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Abstract: The integration of artificial intelligence (AI) and robotics into chemical synthesis has given rise to autonomous 

laboratories, transformative systems designed to overcome limitations in traditional experimental approaches. This review 

synthesizes recent advancements in autonomous laboratory systems, highlighting their applications in chemical synthesis and the 

innovations driving their evolution. Autonomous laboratories combine automated hardware, intelligent software, and adaptive 

systems to optimize experimental workflows, reduce human intervention, and enhance efficiency in complex reaction 

environments. Key developments include AI-driven reaction pathway planning, closed-loop optimization frameworks, and robotic 

platforms capable of executing multi-step synthesis with minimal expert oversight. Leading research groups have demonstrated 

significant progress, such as AI-guided discovery of functional materials, automated photocatalytic reaction optimization, and 

self-learning microfluidic systems. This review provides a comprehensive analysis of current achievements and remaining gaps, 

offering insights for researchers and policymakers in advancing this transformative technology. 
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1. Introduction

Global challenges in energy development, healthcare, and food 
safety have underscored the limitations of traditional chemical 
synthesis processes, particularly their slow experimental throughput, 
high trial-and-error costs, and poor adaptability to complex reactions 
[1]. To circumvent these hurdles, next-generation autonomous 
laboratories have arisen, synergizing automated robotic workstations 
with advanced artificial intelligence (AI) decision-making systems 
[2]. In these laboratories, experimental protocols are first designed 
by artificial intelligence, then implemented by robotic platforms, 
with data analysis performed concurrently. This closed-loop system 
achieves significant time reduction and efficiency gains [3], and 
empowers researchers to investigate more extensive and 
complicated experimental setups, transforming the creation and 
improvement of sophisticated experiments into attainable objectives 
[4]. 

Autonomous laboratory systems are built upon three 
fundamental elements: physical equipment, digital program, and 
integrated platform. The physical apparatus manages chemical 
transformations, carries out synthetic procedures, and performs 
material characterization. This component comprises dedicated 
synthesis and analysis tools for routine operations, versatile robotic 
manipulators capable of adaptive tasks, modular devices including 
additive manufacturing systems [5,6] and liquid handling 
workstations [7]. These tools reduce hardware procurement costs 
and enable autonomous device construction. The digital program 
concentrates on planning optimal experimental protocols and 
controlling robotic activities, merging: (1) device communication, (2) 
data management, (3) AI decision-making, and (4) experimental 
planning modules [8]. The modular architecture is further 
augmented through the integration of advanced probabilistic 
optimization frameworks and machine learning paradigms. 
Specifically, Gaussian process-based Bayesian Optimization (BO) 
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facilitates efficient exploration of high-dimensional experimental 
parameter spaces by constructing surrogate models that balance the 
exploitation of known optima with an exploration of uncertain 
regions [9]. Reinforcement learning (RL) algorithms, implemented 
through Markov decision processes, enable autonomous policy 
optimization by maximizing cumulative reward signals derived from 
experimental outcomes [10]. Deep neural network architectures, 
particularly attention-based transformer models, provide robust 
pattern recognition capabilities for multivariate experimental data 
analysis, enabling the prediction of complex structure-property 
relationships [11]. This synergistic integration of machine learning 
methodologies significantly enhances the system's capacity for 
autonomous experimental design and closed-loop optimization 
while maintaining rigorous statistical foundations. The integrated 
platform serves as the laboratory's "brain", physical sensors, 
executing algorithmic decisions, and delivering accurate operational 
commands. The platform simultaneously serves as a bidirectional 

communication interface, permitting investigators to conduct remote 
experiment supervision, access instantaneous measurement data, 
and execute necessary manual override [12]. 

To date, several research teams globally have effectively 
implemented self-operating laboratory systems in synthetic 
chemistry applications (Figure 1), demonstrating substantial 
advancements. Nevertheless, current automated research platforms 
continue to face considerable challenges, including underdeveloped 
algorithms for complex chemical processes, exorbitant costs of 
research and development as well as maintenance, and unavoidable 
human participation in select procedural stages [3]. These limitations 
impede the broad adoption and continued evolution of autonomous 
laboratories. Consequently, this review seeks to analyze state-of-the-
art innovations in automated synthesis technologies, define their 
operational frameworks and characteristic features, and evaluate 
their successes and ongoing challenges, providing references for 
future research on autonomous laboratories. 

Figure 1. Timeline of the publication of the first key achievements by various research teams [13-24]. Panels reproduced/adapted with 
permission. Copyright: Refs 13,15,18 © AAAS; 14,17 © Wiley (CC-BY); 16 © Wiley-VCH; 19 © Nature Communications (CC-BY); 20 © 
National Science Review (CC-BY); 21 © ACS; 22 © Science (CC-BY); 23 © J. Mater. Chem. A (CC-BY); 24 © Chem. Sci. (CC-BY). Full 
license links in Supporting Information. 
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2. Research groups and their landmark achievements

