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Abstract: Accurately modeling the dynamics of open quantum systems is critical for advancing quantum technologies, yet
traditional methods often struggle with balancing accuracy and efficiency. Machine learning (ML) offers a promising alternative,
particularly through recursive models that predict system evolution based on the past history. While these models have shown
success in predicting single observables, their effectiveness in more complex tasks, such as forecasting the full reduced density
matrix (RDM), remains unclear. In this work, we extend history-based recursive ML approaches to complex quantum systems,
comparing four physics-informed neural network (PINN) architectures: (i) single-RDM-predicting PINN (SR-PINN), (ii) SR-
PINN with simulation parameters (PSR-PINN), (iii) multi-RDMs-predicting PINN (MR-PINN), and (iv) MR-PINN with
simulation parameters (PMR-PINN). We apply these models to two representative open quantum systems: the spin-boson (SB)
model and the Fenna-Matthews-Olson (FMO) complex. Our results demonstrate that single-RDM-predicting models (SR-
PINN and PSR-PINN) are limited by a narrow history window, failing to capture the full complexity of quantum evolution
and resulting in unstable long-term predictions, especially in nonlinear and highly correlated dynamics. In contrast, multi-
RDMs-predicting models (MR-PINN and PMR-PINN) provide more accurate predictions by extending the forecast horizon,
incorporating long-range temporal correlations, and mitigating error propagation. Surprisingly, including simulation parameters
explicitly, such as temperature and reorganization energy, in PSR-PINN and PMR-PINN does not consistently improve accuracy
and, in some cases, even reduces performance. This suggests that these parameters are already implicitly encoded in the RDM
evolution, making their inclusion redundant and adding unnecessary complexity. These findings highlight the limitations of
short-sighted recursive forecasting in complex quantum systems and demonstrate the superior stability and accuracy of far-

sighted approaches for long-term predictions.
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Open quantum systems describe quantum systems interacting
with their environment, playing a fundamental role in quantum
computing, quantum memory, quantum transport, proton tunneling
in DNA and energy transfer in photosynthesis [1-5]. Their dynamics
are captured by the reduced density matrix (RDM), which evolves
under both the system internal dynamics and the influence of its
environment.

Modeling the influence of environment is challenging due
to its high-dimensional nature. Mixed quantumclassical methods
[6-17] simplify the problem by treating the system quantum
mechanically while approximating the environment classically,
significantly reducing computational cost. However, these methods
often struggle to capture detailed balance [18-20] or subtle quantum
correlations [21]. Fully quantum approaches, including path-
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integral [22-30] and quantum master equation-based methods [31-
38], provide more accurate descriptions but are computationally
expensive, particularly in regimes with strong system-environment
coupling or where fine discretization is needed for numerical
stability.

Recently, machine learning (ML) has emerged as a promising
tool for learning complex spatiotemporal dynamics in high-
dimensional systems [39-61]. One widely used ML strategy is the
recursive approach, where the future evolution of a quantum state is
predicted iteratively based on a short history of past evolution. This
method has been successfully applied to the relaxation dynamics of
the two-state spin-boson (SB) model [40,43,44,60], even enabling
extrapolation beyond the trained time window [40]. However,
previous applications have been limited to predicting a single
observable—such as the population difference in the SB model—
and have relied solely on singlestep prediction models.

In this work, we extend recursive ML approaches to more
complex quantum systems, focusing on predicting the full RDM
rather than just a single observable. We examine four physics-
informed neural network (PINN)-based architectures: (i) the
single-RDM-predicting PINN (SR-PINN), (ii) the SR-PINN with
simulation parameters (PSR-PINN), (iii) the multi-RDMs-predicting
PINN (MR-PINN), and (iv) the MR-PINN with simulation
parameters (PMR-PINN). These architectures are tested on the
relaxation dynamics of the SB model and the exciton energy transfer
(EET) process in the Fenna-Matthews-Olson (FMO) complex.

From our results, we underscore the limitations of short-
sighted, single-RDM-predicting models (SR-PINN and PSR-PINN)
in capturing long-term system dynamics, especially in systems with
intricate behavior. These models, constrained by a narrow history
window, fail to predict long-term quantum evolution accurately, as
they cannot fully capture the complexity of system evolution. In
contrast, far-sighted models—such as MR-PINN and PMR-PINN—
overcome these limitations by extending the forecast horizon,
allowing them to incorporate long-range temporal correlations and
achieve more stable predictions.

