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Abstract: In this work, we perform all-atom and coarse-grained dynamics simulations to predict the mechanical properties of a 

typical synthetic protein system. Previous experiments showed that proteins with a larger molecular weight exhibit better 

mechanical performance. Our steered molecular dynamics (SMD) simulations at the all-atom level only capture intermolecular 

interactions and fail to reproduce this tendency. The results of the dissipative particle dynamics (DPD) simulations at the coarse-

grained level are consistent with experiments. The comparison between two levels of resolution highlights the importance of 

simulation scales in predicting mechanical properties of complex systems. We also reveal some underlying factors correlated with 

the mechanical properties of synthetic proteins, such as molecular weights, fabrication processes, the ratio of hydrophobic to 

hydrophilic segments and their order in the amino acid sequences.   
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One of the central tasks of computational chemistry is predicting 
physical and chemical properties. Since many chemical processes 
occur in a broad range of spatial and time scales, the level of 
resolution for simulations is crucial for computational models [1-5]. 
On one hand, predictions on optoelectronic properties of materials 
require explicit modelling of electronic degrees of freedom that are 
governed by quantum mechanics. On the other hand, thermodynamic 
properties such as the free energy changes during biological 
processes can be well predicted based on classical statistical 
mechanics via molecular dynamics (MD) simulations. How to 
improve the accuracy and efficiency of simulations with affordable 
computational resources has been a long-standing challenge. 
Compared with the all-atom computational model, the coarse-
grained model reduces particular degrees of freedom and 

significantly saves computational cost, usually at the expense of 
prediction accuracy. In practice, all-atom MD simulation results can 
be utilized as the reference to validate the thermodynamic properties 
predicted at the coarse-grained level.  

Aside from optoelectronic and thermodynamic properties, 
theoretical predictions on the mechanical properties of complex 
molecular systems are also an important task of computational 
chemistry, especially for the rational design of biomaterials. In 
recent years, various computational models at different levels of 
resolution have been developed and successfully applied to study the 
mechanical properties of proteins, microtubules and other types of 
polymers [6-10]. However, a comprehensive comparison of all-atom 
and coarse-grained simulation results has never been discussed in 
depth, at least to the best of our knowledge. In the present work, we 
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implemented molecular simulations for synthetic silk proteins to 
predict their mechanical properties at the all-atom and coarse-
grained levels. The difference between these two computational 
models was illustrated in Figure 1.  

Figure 1. Computational models: SMD at all-atom level (a), DPD at 
coarse-grained level (b), and an example of mapping between two 
levels (c). 

We employed recombinant chimeric proteins consisting of the squid 
ring teeth (SRT) and elastin-like polypeptide (ELP) sequences, 
which have been studied by Liu and coworkers in experiments [11-
13], as our test systems. The SRT acts as a hydrophobic segment with 
the sequence of PAATAVSHTTHHAP, while the ELP is a 
hydrophilic sequence as (VPGKG)5. These two segments repeat 
several times to construct silk proteins, such as (SRT-ELP)12, (SRT-
SRT-ELP)9, (SRT-ELP-ELP)7, (SRT-ELP)24 and (SRT-ELP)36. It was 
observed in experiments that the polymer of SRT-ELP with a larger 
molecular weight exhibits better mechanical performance, including 
a higher breaking stress and Young’s modulus [11]. The impact of 
fabrication processes such as the introduction of glutaraldehyde 
crosslinking or non-covalent counterion surfactants was also well 

investigated experimentally and theoretically [11,14], revealing 
details of intermolecular interactions. However, the theoretical 
prediction of the mechanical properties of such complex systems is 
still challenging. 

We first applied steered molecular dynamics (SMD) 
simulations to four systems: (SRT-ELP)12, (SRT-SRT-ELP)9, (SRT-
ELP-ELP)7 and (SRT-ELP)24 with sodium dodecyl 
benzenesulfonates (SDBSs) at the all-atom level. The results were 
depicted in Figure 2. The standard deviations were small relative to 
the corresponding average values, justifying the setup of SMD 
simulations. The breaking stresses predicted for 12mer and 24mer 
were 315 and 227 kJ/mol/nm, respectively. Notably, the breaking 
stress decreases with the growing molecular weight, which is 
opposite to experimental observations [11]. Then we compared the 
results of (SRT-SRT-ELP)9, (SRT-ELP-ELP)7 and (SRT-ELP)12 since 
their molecular weights are similar. The breaking stress was 
predicted as 344 and 278 kJ/mol/nm for (SRT-SRT-ELP)9 and (SRT-
ELP-ELP)7, respectively, exhibiting an increased order of breaking 
stresses as (SRT-ELP-ELP)7 < (SRT-ELP)12 < (SRT-SRT-ELP)9. It 
suggests that the SRT segment with β-sheet structures may enhance 
the tensile strength of proteins via hydrogen bonds and hydrophobic 
interactions with other chains, while the ELP segment may be more 
relevant to conformational variability. Taking account of the serious 
deviation from experiments, however, any conclusion based on the 
present all-atom MD simulations is questionable in the absence of 
independent theoretical verifications. 