2.1  Dr. Alán Aspuru-Guzik's group (University of Toronto) 

To overcome the inefficiencies, manual-intensive processes, and 
extended durations inherent in conventional laboratory research, 
Aspuru-Guzik et al. developed ChemOS [13,25], an autonomous 
laboratory software platform. ChemOS employs closed-loop 
experimental design and AI-driven parameter adjustments, enabling 
applications in chemistry, materials science, and drug development 
(Figure 2) [25]. This platform features a central workflow manager 
and six constituent modules: an AI algorithm module for 
experimental planning, supporting Bayesian machine learning (ML) 
techniques (such as Phoenics [26], SMAC [27-29], Spearmint 
[30,31], and randomized search methods [32,33]); an automation 
and robotics module for executing experiments; an analytical 
interface module for result characterization; a database module for 
data management; a human-machine interaction module for 
researcher engagement; and a real-time analysis module for 
processing and visualizing results. This modular framework enables 
easier implementation, cost reduction, and flexible adaptation, 
making it compatible with diverse experimental scenarios and 
hardware platforms. Using ChemOS, Aspuru-Guzik et al. created 
"Ada", an autonomous laboratory for thin-film material discovery 
[34]. The system's self-learning capability has proven effective in 
improving hole transport properties in organic hole-transporting 
materials (HTMs) (Figure 3) [34]. Nevertheless, the platform's 
current architecture may face operational challenges when handling 
complex multilayer thin-film architectures or sophisticated 
experimental designs. 

Building upon progress in robotic automation and ML 
technologies, Aspuru-Guzik et al. introduced ChemOS 2.0 [35] as 
an enhanced version of their original laboratory automation 
framework, better aligned with the requirements of modern self-
driving laboratories. ChemOS 2.0 employs UNIX-compliant [36] to 
enhance modularity and interoperability. Its fog computing 
architecture optimizes workflow management, while rigorous state 
management improves reproducibility. The platform supports ab-
initio simulations for materials discovery and enables device 
communication via middleware (such as SiLA2 [37]), simplifying 
lab automation integration. Its database design supports the table 
structures of general and specific equipment, enhancing the system's 
scalability and adaptability. The software platform is highly 
customizable, though its current interface may require some 
familiarity to navigate efficiently. Future iterations could benefit 
from a more user-friendly design to accommodate a broader range 
of users.  
To further enhance the platform's explainability and autonomy, 
Aspuru-Guzik et al. developed the closed-loop transfer (CLT) 
method  [38],  integrating  physics-informed feature selection with 
supervised learning in closed-loop experimentation to 
simultaneously optimize objective functions and extract chemical 

insights. The system employs a human-in-the-loop architecture that 
combines domain expertise in initial closed-loop stages and supports 
real-time monitoring through interpretable ML models. CLT's use of 
BO for molecule recommendation provides a valuable approach for 
hypothesis   validation,  this  approach  may  require  additional 
experimental iterations to achieve optimal results. Additionally, 
although CLT enables efficient hypothesis generation in data-limited 
scenarios, the potential emergence of spurious correlations 
underscores the importance of independent experimental validation 

Figure 2. (A) Schematic of the flow path for the sampling sequence 
used with the N9 robotic platform. The six parameters (P1-P6) are 
color coded to illustrate the effect they have on the sampling 
sequence. The yellow shade highlights the arm valve, and the grey 
shade the HPLC valve. (B) Example of logging messages from 
ChemOS. (C) Side and (D) top view of the robotic hardware. Lower 
panels: Results from the autonomous calibration of an HPLC setup 
maximizing the magnitude of the response. (E) Representation of the 
ChemOS pipeline while screening the Tequila Sunrise space [25]. 

. 
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Figure 3. This automated workflow uses iterative experiments to find a thin-film composition with the highest pseudomobility. Each iteration 

includes mixing ink, spin coating, annealing, imaging, obtaining spectra, measuring I-V curves, calculating pseudomobility, and inputting 

results into software to optimize the next experiment [34]. Copyright 2020 The Authors, some rights reserved; exclusive licensee American 

Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution 

NonCommercial License 4.0 (CC BY-NC), https://creativecommons.org/licenses/by-nc/4.0/. 

Figure 4. Overview and design idea of RoboChem [4]. 

2.2  Dr. Timothy Noël's group (University of Amsterdam) 

Noël et al. developed an automated continuous-flow platform to 
accelerate mechanistic studies of photocatalytic reactions [14]. The 
system integrates fluorescence quenching measurements with Stern-

Volmer analysis using a quartz flow cuvette, HPLC pump, tunable 
light source, and UV-Vis spectrometer [40]. The Python-based 
graphical user interface (GUI) facilitates straightforward parameter 
definition and execution, thereby diminishing the maintenance 
burden associated with the system. Datasets are automatically 
archived within an SQLite database, enabling expeditious real-time 
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queries. Moreover, the modular design readily accommodates 
diverse experimental requirements, while the seamless transition 
between automated screening and Stern - Volmer analysis modes 
further augments the system's versatility. Compared with 
conventional experimental approaches, this method not only enables 
rapid screening of a multitude of photocatalysts, thereby 
abbreviating optimization timelines and enhancing reaction yields 
but also permits more in-depth mechanistic investigations. However, 
considering the stringent conditions required for air-sensitive 
photocatalysts, further optimization of the platform's sealing 
mechanisms and inert atmosphere control is warranted. 

Subsequently, Noël et al. created RoboChem - an automated 
robotic platform combining robotics, ML, and Bayesian 
optimization for photocatalytic reaction optimization [41]. The 
three-module system (control, planning, interface) initiates with 
user-defined reaction parameters through its GUI. Bayesian 
optimization algorithms guide experimental condition refinement, 
while inline NMR spectroscopy provides real-time analytical 
feedback (Figure 4) [41. This closed-loop system iteratively adjusts 
reaction parameters until achieving optimal conditions, 
demonstrating efficacy across hydrogen atom transfer and photo-
redox catalysis applications. The platform reduces expert 
dependency by automating workflow execution and leveraging ML-
driven parameter relationships. While the current system performs 
well for most applications, substrates with particularly demanding 
reactivity control requirements present an opportunity for further 
refinement. Future iterations may benefit from incorporating 
expanded reactor configurations and advanced ML approaches to 
enhance optimization precision. 

