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Abstract: Semiclassical mapping dynamics offer a computationally tractable approach for simulating nonadiabatic processes in 

complex molecular systems. This work presents a comparative study of purely data-driven (DD) neural networks and physics-

informed neural networks (PINNs) for learning the Markovian propagation of trajectories within the Meyer-Miller-Stock-

Thoss (MMST) mapping Hamiltonian framework. Using the spin-boson model as a benchmark, we assess the performance 

of both approaches in reproducing the nonadiabatic dynamical details for classical mapping model (CMM) and symmetrical 

quasiclassical (SQC) dynamics. Our results demonstrate that PINNs, which explicitly incorporate the physical equations 

of motion, significantly outperform DD models, especially when trained with limited datasets. PINNs accurately capture 

the population dynamics and preserve the physical correlations in phase space, regardless of the underlying neural network 

architecture (fully connected network or gated recurrent unit) or the specific MMST Hamiltonian formulation. In contrast, DD 

models exhibit substantial inaccuracies and unphysical behaviors. This clearly shows the key benefit of embedding physical 

laws into machine learning frameworks to achieve data-efficient, accurate, and reliable simulations of nonadiabatic phenomena.
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1. Introduction

Nonadiabatic dynamics describe the molecular processes involving 
transitions between multiple electronic potential energy surfaces and 
are fundamental to a vast array of phenomena in chemistry, physics, 

and biology. These processes are characterized by the intrinsic 
coupling of nuclear and electronic motions, which is beyond the 
scope of the Born-Oppenheimer approximation. They govern the 
outcomes of photochemical reactions, facilitate charge and energy 
transfer events, and underpin critical biological functions such as 
photosynthesis [1–5]. Furthermore, nonadiabatic events are central 
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The temporal characteristics of dynamics, particularly the 
distinction between Markovian (future state depends only on the 
present) and non-Markovian (future depends on history) behavior, 
also significantly influence ML model design. The propagation of 
only the electronic RDM is typically non-Markovian if nuclear 
DOFs are unknown. This aspect was explored in our previous 
work [31], where we demonstrated from the Nakajima-Zwanzig 
generalized quantum master equation (GQME)[49,50] that the 
non-Markovian propagator for the RDM is fundamentally a linear 
map, provided that the historical information used for training 
is sufficiently long compared to the system’s intrinsic memory 
time, for which we also proposed an estimator. Subsequent 
applications to various neural network architectures showed that 
when this condition of sufficient historical data was met, simpler 
linear-mapping NNs like linear fully connected networks (FCNs) 
could achieve high accuracy and even outperform more complex 
nonlinear architectures such as GRU or hybrid convolutional 
neural network-LSTM (CNN-LSTM) [32], which might otherwise 
be prone to overfitting. Instances where nonlinear NNs appeared 
superior typically corresponded to situations where the provided 
historical data length was shorter than the system’s memory time, 
thus not conflicting with the underlying linearity of the true non-
Markovian propagator. Such non-Markovian ML models, which 
use a segment of historical dynamics to predict a future time step, 
are referred to as short-for-long (SFL) type models.

In semiclassical mapping dynamics, however, the total 
knowledge of electronic mapping variables and nuclear phase space 
variables is available at each time slice. Training an ML model with 
this complete instantaneous state information should, in principle, 
allow for the description of Markovian dynamics, where the next 
state is predicted solely from the current state, thus simplifying 
the ML task. Previous work by Lan and coworkers utilized LSTM 
networks to train SQC mapping dynamics [35] (both electronic and 
nuclear variables) using short-time windows of trajectory data as 
input, an approach akin to training for non-Markovian dynamics; 
their ensemble averages of electronic populations showed good 
agreement with reference calculations.