Although we initially anticipated that incorporating simulation
parameters such as reorganization energy (1), characteristic
frequency (y), and temperature (7) would improve accuracy, our
findings show that these parameters do not consistently enhance
performance and, in some instances, actually degrade it. This
suggests that the relevant effects of these parameters are already
implicitly encoded in the RDM evolution, making their explicit
inclusion unnecessary in certain cases.

To build our case, let’s consider an open quantum system (S),
consisting of n states interacting with an external environment (E).
As stated before, the dynamics of the system is governed by the
RDM, which evolves non-unitarily due to environmental effects.
While the full system follows unitary evolution described by the
Liouville-von Neumann equation, tracing out the environmental
degrees of freedom introduces a superoperator R that encodes
dissipation and decoherence. Under the assumption that the initial
state is separable between the system and environment (p(0) = ps(0)
® pe(0)), mathematically it can be described as

ps(t) = Tre (U(t, 0) p(0) U'(z, 0))
=—i [Hs, ps()] + R[ps(0)], )]

where ps(f) is the RDM of the system at time ¢, Trg denotes the
partial trace over the environment, R is a superoperator that

encodes the effects of the environment and U(z, 0) and UT(z, 0) are
the forward and backward time-evolution operators, respectively.

In the recursive ML framework, modeling the time evolution
of Eq. (1) is formulated as learning a mapping function M that maps
the input descriptors into predicted RDMs. In general, we have

M R (R, @

where {R"””}¥'is a collection of k' input matrices (of size n x n) that
encode physical information such as historical RDM data, initial
conditions, and simulation parameters, and {R"}! is a sequence
of [ predicted RDMs corresponding to different time steps. In our
study, we consider four distinct approaches for predicting the time
evolution of RDM:

The SR-PINN approach: This method predicts the RDM at the
next time step based solely on a fixed-length history of past RDMs.
The recursive mapping function is defined as

LA/(/rec: {Rnxn}k'_)Rnxn, (3)
with

Miec [ps (tii+1), ps (i), - -, ps () = ps(tier). (4)

The procedure is applied iteratively: after predicting ps (¢4+1),
this new RDM is appended to the history while the oldest entry is
removed, keeping the memory size constant at &'.

The PSR-PINN approach: To improve prediction accuracy,
additional simulation parameters p (e.g., system—environment
coupling, characteristic frequency, temperature) are incorporated
into the input. The mapping function becomes

LA/(/rec ‘Re X{R”x"}k'—)R"X”’ (5)

such that

d%rec [P, [ps (tk—k'ﬂ), e ,DS(tk)]] =ps (tkﬂ)' (6)

As with the standard SR-PINN, the process is applied
recursively with a fixed history length.

The MR-PINN approach: Rather than predicting a single
RDM at a time, the MR-PINN approach forecasts a block of future
RDMs in one step. Its mapping function is defined by

Mo H{R7MHE— R, (N
with
J/(/rec [ﬂs (tkfk’ﬂ), s pPs (tk)]
= [ps(tkr1), ps(tes2)s - - 5 ps (l‘k+Nf)]. ®)

In this case, the model outputs N, future RDMs simultaneously,
thus providing a multi-step prediction without requiring iterative
updating.

The PMR-PINN approach: This variant extends the MRPINN
method by including simulation parameters in the prediction. The
mapping is defined as

Miee : RP X (R (Rmm N, ©
so that
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Mace [P [ps (tirs1)s - - - 5 ps ()] ]
= [ps(tes1), ps ter2)se - - » ps (teeng)]- (10)

By integrating the simulation parameters p, the model can
adjust its predictions to account for different physical conditions
while forecasting multiple future time steps concurrently.

Each of these approaches leverages the past history of
RDMs (and optionally simulation parameters) to predict the future
dynamics of the system, differing primarily in whether they predict
a single RDM or multiple RDMs in one go.

To evaluate the proposed methods, we analyze the relaxation
dynamics of the SB model and the EET process in the FMO
complex (see Methods section for details). The models are
implemented using a hybrid deep learning architecture that
integrates convolutional neural networks (CNNs) with long short-
term memory (LSTM) layers, followed by fully connected dense
layers (CNN-LSTM). Following the approach outlined in Ref [39],
training is optimized using a composite loss function, expressed as:

L=aL;+o2Ly+ a3l3+ oaly, (11)

where each loss term is defined as follows.