2.3  Dr. Timothy Noël's group (University of Amsterdam) 

Jensen et al. developed a reconfigurable continuous flow platform to 
address experimental inefficiencies in conventional chemistry 
laboratories 15. The platform integrates modular fluidics and 

Integrated process analytical technology (PAT) instruments (HPLC, 
IR, Raman, MS) for autonomous optimization. Standardized reagent 
selection initiates molecular transformations, while a fluidic system 
delivers reactants to modular reactors. Real-time PAT data feeds 
SNOBFIT 42, a BO algorithm that iteratively refines parameters to 
convergence. This architecture facilitates automated optimization 
across a range of reaction types, from single-step transformations to 
multi-step sequences including C-C/N coupling and photocatalytic 
reactions. The unified graphical interface enables remote monitoring 
capabilities and supports machine-readable protocol exports. While 
the system has shown promising results in optimization accuracy and 
reproducibility, certain complex reaction systems involving 
specialized substrates may benefit from tailored hardware 
configurations to achieve optimal performance. 

Building on this foundation, Jensen et al. developed a mixed-
integer nonlinear programming (MINLP) method for simultaneous 
optimization of discrete and continuous variables in microfluidic 
reactions 43 Compared to conventional algorithms, MINLP 
achieved 37% faster convergence in Suzuki-Miyaura coupling 
optimizations (60 experiments vs. 95 previously). However, 
prediction inaccuracies persist for complex reactions with 
experimental noise sensitivity.  

Furthermore, Jensen et al. created a BO-driven platform for 
multi-step synthesis route development 44. The workflow begins 
with computer-generated synthetic route validation using computer-
aided synthesis planning (CASP) tools 45, 46, followed by BO-
directed experimental campaigns with real-time FT-IR/LC-MS 
monitoring. This approach enabled high-yield optimizations through 
automated parameter adjustments and reactor reconfigurations 
(Figure 5) 44. While effectively reducing manual workloads, the 
system requires expert intervention for chemical compatibility 
challenges in complex sequences. For example, in the sonidegib 
synthesis case study, catalyst deactivation caused by byproducts 
from upstream reactions necessitated intermediate purification and 
reconfiguration of the reaction order, highlighting the ongoing need 
for human expertise in handling such issues.

Figure 5. Comprehensive strategy for machine-assisted synthesis planning and process development (encompassing Synthesis 
Planning, Bayesian Optimization, and Process Development). 
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2.4 Dr. Milad Abolhasani's group (North Carolina State 
University) 

Abolhasani et al. developed QDExer - a modular microfluidic 
platform for studying perovskite quantum dot (PQD) anion-
exchange kinetics [16]. The system integrates Cetoni neMESYS 
syringe pumps with hydrodynamic focusing micromixers and a 76-
port serpentine reaction channel, enabling precise temporal 
resolution (500 ms - 90 s) through radially distributed sampling. The 
integration of optical sensors and spectrometers enables real-time 
reaction monitoring, offering enhanced control and reproducibility 
relative to conventional batch synthesis methods. While the platform 
exhibits notable batch-to-batch reproducibility; however, its 
commercial feasibility for optoelectronic applications necessitates 
rigorous validation of scalable manufacturability and economic 
viability. Critical challenges encompass preserving performance 
homogeneity at industrial production scales through refined process 
parameter optimization, alongside guaranteeing long-term system 
stability and uninterrupted operational robustness for viable 
industrial implementation. 

Building on QDExer, the team created an Artificial Chemist 
system combining neural networks and BO for autonomous PQD 
synthesis [47]. This self-learning platform optimized 11 quantum dot 
compositions within 30 hours using <210 mL reagents through real-
time spectral analysis and parameter space exploration. The 
researchers further advanced this framework with an AI-guided 
system for lead halide perovskite (LHP) quantum dot synthesis [48]. 
Three key modules operate synergistically: 1) precision precursor 
formulation (10 reagent streams), 2) temperature-controlled 
microfluidic reactors, and 3) in-line optical monitoring. The system 
employs AI algorithms to autonomously explore over 20 million 

parameter combinations, while a three-phase flow process enables 
continuous bandgap tuning while eliminating intermediate washing 
steps. This approach has demonstrated a 90% reduction in material 
consumption, though broader laboratory adoption may benefit from 
further optimization of implementation costs. Future development 
efforts could prioritize cost efficiency and enhanced compatibility 
with downstream manufacturing workflows. 

 The culmination of these advances produced AlphaFlow - an 
RL-driven robotic microfluidic laboratory [49]. Four functional 
modules process microdroplets through formulation, synthesis, 
spectral monitoring, and phase separation (Figure 6) [49]. RL serves 
as the core decision-making framework, enabling the system to 
autonomously explore high-dimensional parameter spaces through 
iterative trial-and-error interactions with the chemical environment. 
By continuously balancing exploration of new reaction pathways 
and exploitation of known optimal conditions, RL maximizes long-
term cumulative rewards across multi-step synthesis processes. This 
closed-loop system reduces reagent consumption by 65% while 
maintaining 98% process reproducibility. 

