 

short-sighted recursive forecasting in complex quantum systems and demonstrate the superior stability and accuracy of far-

sighted approaches for long-term predictions.
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Open quantum systems describe quantum systems interacting 
with their environment, playing a fundamental role in quantum 
computing, quantum memory, quantum transport, proton tunneling 
in DNA and energy transfer in photosynthesis [1-5]. Their dynamics 
are captured by the reduced density matrix (RDM), which evolves 
under both the system internal dynamics and the influence of its 
environment.

Modeling the influence of environment is challenging due 
to its high-dimensional nature. Mixed quantumclassical methods 
[6-17] simplify the problem by treating the system quantum 
mechanically while approximating the environment classically, 
significantly reducing computational cost. However, these methods 
often struggle to capture detailed balance [18-20] or subtle quantum 
correlations [21]. Fully quantum approaches, including path-
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encodes the effects of the environment and U(t, 0) and U†(t, 0) are 
the forward and backward time-evolution operators, respectively.

In the recursive ML framework, modeling the time evolution 
of Eq. (1) is formulated as learning a mapping function M that maps
the input descriptors into predicted RDMs. In general, we have

M : {ℝn×n}k'→{ℝn×n}l, (2)

where {ℝn×n}k' is a collection of k′ input matrices (of size n × n) that 
encode physical information such as historical RDM data, initial 
conditions, and simulation parameters, and {ℝn×n}l is a sequence 
of l predicted RDMs corresponding to different time steps. In our 
study, we consider four distinct approaches for predicting the time 
evolution of RDM:

The SR-PINN approach: This method predicts the RDM at the 
next time step based solely on a fixed-length history of past RDMs. 
The recursive mapping function is defined as

Mrec : {ℝn×n}k'→ℝn×n, (3)

with

Mrec [ρS (tk−k′+1), ρS (tk−k′+2), . . . , ρS (tk) = ρS (tk+1).        (4)

The procedure is applied iteratively: after predicting ρS (tk+1), 
this new RDM is appended to the history while the oldest entry is 
removed, keeping the memory size constant at k′.

The PSR-PINN approach: To improve prediction accuracy, 
additional simulation parameters p (e.g., system–environment 
coupling, characteristic frequency, temperature) are incorporated 
into the input. The mapping function becomes

    Mrec : ℝp ×{ℝn×n}k'→ℝn×n, (5)

such that

Mrec [p, [ρS (tk−k′+1), . . . , ρS (tk)]] = ρS (tk+1). (6)

As with the standard SR-PINN, the process is applied 
recursively with a fixed history length. 

The MR-PINN approach: Rather than predicting a single 
RDM at a time, the MR-PINN approach forecasts a block of future 
RDMs in one step. Its mapping function is defined by

Mrec :{ℝn×n}k'→{ℝn×n}Nf, (7)

with

Mrec [ρS (tk−k′+1), . . . , ρS (tk)]
  = [ρS (tk+1), ρS (tk+2),. . . , ρS (tk+Nf)]. (8)

In this case, the model outputs Nf future RDMs simultaneously, 
thus providing a multi-step prediction without requiring iterative 
updating.

The PMR-PINN approach: This variant extends the MRPINN 
method by including simulation parameters in the prediction. The 
mapping is defined as

Mrec : ℝp ×{ℝn×n}k'→{ℝn×n}Nf, (9)
so that

integral [22-30] and quantum master equation-based methods [31-
38], provide more accurate descriptions but are computationally 
expensive, particularly in regimes with strong system-environment 
coupling or where fine discretization is needed for numerical 
stability.

Recently, machine learning (ML) has emerged as a promising 
tool for learning complex spatiotemporal dynamics in high-
dimensional systems [39-61]. One widely used ML strategy is the 
recursive approach, where the future evolution of a quantum state is 
predicted iteratively based on a short history of past evolution. This 
method has been successfully applied to the relaxation dynamics of 
the two-state spin-boson (SB) model [40,43,44,60], even enabling 
extrapolation beyond the trained time window [40]. However, 
previous applications have been limited to predicting a single 
observable—such as the population difference in the SB model—
and have relied solely on singlestep prediction models.

In this work, we extend recursive ML approaches to more 
complex quantum systems, focusing on predicting the full RDM 
rather than just a single observable. We examine four physics-
informed neural network (PINN)-based architectures: (i) the 
single-RDM-predicting PINN (SR-PINN), (ii) the SR-PINN with 
simulation parameters (PSR-PINN), (iii) the multi-RDMs-predicting 
PINN (MR-PINN), and (iv) the MR-PINN with simulation 
parameters (PMR-PINN). These architectures are tested on the 
relaxation dynamics of the SB model and the exciton energy transfer 
(EET) process in the Fenna-Matthews-Olson (FMO) complex.

From our results, we underscore the limitations of short-
sighted, single-RDM-predicting models (SR-PINN and PSR-PINN) 
in capturing long-term system dynamics, especially in systems with 
intricate behavior. These models, constrained by a narrow history 
window, fail to predict long-term quantum evolution accurately, as  
they cannot fully capture the complexity of system evolution. In 
contrast, far-sighted models—such as MR-PINN and PMR-PINN—
overcome these limitations by extending the forecast horizon, 
allowing them to incorporate long-range temporal correlations and 
achieve more stable predictions.

Although we initially anticipated that incorporating simulation 
parameters such as reorganization energy (λ), characteristic 
frequency (γ), and temperature (T) would improve accuracy, our 
findings show that these parameters do not consistently enhance 
performance and, in some instances, actually degrade it. This 
suggests that the relevant effects of these parameters are already 
implicitly encoded in the RDM evolution, making their explicit 
inclusion unnecessary in certain cases.

To build our case, let’s consider an open quantum system (S), 
consisting of n states interacting with an external environment (E). 
As stated before, the dynamics of the system is governed by the 
RDM, which evolves non-unitarily due to environmental effects. 
While the full system follows unitary evolution described by the 
Liouville–von Neumann equation, tracing out the environmental 
degrees of freedom introduces a superoperator R that encodes 
dissipation and decoherence. Under the assumption that the initial 
state is separable between the system and environment (ρ(0) = ρS(0) 
⊗ ρE(0)), mathematically it can be described as

ρS(t) = TrE (U(t, 0) ρ(0) U†(t, 0))
= −i [HS, ρS(t)] + R[ρS(t)], (1)

where ρS(t) is the RDM of the system at time t, TrE denotes the 
partial trace over the environment, R is a superoperator that 