The limitations of all-atom MD simulations, including 
molecular modelling, equilibrium sampling and umbrella pulling, 
may be responsible for the unsatisfactory results. First, the three-
dimensional protein structures should be predicted from the amino 
acid sequence at the beginning. Such a homology modelling process 
is a nontrivial issue for synthetic proteins. Second, different protein 
force fields probably generate different conformational ensembles 
[15,16], but the influence on mechanical proteins still lies in the lack 
of research. 

Figure 2. Stress curves as a function of SMD simulation time with breaking stresses of different systems: (SRT-ELP)12 (a), (SRT-SRT-ELP)9 
(b), (SRT-ELP-ELP)7 (c), and (SRT-ELP)24 (d). 
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Third, the non-covalent interactions between protein chains 
(possibly via SDBSs as counterion surfactants) dominate the slowest 
motion. It is difficult for a normal MD to explore the vast 
conformational space or achieve sufficient sampling. Finally, SMD 
simulations on only five protein chains cannot represent the 
mechanical characterization of fibers in experiments. Although the 
rapid development of the AlphaFold [17,18] and enhanced sampling 
techniques [19,20] has provided extensive solutions to the first three 
problems, the last limitation is mainly due to the intrinsic gap 
between dynamic simulations at the microscopic scale and 
mechanical properties measured at the macroscopic scale. How to 
bridge this gap is still an open question. 

We turned to dissipative particle dynamics (DPD) simulations 
that have been used for studying the mechanical properties of silk 
fibers by Buehler, Wong and their coworkers at a mesoscopic 
resolution [21]. Five systems were first studied: (SRT-ELP)12, (SRT-
SRT-ELP)9, (SRT-ELP-ELP)7, (SRT-ELP)24 and (SRT-ELP)36. 
Taking account of different characteristic scales in experiments and 
simulations, we focused on the relative order of predicted Young’s 
modulus rather than the absolute values. The results were 
summarized in Figure 3. First, the Young’s modulus is increased with 
molecular weight, which is in good agreement with experimental 
observations [11]. It suggests that the enlarged protein system can 
lead to the growth of intermolecular interactions. The atomic details 
have been observed in our all-atom MD trajectories, involving the 
electrostatic interactions between the phenylsulfonate of SDBS and 

the lysine in ELP, and the hydrophobic interactions between the 
long-chain alkane of SDBS and the proline in SRT. Second, we 
compared the results with and without the shearing process (as well 
as the following compressive stage) during DPD simulations. The 
predictions of the 12mer, 24mer and 36mer show that the degree of 
increase in Young’s modulus is more considerable after a shear flow. 
In contrast, a saturated Young’s modulus becomes evident from the 
24mer to the 36mer. It highlights the importance of fabrication that 
may modulate the network connectivity by shearing. Finally, the 
ranking order of mechanical properties: (SRT-ELP-ELP)7 < (SRT-
ELP)12 < (SRT-SRT-ELP)9 was observed again, supporting the 
aforementioned conclusion of SMD simulations on different roles of 
SRT and ELP segments in synthetic silk proteins. Although it is still 
difficult for all-atom SMD simulations to reproduce the trend of 
mechanical properties with the growing sizes of proteins, the relative 
ranking order of the predicted breaking stresses of different systems 
with similar molecular weights appears to be reliable. It is worth 
noting that Pérez and coworkers compared four atomistic force fields 
for mechanical properties of double-stranded DNA recently, and 
reconciled these differences via a single mapping between sequence-
dependent conformation and elasticity [22]. We thus inferred that 
improvement of all-atom force fields is probably not a priority for 
studying mechanical properties of proteins. Further work is required 
to validate this finding 

Figure 3. Young’s modulus of different systems obtained from DPD simulations: SRT-ELP polymers with shearing (a), SRT-ELP polymers 
without shearing (b), SRT-ELP polymers with different ratios of hydrophobic to hydrophilic segments (c), and different patterns of amino acid 
sequences (d). Note that the ranges of the vertical axes in different subfigures are different. 