 Lately, the team engineered Fast-Cat for autonomous 
optimization of homogeneous catalysis [50]. The four-stage platform 
(preparation-initiation-operation-Pareto screening) combines deep 
neural networks (DNN) with BO to balance yield and selectivity. In 
1-octene hydroformylation tests, Fast-Cat identified optimal ligand
performance frontiers using 2 mmol ligands within one week - 90%
faster than conventional methods. To ensure long-term reliability and
scalability, the team undertook comprehensive hardware validation
and benchmarking. They compared the performance of Fast-Cat
with that of traditional batch reactors and meticulously fine-tuned
the ML algorithms to produce high-quality experimental data.

Figure 6. Overview of two kinds of autonomous laboratories  a)autonomous robotic microfluidic laboratory called AlphaFlow; b)autonomous 
catalytic laboratory called Fast-Cat [49].

2.5 Dr. Leroy Cronin's group (University of Glasgow) 

Cronin et al. developed the Chemputer - a universal automated 
synthesis platform addressing limitations in small-molecule 

production [17]. The modular system integrates plug-and-play 
components through standardized interfaces, enabling autonomous 
synthesis across multiple reaction classes including iterative cross-
coupling and solid-phase peptide synthesis. Its workflow progresses 
through four phases: 1) automated data collection, 2) statistical  
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Figure 7. The basic workflow of the Chemputer; b) The hardware 
setup of the Chemputer; c) The evolution of chemical programming 
in the Chemputer.  

preprocessing, 3) k-fold validated modeling, and 4) algorithmic 
decision-making (Figure 7a) [17]. This architecture enhances 
synthetic efficiency by 40% compared to manual methods while 
maintaining 95% operational reliability. Despite demonstrating 
multi-molecule synthesis capabilities, high implementation costs 
and technical complexity hinder cross-disciplinary adoption. 

To enhance reaction optimization, the team integrated online 
NMR spectroscopy for real-time Grignard reaction monitoring [51], 
employing indirect hard modeling (IHM) [52] and ML to resolve 
spectral interference in particulate systems (85% parameter 
accuracy). Subsequent development of χDL - a chemical-specific 
programming language—enabled cross-platform synthesis 
standardization [53], validated across four laboratories for reductive 
amination, esterification, and amide coupling. Modular Schlenk line 
integration expanded air-sensitive reaction capabilities via tube-in-
tube gas-liquid interfaces [54-56], albeit with increased maintenance 
complexity. Further analytical integration (UV/Vis-NMR) [57] 
extended mechanistic studies within the Chemputer framework. 

Further enhancements to χDL introduced parallel execution and 
logical operation queues, improving experimental throughput by 
300 % [58]. The enhanced system demonstrated successful synthesis 
of chiral diarylprolinol catalysts, achieving 85% recovery efficiency 
via automated recycling protocolsThe upgraded system synthesized 
chiral diarylprolinol catalysts with 85% recovery efficiency through 
automated reuse protocols (Figures 7b,c) [58]. While these results 
are promising, further development could focus on incorporating 
dynamic microenvironment simulation capabilities and real-time 
feedback mechanisms to better approximate biological system 
conditions. 

2.6 Dr. Andrew I Cooper's group (University of Liverpool) 

Cooper et al. developed a mobile robotic chemistry platform using 
BO to autonomously explore 10-dimensional parameter spaces, 
achieving six-fold higher photocatalytic hydrogen evolution activity 
than conventional systems [18]. The integrated system combines 
solid-phase dispensing, photolytic reactors, and gas chromatography 
(GC) with laser-triangulated spatial positioning and haptic feedback 
manipulators. This automated configuration achieves experimental 

Figure 8. The Chemspeed ISynth workflow (NMR/MS test results: green for pass; orange for fail) [61]. Copyright 2024 Nature under Creative 
Commons CC-BY license, http://creativecommons.org/licenses/by/4.0/. 
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throughput approximately 1000 times faster than manual approaches 
while minimizing subjective human bias. The modular design 
supports diverse applications from biohazard screening to auditable 
synthesis processes, while demonstrating remarkable/extensive 
scalability. Future improvements may include developing 
chemically informed priors for the BO algorithm and streamlining 
the GC analysis to maximize the platform's acceleration capabilities. 

To enhance platform flexibility, the team created ARChemist - 
a robotic integration framework using domain-specific language for 
experimental protocols [59]. Subsequent implementation of a fully 
automated solid-state chemistry workflow achieved autonomous 
powder X-ray diffraction (PXRD) characterization through 
coordinated robotics [60]. The system integrates three specialized 
units that collectively perform: 1) liquid handling for crystallization 
phases, 2) automated sample transport and analysis, and 3) specimen 
preparation, achieving 98% data consistency across characterization 
cycles. While continuous operation has shown productivity 
improvements of approximately 80%, further enhancing subsystem 
reliability could help maximize operational uptime. 

Addressing previous systems' decision-making limitations, 
Cooper et al. engineered the Chemspeed ISynth platform for end-to-
end automated synthesis [61]. Modular units enable complex 
multistep reactions with mobile robots (± 0.12 mm positioning 
accuracy) transferring samples to analytical instruments (Figure 8) 
[61]. Wireless data transmission to a central database supports real-
time decision-making, achieving 99% process automation and 95% 
data fidelity. The platform’s modularity is enhanced by standardized 
communication protocols and customizable Python scripts, allowing 
adaptation to diverse workflows without hardware overhauls. A 
robust data management strategy systematically stores raw 
analytical data and decision logs, streamlining troubleshooting and 
future upgrades. While dramatically speeding discovery workflows, 
the system strategically preserves human involvement for 
supramolecular characterization tasks and performance tuning, areas 
where future automation could provide additional benefits. 2.7 Dr. 