In this study, we adopt a distinct Markovian approach to 
directly compare the effectiveness of purely data-driven NNs 
(such as FCNs and GRUs) against PINNs for predicting the 
propagation of nonadiabatic dynamics within the MMST mapping 
Hamiltonian framework. Importantly, we train our models with 
only one time step of complete state information (electronic 
mapping variables and nuclear phase space variables) as input to 
predict the state at the very next time step, genuinely treating the 
learning problem as Markovian. In our PINN implementation, 
which we use as a general term, the known form of the equations 
of motion (EOM) derived from the mapping Hamiltonian is 
incorporated into the learning process, while NNs may be 
employed to learn specific physical terms within these EOMs, 
such as potential energy surfaces, their gradients, or the zero-
point-energy parameter. A primary goal of this study is to use a 
relatively small training dataset to showcase the potential benefits 
of incorporating physics-informed properties, i.e., the explicit 
form of the EOM governing the mapping dynamics, in accurately 
reproducing the step-to-step propagation. This paper will further 
detail the theoretical background of the methods, outline the 
computational approaches and model systems, present a critical 
discussion of the comparative results, and conclude with key 
findings and future outlooks.

to solar energy conversion and the behavior of advanced materials. 
A deep understanding of these complex mechanisms is therefore 
indispensable for the rational design of novel molecules and 
functional materials.

However, despite their commonness, the simulation 
of nonadiabatic dynamics presents serious theoretical and 
computational challenges. The primary difficulty stems from 
the need to treat the coupled evolution of electronic and nuclear 
degrees of freedom (DOFs) quantum mechanically. It is a task 
that is computationally prohibitive for most systems, but some 
low-dimensional models. Consequently, various approximate 
methods have been developed, though these introduce their own 
complexities, including numerical stability, error accumulation, 
and questions about the validity of underlying approximations for 
certain processes.

In the quest for computationally tractable yet physically sound 
approaches, semiclassical methods have emerged as an attractive 
platform, aiming to balance the inclusion of essential quantum 
mechanical effects with the efficiencies of classical trajectory-
based simulations. A cornerstone in this area is the family of 
semiclassical or quasiclassical methods based on the Meyer-Miller-
Stock-Thoss (MMST) mapping Hamiltonian [6,7]. This mapping 
dynamics formalism provides a prescription to transform a discrete 
F-level electronic system into an equivalent mapping Hamiltonian.
This Hamiltonian is expressed in terms of F continuous Cartesian
phase-space variables for the electronic DOFs, and it allows
the coupled dynamics of electronic and nuclear motion to be
propagated via Hamilton’s equations of motion. The MMST
Hamiltonian serves as a foundation for diverse semiclassical
methods like various linearized semiclassical dynamics (LSC) [8-
12], symmetrical quasi-classical (SQC) windowing techniques [13-
17], and classical mapping models (CMM) [18-22], to name a few.
The specific semiclassical propagation scheme and observable
formulation chosen can profoundly influence simulation accuracy,
computational cost, and conservation properties, highlighting the
complexity beyond the Hamiltonian [23].

Machine learning (ML), particularly techniques based on 
neural networks (NNs), has rapidly become a powerful tool in 
computational chemistry, applied to predict molecular properties, 
accelerate materials discovery, construct accurate potential 
energy surfaces, and simulate complex system dynamics [24-
28]. The application of ML to nonadiabatic dynamics is a rapidly 
advancing frontier, offering strategies to develop PESs [29,30], 
directly propagate quantum wavepackets or reduced density 
matrices (RDMs) [31-33], and learn the evolution of semiclassical 
or mixed quantum-classical trajectories [32,34,35]. Purely data-
driven (DD) NNs, such as convolutional neural networks (CNNs)
[36], kernel ridge regression (KRR) [37,38], gated recurrent units 
(GRUs) [31,39], long short-term memory (LSTM) [33,40,41], and 
transformer [42] learn input-output relationships directly from 
large dynamical datasets. While powerful, these models typically 
require substantial training data and, without explicit encoding of 
physical laws, may not inherently respect fundamental principles 
like energy conservation, potentially leading to physically 
implausible predictions. In contrast, Physics-Informed Neural 
Networks (PINNs) [43-48] aim to bridge this gap by incorporating 
known physical laws, often expressed as differential equations or 
conservation principles, directly into the NN’s loss function during 
training. This can improve data efficiency, enhance generalization, 
and produce more physically consistent predictions.
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2. Theory

