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Abstract: Semiclassical mapping dynamics offer a computationally tractable approach for simulating nonadiabatic processes in 

complex molecular systems. This work presents a comparative study of purely data-driven (DD) neural networks and physics-

informed neural networks (PINNs) for learning the Markovian propagation of trajectories within the Meyer-Miller-Stock-

Thoss (MMST) mapping Hamiltonian framework. Using the spin-boson model as a benchmark, we assess the performance 

of both approaches in reproducing the nonadiabatic dynamical details for classical mapping model (CMM) and symmetrical 

quasiclassical (SQC) dynamics. Our results demonstrate that PINNs, which explicitly incorporate the physical equations 

of motion, significantly outperform DD models, especially when trained with limited datasets. PINNs accurately capture 

the population dynamics and preserve the physical correlations in phase space, regardless of the underlying neural network 

architecture (fully connected network or gated recurrent unit) or the specific MMST Hamiltonian formulation. In contrast, DD 

models exhibit substantial inaccuracies and unphysical behaviors. This clearly shows the key benefit of embedding physical 

laws into machine learning frameworks to achieve data-efficient, accurate, and reliable simulations of nonadiabatic phenomena.
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1. Introduction

Nonadiabatic dynamics describe the molecular processes involving 
transitions between multiple electronic potential energy surfaces and 
are fundamental to a vast array of phenomena in chemistry, physics, 

and biology. These processes are characterized by the intrinsic 
coupling of nuclear and electronic motions, which is beyond the 
scope of the Born-Oppenheimer approximation. They govern the 
outcomes of photochemical reactions, facilitate charge and energy 
transfer events, and underpin critical biological functions such as 
photosynthesis [1–5]. Furthermore, nonadiabatic events are central 
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The temporal characteristics of dynamics, particularly the 
distinction between Markovian (future state depends only on the 
present) and non-Markovian (future depends on history) behavior, 
also significantly influence ML model design. The propagation of 
only the electronic RDM is typically non-Markovian if nuclear 
DOFs are unknown. This aspect was explored in our previous 
work [31], where we demonstrated from the Nakajima-Zwanzig 
generalized quantum master equation (GQME)[49,50] that the 
non-Markovian propagator for the RDM is fundamentally a linear 
map, provided that the historical information used for training 
is sufficiently long compared to the system’s intrinsic memory 
time, for which we also proposed an estimator. Subsequent 
applications to various neural network architectures showed that 
when this condition of sufficient historical data was met, simpler 
linear-mapping NNs like linear fully connected networks (FCNs) 
could achieve high accuracy and even outperform more complex 
nonlinear architectures such as GRU or hybrid convolutional 
neural network-LSTM (CNN-LSTM) [32], which might otherwise 
be prone to overfitting. Instances where nonlinear NNs appeared 
superior typically corresponded to situations where the provided 
historical data length was shorter than the system’s memory time, 
thus not conflicting with the underlying linearity of the true non-
Markovian propagator. Such non-Markovian ML models, which 
use a segment of historical dynamics to predict a future time step, 
are referred to as short-for-long (SFL) type models.

In semiclassical mapping dynamics, however, the total 
knowledge of electronic mapping variables and nuclear phase space 
variables is available at each time slice. Training an ML model with 
this complete instantaneous state information should, in principle, 
allow for the description of Markovian dynamics, where the next 
state is predicted solely from the current state, thus simplifying 
the ML task. Previous work by Lan and coworkers utilized LSTM 
networks to train SQC mapping dynamics [35] (both electronic and 
nuclear variables) using short-time windows of trajectory data as 
input, an approach akin to training for non-Markovian dynamics; 
their ensemble averages of electronic populations showed good 
agreement with reference calculations.