Jason Hattrick-Simpers's group (Autonomous Discovery of Alloys) 
Hattrick-Simpers et al. developed CAMEO - a Bayesian 

optimization-driven autonomous system for accelerated materials 
discovery [19]. The closed-loop platform integrates three core 
components: 1) physics-informed machine learning for structure-
property analysis, 2) active learning for optimal experiment selection, 
and 3) synchrotron-integrated high-throughput X-ray diffraction 
(XRD) characterization (Figure 9) [19]. This framework achieves 85% 
phase diagram mapping accuracy through iterative human-AI 
collaboration, reducing discovery timelines by 70% compared to 
conventional methods. While demonstrating improved 
interpretability via expert knowledge integration, the system's 
autonomy decreases by 40% when requiring manual validation. To 
advance the field, expanding materials databases and enhancing the 
integration of machine learning with fundamental physical 
principles could significantly improve the predictive accuracy and 
performance optimization of multicomponent systems.  Given the 
requirement for long-term stable operation during iterative 
experimentation, additional refinements in system architecture and 
hardware robustness will be essential to ensure sustained reliability 
and experimental reproducibility. 

This team also developed a high-throughput scanning droplet 
cell platform [62]. The platform combines scanning droplet cells 
with GP modeling to optimize coating performance through 200-
cycle experiments. This Bayesian active learning system represents 
a significant advance in efficient parameter exploration, delivering 
90% information gain across competing optimization targets. The 
methodology establishes a strong basis for future development, 
where enhanced incorporation of physical principles may both 
deepen mechanistic understanding and optimize the training dataset 
size needed for reliable generalization. However, the non-modular 
architecture of the platform presents significant challenges for 
functional scalability and system extensibility. 

Figure 9. The scientific research process from experiment execution to data analysis, and then to active learning and decision-making based 
on physics with CAMEO [19]. Copyright 2020 Nature Communications under Creative Commons CC-BY license, 
http://creativecommons.org/licenses/by/4.0/. 
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2.8 Dr. Yi Luo's group (University of Science and Technology of 
China) 

While existing AI systems and robots exhibit specialized chemical 
capabilities, holistic scientific research remains challenging. Luo et 
al. introduced the AI-Chemist [20], an autonomous system capable 
of executing core chemical research tasks. The system integrates a 
service platform, mobile robots, intelligent workstations, and 
a computational core to establish an autonomous theory-experiment-
optimization loop. Multimodal knowledge extraction (ML/cloud 
database access/hypothesis generation) drives automated protocol 
generation, executes experimental protocols through robotic 
synthesis and high-throughput testing, and iteratively refines 

hypotheses via BO and ML-driven simulations, enabling 
autonomous self-optimization in chemical discovery (Figure 10) 
[20]. Validation studies demonstrated its ability to identify optimal 
concentrations of biocompatible aggregation-induced emission 
(AIE) molecules [63-65], optimize hydrogen doping ratios for metal 
oxide photocatalysts, and discover high-performance non-precious 
metal oxygen evolution reaction (OER) electrocatalysts [66-69]. 
These achievements highlight its potential for accelerating scientific 
discovery. This AI-driven platform demonstrates significant 
potential for chemical discovery. Future development requires 
workstation scalability enhancements, computational architecture 
upgrades, and deeper domain knowledge integration to address 
evolving research challenges. 

Figure 10. The workflow of AI-Chemist and related laboratory equipment. From the formulation of a scientific question to its processing by a 
service platform, followed by the execution of experimental operations by a mobile robot, and finally the analysis and theoretical simulation 
of data by a computational brain [20].

Figure 11. The interaction between Chemist User and LLM Agents is achieved through the Web interface [73]. 

The AI-Chemist's capabilities extend beyond these demonstrations. 
Luo et al. deployed AI-Chemist to autonomously synthesize OER 
catalysts from Martian meteorite analogs [70]. Integrating ML with 
first-principles calculations and experimental validation, the system 

efficiently identified optimal catalyst compositions from over 3×106 
candidates. Compared to traditional trial-and-error methods, AI-
Chemist accelerated the discovery process by several orders of 
magnitude, reducing the time and resources required for 
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optimization. The fully autonomous workflow spanned meteorite 
processing,  catalyst synthesis,  characterization,  and performance 
testing, demonstrating high throughput with intelligent automation. 
However, additional validation under combined Martian stressors 
remains essential for practical implementation. 

The AI-Chemist was further applied to accelerate the discovery 
of high-entropy alloy (HEA) nanozymes through integrated 
computational-experimental workflows [71]. By integrating BO 
with GPT-4 [72], the research team successfully identified high-
entropy-alloy nanozymes with significantly enhanced catalytic 
efficiency in just 12 optimization steps. These nanozymes achieved 
a catalytic efficiency (Vmax/KM) of 2.97 × 10-3 s-1, which is one 
order of magnitude higher than that of the natural enzyme 
horseradish peroxidase (HRP) with a catalytic efficiency of 2.9 × 10-

4 s-1. Additionally, the research team introduced redundant designs in 
key components and modules, effectively enhancing the reliability 
of the system. The remarkable compositional diversity of HEAs and 
their complex catalytic mechanisms present exciting opportunities 
for further refinement of theoretical models. 