We start with expressing the general F-state quantum me-chanical 
Hamiltonian as

= 𝜇  + = 𝜇+  | j⟩⟨k|, (1)

where {|j⟩; j = 1, ..., F} are the electronic state basis;  = 
and  =  are the N nuclear coordinates and momenta 
with mass μ;  = Vjk  | j⟩⟨k| is the electronic Hamiltonian, 

where Vjj ≡ Vj  is the PES of the j-th electronic state and Vjk 

 = Vkj  is the electronic coupling between the j-th and the k-th 
electronic states ( j ≠ k).

The corresponding primitive Meyer-Miller-Stock-Thoss 
Hamiltonian is written as [6,7]

H(P, R, p, q) 

= μ+ (R) 𝛾𝛿jk       (2)

where q = (q1,..., qF) and p = (p1,..., pF) are the position and 
momentum mapping variables, and γ is the zero-temperature-energy 
(ZPE) parameter with γ = 1/2 recovering the full quantum zero-
point energy in the original MMST formulation. The population 
normalization condition reads

(3)

With the above relation, Eq. 2 has an equivalent symmetrized form [13]:

H(P, R, p, q)

= μ + (R) + 

× [Vjk(R) − 𝛿jk (R)]. (4)

Here, the averaged potential energy of all states is denoted as (R) 

= Vjj(R). The ZPE parameter does not explicitly show in the 
symmetrized MMST Hamiltonian, but the ZPE parameter affects 
the initial sampling for mapping variables. In atomic units, ħ = 1 is 
adopted, but we leave explicit ħ here for bookkeeping purposes.

The time evolution for the MMST mapping Hamiltonian is 
governed by the classical EOM [51], namely Hamilton’s equations

= ∂H
∂p , = − ∂H

∂q , = ∂H
∂P , = − ∂H

∂R            (5)

where the dot indicates the time derivative. Inserting the primitive 
MMST Hamiltonian in Eq. (2) into the above Eq. (5), we obtain the 
following EOM with explicit γ:

 = Vkj (R)pj, (6a)

 =  − Vkj (R)qj, (6b)

, (6c)

 = 
F

j,k

jk∂
∂

V
           (6d)

In the data-driven approach, the electronic-nuclear variables, 
denoted as x = (q,p,R,P), NN directly treats x(t) as the input and 
x(t + ∆t) as the output for the one-step forward learning without 
physical information as shown in Fig. 1(a).

In our PINN implementation, we have two versions that 
correspond to the primitive MMST Hamiltonian (Eq. 2) and the 
symmetrized MMST Hamiltonian (Eq. 4). The PINN structure is as 
shown in Fig. 1(b). For example, the EOM of the primitive MMSH 
Hamiltonian requires the information such as μ, γ, and {Vjk(R)}, 
which are represented using NNs as follows:

μ → 𝜃1 ∈ ℝ,
𝛾 → 𝜃2 ∈ ℝ,
{Vjk(R)}→ 𝜃3 : ℝN →ℝF2,

  (7)

jk∂
∂

V  → 𝜃4 : ℝN →ℝNF2.

So we need two individual parameter sets for μ, γ and two different 
NNs to map N nuclear positions to F2 and two and NF2 parameters, 
respectively. In this case, we rewrite the EOM characterized by 
NNs as

(t) = M[x(t); θ1,θ2,θ3,θ4], (8)

where M is a propagation map derived by combining Eqs. 6 and
7, with {θ1,θ2,θ3,θ4} as parameters, x and  as input and output 
respectively. To improve accuracy, we propagate x with fourth-
order Runge-Kutta (RK4) algorithm with PINN time derivative .