The first term, L, represents the mean squared error (MSE)
between the predicted elements of the RDM, pg, and the reference
values, pg:

N n
1
b= ]vt -n? Z Z (ﬁsj;j(f) 7ps,l’,j(t))2' (12)

=1 ij=1

Here, N; denotes the number of time steps.
To ensure trace conservation of the density matrix, the second
loss term, L,, penalizes deviations of the trace from unity:

N,

L= % D (Trpgn) — 12 (13)

t=1

The third term, L3, enforces positive semi-definiteness by
penalizing negative eigenvalues u,(7) of the density matrix:

N, n

1
o D> max(0, - () (14)

=1 i=1

Additionally, L4 ensures that all eigenvalues remain within the
valid range [0, 1], enforcing a key physical constraint of the RDM:

N n
1
¥ 2 2-(Clip (a0, 0. D) = ). (15)

t=1 i=1

Ly=

The clipping function used here is defined as:

03 lflul(t) < 09
clip(ui(?), 0, 1) = { 1(®), ifO<pu() <1, (16)
1, ifu)>1.

The weighting coefficients a1, a2, a3, a4 control the relative

contributions of these loss terms. In our case, we set them all to
unity (a1 = 02 = a3 = a4 = 1.0). Collectively, these loss components
ensure that the predicted RDM satisfies key physical properties:
accuracy (L), trace conservation (L»), positive semi-definiteness
(L3), and eigenvalue constraints (Ls).

For demonstration, we use data from the publicly available
QD3SET-1 database [62] for both the SB model and the FMO
complex. The models are trained on 80% of the simulations, with
the remaining 20% reserved for testing. Further details on the
dataset and training process can be found in the Methods section.
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Figure 1. Time evolution of the RDM elements, including both
population and coherence terms, as predicted by the SR-PINN,
PSR-PINN, MR-PINN, and PMR-PINN models. The first column
shows the RDM evolution for the symmetric (Sym) SB model,
while the second column displays the corresponding dynamics
for the asymmetric (Asym) SB model. Predictions are generated
recursively, starting from an initial seed dynamics of time-length
4/A, and are compared to reference results (shown as dots). The
dashed vertical line split the seed dynamics (left) and the predicted
dynamics (right). For the symmetric case, the parameters used
correspond to an unseen set: /A = 0.0, /A= 3.0, /A= 0.6, and A
= 1.0. In the asymmetric case, the parameters are /A = 1.0, y/A =
9.0, /A= 0.6, and fA=1.0.

Figure 1 presents the predictive performance of all the four
models for the time evolution of RDM elements in both symmetric
and asymmetric SB models. Each model is provided with an initial
short-time seed (4/A) and tasked with recursively forecasting the
system’s future evolution.

The results highlight the limitations of SR-PINN, which
exhibits significant errors in both diagonal and off-diagonal
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terms (population and coherence), leading to a rapid divergence
from the expected dynamics. PSR-PINN, despite incorporating
simulation parameters, further degrades accuracy, indicating that
the past history window of the model remains insufficient for stable
recursive predictions. In contrast, MR-PINN, which leverages a
longer forecasting horizon, effectively mitigates error accumulation
and successfully captures both population and coherence dynamics
across the prediction window. PMR-PINN performs similarly to
MR-PINN, suggesting that the inclusion of simulation parameters
does not provide additional benefits in this setting.

To test a larger system, in Figure 2 we showcase the predicted
evolution of RDM elements for the FMO complex under initial
excitation on site-1. The models are trained with an initial short-
time seed (0.2 ps) and recursively predict the system’s future

SR-PINN exhibits considerable inaccuracies, particularly
in long-term dynamics, leading to deviations from the expected
population transfer trends. PSR-PINN, despite integrating
simulation parameters, fails to improve performance and even
amplifies errors, especially in diagonal elements. As in the SB
model, MR-PINN achieves significantly enhanced accuracy,
demonstrating robust predictions of both energy transfer and
coherence decay. PMR-PINN yields results comparable to MR-
PINN, reinforcing the observation that the longer forecasting
window is the primary factor driving predictive stability.