2.9 Dr. Yiming Mo's group (Zhejiang University) 
Mo et al. developed a framework termed AROPS for chemical 
reaction optimization, enabling parallelized experimental task 
allocation across multiple reactors/analyzers [21]. Users define 
reaction condition design spaces and prepare reagents. The system 
initializes via Latin hypercube sampling. The optimization cycle 
includes reaction execution, HPLC analysis, GP model updating, and 
experiment pruning based on probability of improvement (PI) 
criteria. Parallel scheduling proposes new candidates filtered by 
Euclidean distance and PI scores, iterating until the PI stopping 
criteria are met to yield optimized conditions. The integration of BO 
with adaptive parallel scheduling achieves high equipment 
utilization efficiency. While the current PI mechanism performs well 
for continuous and mixed-variable spaces, its effectiveness for 
purely categorical design spaces could be further enhanced by 
improving GP model accuracy. Future work to develop advanced 
molecular descriptors or alternative modeling frameworks may help 
extend the system’s predictive capabilities to broader variable types.

Figure 12. Synbot structure and working principle (including AI S/W layer, Robot S/W layer, and Robot layer) [22]. Copyright 2023 Science 
under Creative Commons CC-BY license, http://creativecommons.org/licenses/by/4.0/. 
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Building on AI advancements, Mo et al. further developed LLM-
RDF [73], an automated chemical synthesis platform leveraging 
LLMs. Built on GPT-4 [72], LLM-RDF integrates six specialized 
agents: Literature Scouter, Experiment Designer, Hardware Executor, 
Spectrum Analyzer, Separation Instructor, and Result Interpreter, 
to orchestrate end-to-end synthesis workflows from literature search 
to product purification (Figure 11) [73]. This design lowers the 
barrier to automation applications by eliminating conventional 
programming requirements. For instance, in the optimization of 
aerobic alcohol oxidation conditions, LLM-RDF achieved a product 
yield of 94.5%, significantly higher than the approximately 70% 
yield obtained through traditional methods. Additionally, the 
platform reduced the number of experiments required for 
optimization from over 50 to just 26, thereby accelerating the 
reaction optimization process. However, its reliance on proprietary 
large language models (LLMs) raises concerns regarding 
reproducibility, transparency, and data security. 

2.10 Dr. Youn-Suk Choi's group (Samsung Advanced Institute of 
Technology) 

Research on conventional functional organic materials has long 
relied on laborious and inefficient empirical approaches. To address 
this limitation, Choi et al. developed "Synbot" - an intelligent robotic 
platform for comprehensive organic synthesis automation [22]. This 
system adopts a tripartite architecture consisting of cognitive 
computing modules, robotic control systems, and automated 
instrumentation, enabling seamless integration of synthetic route 
design and experimental implementation (Figure 12) [71]. The 
modular architecture of the Synbot system markedly enhances its 
scalability, while automated operations effectively minimize human 
error. Moreover, the precise control of reaction conditions 
significantly improves reaction yields. For instance, in the case of 
Suzuki coupling reactions (M1), the Synbot achieved a conversion 
yield of 100% in its first trial within a search space of 2722 cases, 
which is notably higher than the reference yield of 86.5% reported 
in the literature. For Buchwald amination reactions (M2), the Synbot 
achieved a 100% conversion yield in the 36th and 37th trials, 
compared to the reference yield of only 15.0% reported in the 
literature. Similarly, for the synthesis of another Buchwald 
amination reaction (M3), the Synbot achieved a target conversion 
yield of 80% in the 42nd trial, which is a substantial improvement 
over the reference yield of 50.9% reported in the literature. These 
results collectively demonstrate that the Synbot system is capable of 
achieving significantly higher yields and substantially reduced 
reaction optimization times compared to traditional methods. 
However, despite its modular architecture, the hardware cost 
remains a significant factor when scaling up, and the system’s 
substantial footprint (9.35 m × 6.65 m) poses challenges for its 
application in many standard laboratories. 

2.11 Dr. Dominik Dworschak's group (Helmholtz Institute 
Erlangen-Nuremberg) 

To address nonstandard data management and restricted sharing in 
materials research, Dworschak et al. developed an integrated data 
management system utilizing structured query language (SQL) 
databases [23]. This system implements comprehensive lifecycle 
management of experimental data, encompassing acquisition, 
analytical processing, visualization, and dissemination, thereby 

significantly advancing research reproducibility and efficiency. In 
electrochemical synthesis processes, systematic optimization of 
current density increased product yield from 70% to 90%. Similarly, 
in electrodeposition studies, the system identified optimal 
parameters within merely three days, substantially reducing 
experimental duration. To ensure long-term reliability, the system 
employs a robust backup strategy with daily full backups and regular 
incremental backups stored across multiple geographic locations. It 
also features a modular design that allows for easy addition of new 
functionalities. Ongoing work aims to develop more researcher-
friendly implementations that maintain these advantages while 
broadening accessibility.  

Figure 13. Composition of the automated platform (comprising the 
automated synthetic platform and electrochemical setup) [74].  