In the PINN implementation for the symmetrized MMST 
Hamiltonian, the parameters of EOM are similar to Eq. 7, but need 
to replace the θ2 parameter with an NN for the average potential 
energy

(R)→θ2
′ : ℝN → ℝ.                              (9)

In practice, the time step ∆t is absorbed into the propagation 
mapinterms of M = ∆t M and θi = ∆t θi.
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Figure 1. Schematics of (a) data-driven neural network, (b) 
physics-informed neural network for predicting the nonadiabatic 
mapping dynamics.
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Two types of neural network architectures, FCN and GRU, 
are tested in both DD and PINN approaches. For a single fully-
connected layer, its general expression is

y =  f (Wx+b), (10)

where x ∈ ℝn and y ∈ ℝm are input and output vectors, respectively, 
W ∈ ℝm×n, b ∈ ℝm are weight matrix and bias, respectively, f is 
activation function to generate nonlinearity. An FCN typically 
consists of multiple fully-connected layers, and a 3-layer FCN is 
used in this work:

h(1) = sig[W(1)x + b(1)],                 (11a)
h(2) = sig[W(2)h(1) + b(2)] , (11b)

  y = W(3) h(2) + b(3) , (11c)

where the activation function is chosen as sigmoid sig(x) =  , 
and the hidden layers h(1) ∈ ℝNh1 and h(2) ∈ ℝNh2 have hidden sizes 
Nh1,Nh2, which determine the sizes of weight matrices and bias 
together with input and output vectors as in Eq. 10.

GRU is a type of recurrent neural network (RNN) for time 
series data [39]. In this work, we deal with Markovian dynamics so 
that historical frames will not be provided, therefore, GRU is reduced 
to a nonlinear NN. A memory-less GRU layer is expressed as

y = sig(Wzx + bz) ⊙ tanh (Whx + bh).            (12)

Here, Wz , Wh ∈ ℝm×n are the weight matrices, bz, bh ∈ ℝm are the 

bias terms, and activation function tanh(x) =  The element-
wise product is denoted as ⊙. In this work, the 3-layer GRU 
network is constructed by two GRU layers and one linear fully 
connected layer as below

h(1) = sig [Wz
(1)x + bz

(1)]⊙ tanh [Wh
(1)x + bh

(1)], (13a)

 h(2) = sig [Wz
(2)h(1) + bz

(2)]⊙ tanh [Wh
(2)h(1) + bh

(2)],          (13b)

y = W(3)h(2) + b(3). (13c)

The hidden sizes can be selected arbitrarily like 3-layer FCN.
Now we have described how to propagate the EOM 

of MMST mapping Hamiltonian using both DD and PINN 
strategies. We will briefly state how observables are defined in 
different semiclassical and quasiclassical methods, e.g., CMM 
[18-22] and SQC [13-17] methods. The main property of interest 
in nonadiabatic dynamics is the electronic RDM, which is defined 
as σ̂ (t) = TrN [ρ̂(t)], where ρ̂(t) is the overall density matrix and 
TrN (·) is the trace over nuclear DOF. The diagonal elements of 
RDM represent electronic populations, and the off-diagonal 
elements represent coherences. Assume the initial state is 
prepared as ρ̂(0) = |a⟩⟨a|⊗ρ̂N (0) with the initial nuclear density 
matrix corresponds to equilibrium with respect to Ĥb: ρ̂N (0) = e−β Hb̂

/TrN (e−β Hb̂ ). Denoting the elementary electronic operator Mjk = | j⟩⟨k|, 
the RDM at time t can be written as [11]

σk j(t) = TrNTre[ρ̂N(0)|a⟩⟨a|ei Ht/ħˆ  | j⟩⟨k|e−i Ht/ħˆ ]

     ≡ CMaaMjk (t).      (14)

Here, Tre (·) is the trace over electronic DOF. Here, the TCF CMaaMjk (t) 

is given by [52]

CMaaMjk (t) = dR0 dP0 dq0 dp0 ρN (R0,P0) ρe (q0,p0)

× Maa(q0,p0) Mjk (qt ,pt ),                        (15)

where ρN and ρe denote the nuclear and electronic mapping variable 

distributions, respectively.
In the CMM method [18-22], the mapping variables (q,p) are

sampled on a (2F −1)-sphere to satisfy the condition that the total 
electronic population equals one:

S(γ):  (q2
j + p2

j) = 1 + Fγ. (16)

The electronic observables at time 0 and t are given by

M (0)
jk (q,p) =  (qj − ipj)(qk + ipk) − γδjk, (17)

M (t)jk  (q,p) = (qj − ipj)(qk + ipk) − δjk,               (18)

where  =  and  = . The ZPE parameter of the 
CMM method is selected as γ = 1/2 in this work, and in principle, 
any value in γ > −1/F could be allowed, though γ ∈ (−1/F,1/2] is 
more recommended [18,20].

In the SQC method [13-17], the Cartesian mapping variables
(q,p) are reformulated to action-angle variables (n,u). Using 
the triangle window functions, the electronic populations and 
coherences are expressed as

 M jj
(SQC) (n,u) = w1(nj)

≠j

w0(nj,nl),

M jk
(SQC) (n,u) = ei(uk−uj)w (nj)w (nk)

≠j,k

w0(nj − nk,nl).           (19)

Here, the triangle window functions are defined as wa(nj) = 
(2 − γ − nj)2−F when (−γ < n − a < 1 − γ) and vanishes otherwise; 
w0(nj, nl) = 1 when (nl < 2 − 2γ − nj) and vanishes otherwise. In 
our simulations, we use the optimal ZPE parameter γ = 1/3 for 
the triangle window function [14]. Note that the normalization 
condition of the total population is not satisfied for a single SQC 
trajectory, which may cause a difference between dynamics 
governed by the primitive and symmetrical MMST Hamiltonians.

2. Physical model systems

The spin-boson model is a commonly used two-level harmonic 
model for simulation of charge and energy transfer processes in 
complex molecular and condensed-phase systems [53,54]:

 = Γσ̂x + εσ̂z +  + ω2
i − ci iσ̂z , (20)

where σ̂x= |1⟩⟨2| + |2⟩⟨1| and σ̂z = |1⟩⟨1| − |2⟩⟨2| are the Pauli 
matrices that are defined in the basis of the |1⟩ and |2⟩ basis; Γ is 
the electronic coupling coefficient; ΔE = −2ε is the reaction free 
energy; { i, i, ωi} = { i, i, ωi|i = 1, ...,N} are the mass-weighted 
coordinates, momenta, and frequencies associated with the N nuclear 
normal modes, respectively; {ci} are the electronic-vibrational 
coupling coefficients. Here, {ωi,ci} are specified by discretizing the 
spectral density defined as

J(ω) =  δ(ω −ωi). (21)

In this work, we employ the Ohmic spectral density as below

ħ

ħ

ħ



Hao Zeng and Xiang Sun / Commun. Comput. Chem., (2025), pp. 217-225221

J(ω) = ħξωe−ω/ωc, (22)

where ξ is the Kondo parameter and ωc is the cutoff frequency. The 
discretization scheme is as follows [55]

ωi = ωcln (23a)

ci  
= (23b)

and i = 1, 2, · · · , N. The parameters for the spin-boson model 
tested are in reduced units: N = 100, ε = 1, Γ = 1, ξ = 0.1, ωc = 2.5, 
ħ = 1, and the time step is Δt = 0.01.

In the semiclassical mapping dynamics simulation, the initial 
electronic state is |1⟩⟨1|, and the initial nuclear state is sampled 
from theWigner transform of the equilibrated bath density at 
inverse temperature β = 1/kBT = 5:

   ρ(W)
N (R,P) = dZ e−iZ·P/ħ N

  =  tanh 

            × exp tanh    (24)