A quantitative analysis of model performance, summarized
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Figure 2. Time evolution of the RDM elements for the FMO
complex with initial excitation on site-1, as predicted by SRPINN,
PSR-PINN, MR-PINN, and PMR-PINN. The first column presents
the population dynamics of exciton energy transfer (EET), while
the second highlights selected coherence elements. Predictions
are generated recursively using an initial seed dynamics of 0.2
ps and are compared to reference dynamics (shown as dots). The
dashed vertical line split the seed dynamics (left) and the predicted
dynamics (right). The test trajectory corresponds to simulation
parameters y =400 cm™!, 1 =40 cm™!, and 7= 90 K.

in the accompanying table (Table I), further substantiates these
findings. As in the SB model, SRPINN struggles to maintain
accuracy, particularly for coherence elements, and PSR-PINN
further aggravates errors. MR-PINN consistently outperforms
both singletime- step approaches, achieving the lowest mean
absolute errors (MAE) across all RDM elements. The inclusion of
simulation parameters in PMR-PINN does not lead to meaningful
improvements over MR-PINN.

Notably, the errors are higher for the asymmetric SB model
compared to the symmetric case, indicating that prediction accuracy
degrades as system complexity increases. This trend suggests that
more intricate dynamical behaviors impose additional challenges
for PINN-based models, particularly when using single-RDM-
predicting training strategies.

For the FMO complex, the disparity between methods remains

Table 1. Time-averaged mean absolute error (MAE) for the diagonal (Diag) and off-diagonal (Off-diag) elements of the RDMs predicted by
the SR-PINN, PSR-PINN, MR-PINN, and PMR-PINN models for the test trajectory of the SB model and FMO complex. Off-diagonal errors
represent the average MAE for both real and imaginary components. Values are expressed in the form 10*.

Model SB Model (Sym) SB Model (Asym)
Diag Off-diag Diag Off-diag
(Real, Imag) (Real, Imag)
SR-PINN 1.6e-2 (4.4e-2, 1.7e-3) 2.9e-2 (3.8e-2, 7.8e-3)
PSR-PINN 1.3e-2 (1.3e-1, 1.1e-3) 1.0e-1 (7.9¢e-2, 3.6e-3)
MR-PINN 4.9e-4 (7.3e-4, 5.1e-4) 1.4e-3 (3.9¢-3,9.1e-4)
PMR-PINN 6.7e-4 (5.1e-3, 8.8e-4) 1.3e-3 (1.2e-2, 1.2e-3)
Model FMO Complex (site-1) FMO Complex (site-6)
Diag Off-diag Diag Off-diag
(Real, Imag) (Real, Imag)
SR-PINN 1.4e-2 (4.1e-3, 8.6e-4) 1.3e-2 (2.3e-3, 1.6e-4)
PSR-PINN 6.3e-2 (1.6e-2, 4.8¢e-4) l.1e-1 (2.9¢-2, 2.9¢-3)
MR-PINN 2.6e-2 (6.1e-3, 2.8e-4) 2.5e-2 (2.3e-3, 1.5e-4)
PMR-PINN 2.5e-2 (5.9¢-3, 4.2e-4) 2.6e-2 (2.3¢-3, 1.4e-4)
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evident. SR-PINN and PSR-PINN perform poorly, with PSR-PINN
producing the highest errors for both population and coherence
terms, particularly when the initial excitation occurs at site-6 (as
shown in the table). MR-PINN and PMR-PINN provide a marked
improvement, although predictive errors remain higher compared
to the SB model, reflecting the increased complexity of the system.
The trend observed in the SB model, where errors increase with
system complexity, is also evident in the FMO complex. The lack
of significant gains from PMR-PINN over MR-PINN suggests that
the longer prediction window is the dominant factor in improving
accuracy, while the inclusion of simulation parameters has a limited
effect.

In summary, this work investigated four PINN-based
architectures for predicting the time evolution of the RDM
in selected open quantum systems: single-RDM-predicting
models (SR-PINN, PSR-PINN) and multi-RDMs-predicting
models (MR-PINN, PMR PINN). These models use historical
RDM data to predict future dynamics, with some incorporating
environmentspecific parameters such as temperature and system-
bath coupling.

Our findings reveal the limitations of single-RDM-predicting
models (SR-PINN and PSR-PINN) in capturing long-term quantum
dynamics. These models, constrained by a narrow history window,
struggle to predict long-term quantum evolution accurately, as they
fail to capture the full complexity of system evolution. However,
as demonstrated in previous works [40,43,44,60], when trained on
simpler observables—such as the population difference in the spin-
boson model—they yield reasonable predictions, suggesting that
single-variable evolution is easier to propagate recursively.