Dworschak et al. also established an automated electrochemical 
synthesis-analytics platform through the integration of custom-built 
electrochemical instrumentation with robotic synthesis systems, 
achieving cost-effective autonomous experimentation [74]. The 
modular, expandable discovery and understanding synthesis 
apparatus “MEDUSA” executes precise stoichiometric mixing of 
metal-ligand solutions before transferring aliquots to parallel 
electrochemical cells. Electrochemical characterization employs an 
open-source workstation implementing cyclic voltammetry (CV) 
and differential pulse voltammetry (DPV) protocols. Experimental 
data streams are processed in real-time through ChemOS 2.0 [35], 
with synchronized storage in a structured database (Figure 13) [74]. 
The system implements quality control through reference electrode 
calibrations and makes autonomous experimental decisions to 
ensure operational continuity. Using this framework, the researchers 
successfully compiled a repository comprising 400 
chronoamperometric datasets from 100 unique metal-ligand 
complexes derived from 10 metal ions and 10 ligands. With its 
modular, scalable architecture and cost-efficient design, the platform 
provides valuable flexibility for diverse electrochemical 
investigations. Present implementations show particular strength in 
aqueous systems, while ongoing refinements aim to expand 
compatibility with organic electrolytes and simplify the user 
experience for researchers across disciplines.  

2.12 Dr. Kuangbiao Liao's group (Guangzhou Laboratory) 

Addressing the limitations of current models in molecular structure-
aware generative tasks, Liao et al. engineered SynAsk: a multimodal 
language processing platform with domain-specific capabilities for 
organic synthesis planning and analysis [24]. The workflow initiates 
with multimodal input processing, accepting vocal commands or 
textual descriptions. Inputs are parsed and decomposed into 
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Controller
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p Echem Cells
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automated synthetic 
platform:MEDUSA
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p Reactor
p Pump

electrochemical setup



Zhenyu Jiang et al./ Commun. Comput. Chem., (2025), pp. 226-242 237 

executable subtasks using a transformer-based architecture. The 
LangChain framework [75] integrates cheminformatics tools for 
molecular retrieval, reaction prediction, retrosynthesis, literature 
extraction, and advanced modules (YieldPredict and Retrosynthesis). 
For example, during yield prediction, the LLM extracts substrate 
details from prompts to classify reaction types, and YieldPredict 
employs ML models/reaction templates to evaluate yield feasibility, 
returning optimized conditions. Retrosynthesis recursively designs 
synthetic routes from target molecules to purchasable precursors, 
outputting pathways in text/image formats (Figure 14) [24]. the 
architecture combines LLM fine-tuning with external tool 
orchestration, effectively enhancing domain-specific capabilities 
and practical utility. While opportunities remain for improvement—
such as optimizing yields for intricate transformations, and reducing 
retrosynthesis computation times—this platform marks meaningful 
progress in automating chemical research workflows. 

3. Concluding remarks and future outlook

The advent of autonomous laboratories is driving a profound 
transformation in chemical synthesis. We present an overview of 
recent advancements in autonomous laboratory systems from 
leading global research groups, focusing on their applications in 
synthetic chemistry (Table 1).  

BO algorithms are particularly well-suited for complex 
chemical optimization tasks [9,76], such as material discovery and 
drug development, owing to their ability to handle uncertainty, noise, 
and high-dimensional search spaces. RL algorithms, in contrast, 
demonstrate superior performance in multi-step decision-making 
processes [10,77,78], enabling efficient reaction path planning and 
optimization in applications such as quantum dot synthesis and 
heterogeneous catalyst screening. Meanwhile, neural networks and 
DNN leverage their robust pattern recognition capabilities to analyze 
multivariate experimental data and predict intricate structure-
property relationships. The modularity and computational efficiency 
of these algorithms further determine their adaptability: highly 
modular systems facilitate flexible integration across diverse 
experimental workflows, while computationally efficient 
implementations enable rapid exploration of complex chemical 
spaces, significantly accelerating the discovery of novel materials 
and synthetic pathways. Thus, the judicious selection of algorithms 
based on specific chemical requirements is critical for optimizing the 
performance and scalability of autonomous laboratory systems.  

Early systems reduced repetitive task burdens through 
rudimentary mechanical systems and early automation, yet retained 
significant human oversight and high operational costs. Recent 
progress in AI algorithms and ML has enabled autonomous 
laboratories to achieve unprecedented predictive accuracy in 
controlling complex reaction processes through the integration of 
computational models, algorithms, and large-scale data analytics. 
This synergy enhances synthetic efficiency while minimizing 
human-induced errors, elevating chemical research to new levels of 
sophistication. 

As autonomous laboratories evolve, modular design and 
flexible system architectures are becoming critical directions for 
advancing their capabilities. Modular experimental platforms enable 
scientists to configure and integrate functional units (such as 
synthesis modules, analytical instruments, and robotic systems) 

tailored to experimental requirements. For instance, mobile robotic 
systems integrated with existing laboratory equipment facilitate 
efficient workflows without incurring the high customization costs 
associated with traditional automated laboratories [79]. This 
modular approach reduces costs while enhancing operational 
flexibility and scalability, allowing laboratories to address diverse 
chemical synthesis challenges. 

Furthermore, the integration of closed-loop feedback 
mechanisms with ML algorithms is progressively becoming a 
standard feature in autonomous laboratories [80]. Through closed-
loop systems, experimental protocols can be dynamically optimized 
in real time using continuous data streams, significantly enhancing 
synthesis efficiency and product quality. This mechanism relies on 
ML algorithms with real-time analytical and decision-making 
capabilities, enabling dynamic adjustments to experimental 
parameters based on live data, thereby improving efficiency and 
success rates. Concurrently, advancements in explainable AI (XAI) 
[81,82], are enabling researchers to better interpret autonomous 
systems' decision-making processes, shifting their roles from routine 
experimentation to supervising outcomes and deriving scientific 
insights. 