In this study, we adopt a distinct Markovian approach to 
directly compare the effectiveness of purely data-driven NNs 
(such as FCNs and GRUs) against PINNs for predicting the 
propagation of nonadiabatic dynamics within the MMST mapping 
Hamiltonian framework. Importantly, we train our models with 
only one time step of complete state information (electronic 
mapping variables and nuclear phase space variables) as input to 
predict the state at the very next time step, genuinely treating the 
learning problem as Markovian. In our PINN implementation, 
which we use as a general term, the known form of the equations 
of motion (EOM) derived from the mapping Hamiltonian is 
incorporated into the learning process, while NNs may be 
employed to learn specific physical terms within these EOMs, 
such as potential energy surfaces, their gradients, or the zero-
point-energy parameter. A primary goal of this study is to use a 
relatively small training dataset to showcase the potential benefits 
of incorporating physics-informed properties, i.e., the explicit 
form of the EOM governing the mapping dynamics, in accurately 
reproducing the step-to-step propagation. This paper will further 
detail the theoretical background of the methods, outline the 
computational approaches and model systems, present a critical 
discussion of the comparative results, and conclude with key 
findings and future outlooks.

to solar energy conversion and the behavior of advanced materials. 
A deep understanding of these complex mechanisms is therefore 
indispensable for the rational design of novel molecules and 
functional materials.

However, despite their commonness, the simulation 
of nonadiabatic dynamics presents serious theoretical and 
computational challenges. The primary difficulty stems from 
the need to treat the coupled evolution of electronic and nuclear 
degrees of freedom (DOFs) quantum mechanically. It is a task 
that is computationally prohibitive for most systems, but some 
low-dimensional models. Consequently, various approximate 
methods have been developed, though these introduce their own 
complexities, including numerical stability, error accumulation, 
and questions about the validity of underlying approximations for 
certain processes.

In the quest for computationally tractable yet physically sound 
approaches, semiclassical methods have emerged as an attractive 
platform, aiming to balance the inclusion of essential quantum 
mechanical effects with the efficiencies of classical trajectory-
based simulations. A cornerstone in this area is the family of 
semiclassical or quasiclassical methods based on the Meyer-Miller-
Stock-Thoss (MMST) mapping Hamiltonian [6,7]. This mapping 
dynamics formalism provides a prescription to transform a discrete 
F-level electronic system into an equivalent mapping Hamiltonian.
This Hamiltonian is expressed in terms of F continuous Cartesian
phase-space variables for the electronic DOFs, and it allows
the coupled dynamics of electronic and nuclear motion to be
propagated via Hamilton’s equations of motion. The MMST
Hamiltonian serves as a foundation for diverse semiclassical
methods like various linearized semiclassical dynamics (LSC) [8-
12], symmetrical quasi-classical (SQC) windowing techniques [13-
17], and classical mapping models (CMM) [18-22], to name a few.
The specific semiclassical propagation scheme and observable
formulation chosen can profoundly influence simulation accuracy,
computational cost, and conservation properties, highlighting the
complexity beyond the Hamiltonian [23].

Machine learning (ML), particularly techniques based on 
neural networks (NNs), has rapidly become a powerful tool in 
computational chemistry, applied to predict molecular properties, 
accelerate materials discovery, construct accurate potential 
energy surfaces, and simulate complex system dynamics [24-
28]. The application of ML to nonadiabatic dynamics is a rapidly 
advancing frontier, offering strategies to develop PESs [29,30], 
directly propagate quantum wavepackets or reduced density 
matrices (RDMs) [31-33], and learn the evolution of semiclassical 
or mixed quantum-classical trajectories [32,34,35]. Purely data-
driven (DD) NNs, such as convolutional neural networks (CNNs)
[36], kernel ridge regression (KRR) [37,38], gated recurrent units 
(GRUs) [31,39], long short-term memory (LSTM) [33,40,41], and 
transformer [42] learn input-output relationships directly from 
large dynamical datasets. While powerful, these models typically 
require substantial training data and, without explicit encoding of 
physical laws, may not inherently respect fundamental principles 
like energy conservation, potentially leading to physically 
implausible predictions. In contrast, Physics-Informed Neural 
Networks (PINNs) [43-48] aim to bridge this gap by incorporating 
known physical laws, often expressed as differential equations or 
conservation principles, directly into the NN’s loss function during 
training. This can improve data efficiency, enhance generalization, 
and produce more physically consistent predictions.