In contrast, multi-RDMs-predicting models (MRPINN and
PMR-PINN) consistently provide stable and accurate long-term
predictions across various scenarios. By predicting multiple RDMs
in one step, these models mitigate cumulative errors and better
capture long-range temporal correlations, improving their ability
to generalize to unseen conditions. This emphasizes that extending
the forecast horizon is more effective than merely increasing
the historical input length, as explicitly forecasting future states
stabilizes predictions more effectively than relying solely on
past dynamics. Surprisingly, explicitly incorporating simulation
parameters—such as reorganization energy, characteristic
frequency, and temperature (in PSR-PINN and PMR-PINN)—did
not consistently improve predictive accuracy and, in some cases,
slightly reduced performance. This suggests that the effects of these
parameters are already implicitly captured in the RDM evolution,
rendering their explicit inclusion redundant and potentially
introducing unnecessary complexity.

Overall, this work underscores the limitations of shortsighted,
single-step recursive models in complex quantum systems and
reinforces the advantages of far-sighted, multi-step approaches
for robust, long-term predictions. Our findings highlight that
incorporating a longer predictive horizon is key to improving
prediction stability, capturing complex dynamics, and reducing the
impact of short-term fluctuations in open quantum systems.

Methods

Hamiltonians of the SB model and FMO complex: The SB model
describes a two-level system interacting with an environment
composed of independent harmonic oscillators. The Hamiltonian of
the system is given by:

H=co.+ Ao+ Y _oblbi+ ) _clbltby,  (17)
k k

where 0. and o, are Pauli matrices, € denotes the energy difference
between the two states, and A represents their coupling strength.
The surrounding environment consists of harmonic oscillators
characterized by creation and annihilation operators b} and by,
corresponding to mode k with frequency wx. The system-bath
interaction is governed by the coupling coefficient ¢, for each mode.

Our next system of interest, the FMO complex is a trimeric
protein found in green sulfur bacteria, where it plays a crucial
role in photosynthetic energy transfer. Each monomer of the FMO
complex contains multiple chlorophyll molecules—typically
seven or eight—that facilitate exciton transport [63]. The excitonic
dynamics within a monomer can be described by the Frenkel
exciton model Hamiltonian [64]:

H=Y 1) i+ Y1) Jy i
i=1

i

J
355 gl )

i=1 k=1

3N I Qe i+ i) il (18)
i=1

i=1 k=1

where n denotes the number of chlorophyll sites, ¢; is the site
energy, and Jj; represents the electronic coupling between sites
i and j. The operators Py; and Qy; correspond to the momentum
and position of the k-th vibrational mode associated with site i,
while wy; is its frequency. The identity matrix I ensures proper
dimensional consistency in the model. The coupling strength
between site i and the k-th vibrational mode is given by c¢x;, and 4;
represents the reorganization energy of site 7.

In both the SB model and the FMO complex, the environmental
influence is characterized by the Debye spectral density:

_ o
J@) =2 — o (19)

where / is the reorganization energy, and y is the characteristic
frequency, defined as the inverse of the relaxation time (y = 1/7). For
the FMO complex, we assume that all chlorophyll sites experience
the same environmental conditions.

Data extraction: For training our models, we utilized
precomputed RDMs provided by the QD3SET-1 database [62],
which contains simulations based on the hierarchical equations of
motion (HEOM) method [22,27,65,66]. In the case of the SB model,
our dataset, labeled Dy, comprises 1000 simulations covering a
four-dimensional parameter space defined by &/A, /A, y/A, and
PA, corresponding to the system bias, bath reorganization energy,
bath relaxation rate, and inverse temperature, respectively. For the
seven-site FMO complex, we also used 1000 simulations from
QD3SET-1 that detail the exciton dynamics starting from excitations
at site-1 and site-6, spanning the parameter set (4, y, 7). In this
dataset, the dynamics was generated using the trace-conserving
local thermalizing Lindblad master equation (LTLME) [67], with
Hamiltonian parameters taken from the work of Adolphs and Renger
[68]. Specifically, the FMO Hamiltonian, Hs, is expressed as
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200 877 55 59 67 -13.7 -99
-87.7 320 308 82 07 11.8 43
Hg= 5.5 30.8 0 -535 22 96 6.0 | (20)
-59 82 —-53.5 110 -70.7 -17.0 —63.6
6.7 07 -22 -70.7 270 81.1 -13
-13.7 118 -96 -17.0 81.1 420 39.7

-9.9 43 60 —636 —-13 397 230

with an added diagonal offset of 12210 cm™.