Despite their transformative potential for addressing critical 
challenges across energy, medicine, and materials science, 
autonomous laboratories still face significant hurdles that hinder 
their widespread adoption. Key challenges include interoperability 
bottlenecks among heterogeneous hardware and software systems, 
disrupting seamless workflow integration; the inherent "black box" 
nature of advanced ML models, which complicates reproducibility 
and erodes trust in automated decision-making; and prohibitive 
initial costs coupled with specialized maintenance demands, which 
disproportionately limit accessibility for smaller research 
institutions. To overcome these barriers, strategic interventions are 
required. First, the development and adoption of universal 
communication protocols (such as SiLA2 [26] or AnIML [83]) could 
standardize cross-platform compatibility, thereby streamlining 
interoperability. Second, hybrid human-AI validation systems, in 
which critical synthetic steps undergo dual verification, could 
enhance reliability while preserving the efficiency gains of 
automation. Third, decentralized resource-sharing models, such as 
cloud-based simulation platforms and shared equipment hubs, could 
democratize access by reducing capital expenditures and operational 
costs. Concurrently, fostering interdisciplinary training programs 
and promoting open-source platforms aligned with FAIR [84,85], 

(Findable, Accessible, Interoperable, Reusable) data principles are 
critical to ensuring transparency, scalability, and the equitable 
advancement of autonomous laboratory technologies. Addressing 
these challenges through collaborative, community-driven efforts 
will not only refine system architectures and cost-effectiveness but 
also establish ethical frameworks for data management, thereby 
ultimately accelerating the integration of autonomous systems into 
mainstream scientific research In summary, autonomous laboratories 
represent a transformative shift in chemical synthesis, offering 
unprecedented opportunities while requiring careful addressing of 
technical and ethical challenges. As these systems mature, they will 
become foundational to scientific discovery, driving innovation 
across disciplines. 
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Figure 14. An example of the YieldPredict tool workflow for predicting the reaction yield of triethoxy(naphthalen-1-yl)silane and 5-
bromobenzothiazole [24]. Copyright 2025 Chemical Science under Creative Commons CC-BY license, 
https://creativecommons.org/licenses/by/3.0/. 
Table 1. Performance comparison of autonomous laboratories developed by different research teams. 

Research institution Main achievements Model Degree of 
modularity 

Operating 
efficiency 

Adaptability to chemical 
scenarios 

University of Toronto 

ChemOS [13,25] BO High High 

Material discovery, drug 
development 

Ada [34] BO Medium High 
ChemOS2.0 [35] BO High High 

CLT [38]  BO Medium Medium 
Cloud-based experimental planning 

platform [39] GNN, GP High High 

University of Amsterdam 
Automated continuous-flow 

platform [14]  - Medium High Photocatalytic reaction 
RoboChem [41] BO Medium High 

Massachusetts Institute of 
Technology 

Reconfigurable continuous flow 
platform [15]  - Medium High 

Flow chemistry MINLP [43] - High High 
BO-driven platform [44]  BO High High 

North Carolina State University 

QDExer [16] - Medium Medium 
Quantum dot synthesis, 

catalysis 
Artificial Chemist system [17]  NN, BO High High 

AlphaFlow [49] RL High High 
Fast-Cat [50] DNN, BO High High 

University of Glasgow Chemputer [58] - High Medium Organic synthesis 

University of Liverpool 

Mobile robotic chemistry platform 
[18] BO High High Material discovery, 

catalysis ARChemist [59] BO High High 
Chemspeed ISynth platform [61] - High High 

Autonomous Discovery of 
Alloys 

CAMEO [19]  BO Medium Medium Alloy development, 
electrochemistry High-throughput scanning droplet 

cell platform [62]  GP Medium Medium 

University of Science and 
Technology of China AI-Chemist [20] NN, BO, 

GPT-4 High High Multidisciplinary 
chemical research 

Zhejiang University 
AROPS framework [21]  GP High High 

Organic synthesis LLM-RDF [73] GPT-4 High High 

Samsung Advanced Institute of 
Technology Synbot [22] - High High Organic synthesis 

Helmholtz Institute Erlangen-
Nuremberg 

Integrated data management 
system [23] - High High 

Electrochemistry Automated electrochemical 
synthesis-analytics platform [74] BO Medium Medium 

Guangzhou Laboratory SynAsk [24] LLM High High Organic synthesis 
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Appendix 

Full name Abbreviation 
artificial intelligence AI 

Bayesian optimization BO 
Reinforcement learning RL 

machine learning ML 

hole-transporting materials HTMs 

closed-loop transfer CLT 

organic solid-state lasers OSL 

graph neural networks GNN 

graphical user interface GUI 

process analytical technology PAT 

mixed-integer nonlinear programming MINLP 

computer-aided synthesis planning CASP 

perovskite quantum dot PQD 

lead halide perovskite LHP 
deep neural networks DNN 

indirect hard modeling IHM 

variable time normalization analysis VTNA 

gas chromatography GC 

powder X-ray diffraction PXRD 

high-throughput virtual screening HTVS 
X-ray diffraction XRD 

gaussian process GP 

oxygen evolution reaction OER 

aggregation-induced emission AIE 

high-entropy alloy HEA 
horseradish peroxidase HRP 

probability of improvement PI 

large language models LLMs 

structured query language SQL 

cyclic voltammetry CV 
differential pulse voltammetry DPV 

explainable artificial intelligence XAI 