For the ML training, the nonadiabatic semiclassical 
simulations yield a training set of 500 independent CMM 
trajectories of length 1000 time steps starting from time zero for 
DD (GRU) and PINN (GRU and FCN) models, and a training 
set of 100 SQC trajectories for PINN (FCN) and 1800 SQC 
trajectories for DD (FCN) models. The test sets are another 1000 
trajectories from both CMM and SQC dynamics. Training details 
can be found in Table I. The distribution of initial sampling of the 
electronic and nuclear variables for CMM and SQC dynamics in 
the training sets is shown in Fig. 2. The panels (a–c) and (d–f) show 
the initial samplings in CMM and SQC dynamics, respectively. In 
particular, panel (a) shows the sampled values of (q2

i + p2
i ) /2 for 

the two states in CMM, which is related to electronic population 
distributions, and their sum is 1+Fγ depicted as a dashed line. Panel 
(b) indicates the distribution of the electronic mapping variables
qi, pi for i = 1, 2 in CMM, which clearly shows the sampling over
the constraint sphere. Panels (d) and (e) show the distribution of
the action and angle mapping variables in SQC methods, where the
action variables are drawn from the triangle window and the angle
variables are randomly selected within (−π/2, π/2]. Panels (c) and (f)
show the 30th nuclear phase-space variables distribution.

3. Results and discussion

We begin by presenting a comparative analysis of DD versus 
PINN approaches for learning the Markovian propagation in CMM 
dynamics of the spin-boson model. This comparison is crucial 
for understanding the efficacy of incorporating physical laws into 
machine learning frameworks for complex dynamical systems. 
Figure 3 illustrates the ensemble-averaged RDM dynamics, a key 
observable for characterizing the system’s evolution. Both PINN 
models, one utilizing an FCN architecture and the other a GRU 
one, demonstrate excellent agreement with the reference CMM 
dynamics for the initial 6 Γ−1 of propagation. This timeframe 
includes several characteristic periods of the system’s dynamics, 
indicating that the PINNs capture the essential short-to-intermediate 
time behavior accurately. Beyond this 6 Γ−1 point, while minor 
deviations from the reference CMM dynamics begin to appear, the 
discrepancies between the PINN-FCN and PINN-GRU predictions 
remain notably smaller than their respective deviations from the 
true CMM dynamics. This observation indicates the consistent and 
robust performance achieved by the two distinct PINN architectures, 
suggesting that the benefit stems from the physics-informed 
approach itself rather than a specific neural network design.

In contrast, both purely DD approaches struggle significantly 
to accurately capture the dynamics, even at the ensemble-averaged 
level. The DD-FCN model, while showing a semblance of accuracy 
by tracking the reference dynamics through the first two oscillatory 
periods (up to approximately 4 Γ−1), subsequently undergoes a 
rapid and pronounced deterioration. It completely fails to predict 
the phase and amplitude of subsequent oscillations, rendering its 
long-term predictions unreliable. The DD-GRU network exhibits 
even poorer performance. It shows significant deviations from 
the reference dynamics almost immediately, failing to accurately 
capture even the first peak around 1.5 Γ−1. Furthermore, it 
aberrantly settles into an unphysical, non-evolving steady state 
from approximately 4 Γ−1 onwards, a behavior entirely inconsistent 
with the expected dynamics of the spin-boson model. These results 
clearly demonstrate the superior capability of the PINN framework. 
By embedding the EOMs, PINNs accurately capture the stepwise 
time evolution of CMM mapping dynamics even with a relatively 
small training dataset of only 500 trajectories. This highlights a 
significant advantage in terms of data efficiency when compared 
to purely DD methods, which typically require substantially more 
data to achieve comparable accuracy, if at all.