Data Preparation: To construct the training dataset, each
RDM, ps(t), along with its associated coefficients, is flattened into
a one-dimensional vector. Given the Hermitian property of the
RDM (ps,i(f) = psyi(£)"), we retain only the real components of the
diagonal elements while including both the real and imaginary parts
of the upper triangular off-diagonal elements.

Each simulation trajectory is then divided into multiple
training samples. In the recursive training framework, an initial
segment of the system’s dynamics, {ps(t), ps(t1), . . . , ps(td)},
serves as the input sequence. For the single-RDM-predicting
models (SR-PINN and PSR-PINN), the dataset is structured to
predict the immediate next RDM, ps(#-+1). The input sequence is
updated at each step by appending the newly predicted RDM while
discarding the earliest one (ps(#))), maintaining a fixed sequence
length. This iterative process continues until the final time step #x is
reached.

For the multi-RDMs-predicting models (MR-PINN and PMR-
PINN), the output at each prediction step is a block of Ny future
RDMs, predicted simultaneously. The number of predicted steps,
Ny, is determined by the length of the prediction window ¢, and the
time-step dt used in propagating the dynamics, via the relation Ny=
ty/dt.

In the SB model, the prediction window is set to #, = 2/A, leading
to Ny = 40 time steps given the chosen dt = 0.05/A. Similarly,
for the FMO complex, the prediction window is #, = 0.4 ps,
corresponding to Ny= 80 time steps with df = 0.005 ps.

More generally, the number of training samples that can be
generated from a single simulation depends on the propagation
interval [#, tx] and the prediction window #,, and is approximately
given by (#x — tx)/t.,. These parameters vary depending on the
system and the prediction strategy.

For the single-RDM-predicting approaches, a single time-
step prediction window is used. In the SB model, we use # = 4/A,
tx = 20/A, and ¢,, = dt = 0.05/A; for the FMO complex, the settings
are t; = 0.2 ps, tx = 1 ps, and ¢, = dt = 0.005 ps. In contrast, for the
multi- RDMs models, the effective #, corresponds to the length of
the output sequence—2/A for SB and 0.4 ps for FMO—tesulting in
fewer but richer training samples, each covering a longer prediction
horizon.

It is important to emphasize that the selection of # (input
sequence length) and Ny (number of predicted steps) is informed by
system complexity, physical intuition, and empirical testing. The
value of # should be sufficient to encode the temporal structure and
variability of the input RDMs, allowing the model to distinguish
between different states. The choice of Ny depends on the desired
prediction horizon and the system’s complexity—for instance, Ny
= 40 is adequate for the SB model, while the more intricate FMO
complex benefits from a longer horizon (N;= 80). As a practical
guideline, we recommend setting Ny equal to the time span of the
input trajectory to maintain consistency and provide a balanced

context for prediction.

It is important to note that in the PSR-PINN and PMR-
PINN models, simulation parameters were normalized by their
respective maximum values. The normalized simulation parameters
are expressed as A/Amax, Y/¥Ymaxs f/Pmax and T/Tmax, Where Amax, Ymaxs
Pmax and Tiax correspond to the maximum values of 4, y, £ and 7,
respectively.

Training and Prediction Strategies: To improve training
efficiency, we utilize farthest point sampling [41,69] to select a
representative subset of simulation trajectories. For each case in
SB model (¢/A =0 and 1) and the FMO complex (initial excitations
on site-1 and site-6), 400 simulation trajectories are allocated for
training, with the remaining data reserved for testing. The training
is conducted using a CNN-LSTM architecture, where convolutional
layers are followed by LSTM layers and fully connected dense
layers. For the SB model, a single CNNLSTM model is trained for
both cases (¢/A =0 and 1), whereas for the FMO complex, separate
models are trained for initial excitations on site-1 and site-6. To
ensure a fair comparison, all models share an identical architecture,
and during inference, models are selected based on comparable
training and validation loss values.

Inference follows the same approach as the training data
preparation. In single RDM prediction, a short sequence of past
RDMs, {ps(t0), ps(t1), . . ., ps(t)}, serves as the input seed. The
model predicts the next RDM, ps(#+1), which is then appended to
the input sequence while the oldest RDM is removed. This iterative
process continues until the entire trajectory is predicted.

For multi-RDMs prediction, a similar strategy is employed,
but instead of predicting a single RDM, the model generates a
window of Ny future RDMs in each step. The input sequence is
then updated with the last Ny RDMs from the newly predicted
block, allowing for the efficient generation of extended dynamics.
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