The inherent advantages of the PINN methodology become 
even more pronounced and critically apparent when examining 
single trajectory predictions, as depicted in detail in Fig. 4. 
Analyzing individual trajectories provides a more stringent test of 
the models because propagation errors are not obscured or averaged 
out by ensemble statistics. Furthermore, there is no opportunity 
for fortuitous error cancellation that can sometimes occur when 
averaging over multiple, potentially inaccurate, trajectories. Both 
PINN-FCN and PINN-GRU variants accurately reproduce the 
intricate details of the reference mapping dynamics for a selection 
of nuclear positions (R10,R30,R60,R90) and their corresponding 
canonical momenta (P10,P30,P60,P90). These selected modes 
represent a range of frequencies within the nuclear bath modes, 
demonstrating the PINNs’ ability to handle diverse dynamical 
behaviors. Some minor discrepancies, such as overly damped 
oscillations observed in the high-frequency modes, particularly at 
longer simulation times, are present. These are likely attributable 

Table 1. ML training details including number of trajectories in 
training set Nts, hidden sizes Nh (same for NNs in DDNN and 
PINN), train and validation losses (MSE).

method architecture Nts Nh train loss valid loss
CMM DD-FCN 500 (1024, 1024) 3.7×10−5 3.5×10−5

CMM DD-GRU 500 (1024, 1024) 1.1×10−5 1.2×10−5

CMM PINN-FCN 500 (1024, 1024) 1.0×10−6 1.1×10−6

CMM PINN-GRU 500 (1024, 1024) 2.4×10−6 2.4×10−6

prim. SQC PINN-FCN 100 (1024, 1024) 9.2×10−8 8.7×10−8

sym. SQC DD-FCN 1800 (1024, 1024) 4.0×10−5 4.0×10−5

sym. SQC PINN-FCN 100 (1024, 1024) 8.6×10−8 1.0×10−7

ħ
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to the inevitable accumulation of small numerical propagation 
errors over extended periods, a common challenge in long-term 
trajectory simulations, though significantly mitigated by the PINN 
approach. Importantly, the electronic mapping variables (q1,p1,q2, 
p2) for the two level electronic system are also well-predicted by 
both PINN chemes. The accurate propagation of these electronic 
degrees of freedom is absolutely essential for correctly reproducing 
the population dynamics and other electronic properties of the 
nonadiabatic system. Moreover, a key success of the PINN 
approach is that the inherent physical connections and correlations 
between position variables and their conjugate momenta are well-
preserved throughout the simulation. This fidelity in maintaining 
the correct phase-space structure is a direct consequence of the 
PINN architecture being guided by the Hamiltonian structure 
embedded within the EOMs, which inherently dictates these 
fundamental relationships.

Conversely, the DD approaches, whether employing FCN or 
GRU architectures, completely fail to provide physically meaningful 
or even qualitatively correct predictions for single CMM trajectories, 
as vividly illustrated by the erratic paths in Fig. 4. The predictions 
often diverge rapidly from the reference or exhibit entirely 
unphysical behaviors. For instance, a striking example of this 
failure is seen in the DD-GRU model’s prediction for the nuclear 
coordinate R10. It incorrectly predicts R10 to move in the negative 
direction, despite its conjugate momentum P10 being positive at 
the initial time, which is a clear and fundamental violation of basic 
classical mechanics. Similar unphysical behaviors, such as incorrect 
directional propagation or loss of correlation between coordinates 
and momenta, are observed for other nuclear phase space variable 

pairs (e.g., R30 and P30). These failures reflect the inability of the 
DD models, with limited data, to learn the underlying physical laws 
governing the system’s evolution. While it is conceivable that the 
performance of DD approaches might be enhanced with access 
to a significantly larger training dataset, the primary focus of this 
comparative study is to evaluate the performance of DD and PINN 
methodologies under conditions of limited data availability. It is 
precisely in such low-data regimes that the benefits of incorporating 
prior physical knowledge, as done in PINNs, become most apparent 
and impactful.

Finally, we investigated whether the choice between two 
distinct formulations of the EOM for the MMST mapping 
Hamiltonian influences the performance and applicability within 
the PINN framework. These two formulations correspond to the 
primitive (as detailed in Eq. 2) and the symmetrized (as detailed 
in Eq. 4) MMST Hamiltonians. The primitive version explicitly 
includes the ZPE parameter, γ, directly in the EOM, which is 
then learned as a parameter by the neural network. In contrast, 
the symmetrized version does not explicitly feature γ in its EOM; 
instead, it requires the average potential energy function, V̄(R), 
which is then represented and learned by a neural network. Figure 
5 presents a direct comparison of these two EOM types when 
applied to SQC mapping dynamics of the spin-boson model. 
The results compellingly indicate that the PINN-FCN approach 
performs effectively and yields accurate dynamics with both types 
of MMST Hamiltonians. The predicted population dynamics are in 
good agreement with their respective reference SQC calculations, 
regardless of whether the primitive or symmetrized Hamiltonian 
was used to inform the PINN. This outcome is significant as 

Figure 2. Distribution of the initial sampling for the CMM (a–c) and SQC (d–f) mapping dynamics in the training set. For CMM dynamics:
(a) Distribution of (q2

i + p2
i ) /2 for i = 1, 2 states and their sum ΣF

i (q
2
i + p2

i ) /2 = 1 + Fγ as required for the electronic population restriction in
CMM, where the x-axis is sorted index of samples; (b) Distribution of qi and pi for i = 1, 2, the histograms on the side are plotted for i = 0,1
together; (c) Phase space distribution of initial nuclear sampling of the 30th normal mode. For SQC dynamics: (d) Distribution of the action
variables n1,n2 that fall in the triangle window by definition; (e) Distribution of the angle variables u1,u2 that are sampled randomly between
(−π/2, π/2]; (f) Phase space distribution of initial nuclear sampling of the 30th normal mode.
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it numerically verifies the equivalence of the two Hamiltonian 
formulations when integrated into the ML-enhanced simulation 
context, showcasing the flexibility of the PINN approach. In 
contrast, the purely Data-Driven FCN network exhibits a substantial 
deviation from the reference SQC population dynamics, with 
errors becoming apparent as early as 2 Γ−1. Furthermore, the DD-
FCN predictions show a more favorable trend in the long-term 
dynamics of SQC compared to the DD results for CMM dynamics, 
despite noticeable noise. This apparent improvement is likely 

due to the triangle window filtering scheme, which filters out 
unphysical predictions when the action mapping variable n falls 
outside the defined window. The scheme averages over a smaller 
number of mapping trajectories relative to the total available, 
which contributes to the observed noise in the longterm SQC 
dynamics. These state-dependent constraints on the mapping 
variables are essential for accurate observable calculations in 
SQC. However, the DD model does not explicitly incorporate such 
constraints, which reduces sampling effectiveness and leads to 
increased noise. Instead, the DD model must attempt to infer these 
complex conditions purely from the provided trajectory data, a 
significantly more demanding task, especially with limited training 
examples. The lack of explicit enforcement of such physical 
constraints contributes to the observed deviations and noise, further 
highlighting the advantages of the physics-informed strategy.

4. Concluding remarks

In conclusion, this work has demonstrated the significant advantages 
of employing PINN over purely DD approaches for learning the 
Markovian propagation of nonadiabatic semiclassical mapping 
dynamics, particularly when constrained by limited training data. 
Our findings reveal that PINNs, by incorporating the underlying 
equations of motion, consistently achieve high fidelity in predicting 
both ensemble-averaged RDM dynamics and the fine-grained details 
of single trajectories for the spin-boson model using the CMM 
framework. This accuracy extends across different neural network 
architectures (FCN and GRU) and is robust to the choice between 
primitive and symmetrized MMST Hamiltonian formulations 
within the SQC mapping context. In contrast, DD methods largely 
failed to produce physically meaningful or accurate predictions 
under identical training conditions, highlighting their inefficiency 
and unreliability in low-data regimes for such complex physical 
systems. These results emphasize the critical role of embedding 
physical laws into machine learning models to ensure accuracy, 
data efficiency, and physical consistency in simulating complex 
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Figure 3. Ensemble-averaged RDM dynamics (over 1000 
trajectories) of spin-boson model using different ML approaches. 
The reference CMM dynamics is plotted in a black line, and the 
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plotted in turquoise, red, and blue lines, respectively.
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molecular processes, paving the way for more reliable and powerful 
computational tools in nonadiabatic dynamics.
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