The aforementioned results indicate that hydrophobic segments play 
a positive role, while hydrophilic segments play a negative role, in 
enhancing the mechanical properties of proteins. However, it was 
observed experimentally that charged amino acids in a silk protein 
(e.g., mussel foot protein) facilitates mechanical properties [23,24]. 
We built two systems comprising a long chain of B beads and a short 
chain of A beads: (B20-(BBBBAABBBAABBBB)2-B20)5 and (B20-

(BBBBAABBBAABBBB)2-B20)7, to study this issue. These two 
sequences share similar molecular weights of (SRT-ELP)24 and 
(SRT-ELP)36, respectively. We denoted them as polar_seq5 and 
polar_seq7. The DPD simulation results were shown in Figure 3d. 
The positive correlation between mechanical properties and 
molecular weights remains the same. The Young’s modulus of 
polar_seq5 and polar_seq7 were about 20% higher than those of 
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(SRT-ELP)24 and (SRT-ELP)36, respectively, suggesting a new 
pattern of amino acid sequence for de novo protein design. Our 
simulations at the coarse-grained level reveal that not only the ratio 
of hydrophobic to hydrophilic segments but also their order in the 
sequence influences the mechanical properties of silk proteins.  

Despite the better prediction performance of DPD simulations 
compared to SMD simulations, the resolution at the coarse-grained 
level still has inherent weaknesses, leaving much room for 
improvement. First, amino acid mutation is a powerful tool for 
designing mechanically biological structural proteins. However, one 
bead for DPD simulations represents nine water molecules and thus 
corresponds to three amino acid residues [25]. Such a low level of 
resolution makes the modelling of amino acid mutation impossible. 
It requires modifications on the coarse-grained model in which one 
residue should be mapped to at least one bead, but the 
reparameterization is always a laborious task under existing 
techniques. Second, our comparison between SMD and DPD lacks 
rigor without reconstruction of all-atom details from mesoscopic 
structures. Considering the huge size of simulation boxes (e.g., the 
36mer in the DPD model corresponds to 0.01 billion atoms), a 
common back-mapping reconstruction is too expensive. 
Combination with artificial intelligence models such as the 
AlphaFold provides an opportunity to deal with these systems. The 
existing experimental data about mechanical properties can be 
employed as an auxiliary label for fine-tuning, which may further 
enhance the performance of currently used artificial intelligence 
models for mechanical proteins. 

In summary, we have predicted the mechanical properties of the 
typical synthetic silk proteins using two simulation methods: SMD 
at the all-atom level and DPD at the coarse-grained level. 
Counterintuitively, the all-atom SMD cannot reproduce the 
experimental observations, while the results using the coarse-grained 
DPD are in good qualitative agreement with the experiments. It 
suggests that the scale of molecular dynamics simulation may play a 
more important role than the level of resolution in the theoretical 
prediction of mechanical properties, at least for the synthetic protein 
systems under study. 

Methodology 

Simulation Details of SMD. Take the (SRT-ELP)12 as an example. 
The well-established iterative threading assembly refinement (I-
TASSER) server [26-28] was employed to predict the three-
dimensional structure of the trimer since its crystal structure is 
unavailable. Based on this prediction, the structure of the 12mer can 
be obtained manually. In the first stage of simulations, water 
molecules were added to the simulation box, making sure that the 
minimum distance between the box boundary and protein atoms was 
set as the cutoff distance for nonbonded interactions. After energy 
minimization and pre-equilibrium MD simulations under the NVT 
and NPT ensembles lasting for 500 ps, respectively, we carried out 
50 ns NPT MD simulations at the room temperature and pressure to 
achieve sufficient sampling of 12mer. In the second stage, five 
snapshots of the 12mer protein were extracted and compacted to a 
larger simulation box. Since a pulling force would be applied to the 
12mer protein in the next stage and would lead to an expansion of 
the protein system, we increased the minimum distance between the 
box boundary and protein by two-thirds in this stage. Then 300 
sodium ions, 300 chloride ions, and 500 SDBSs were added to the 
box. Note that the systems consist of five 12mer chains as well as 
hundreds of counterion surfactants. Energy minimization, pre-

equilibrium NVT and NPT MD simulations, and long-time NPT MD 
simulations were subsequently carried out with the same procedure 
as that used in the first stage. In the final stage, we implemented 
SMD simulations under the NVT ensemble, in which one 12mer 
chain was pulled out of four others using a harmonic potential with 
the force constant of 100 kJ/mol/nm2. The pulling procedure was 
independently applied to each of the five chains 50 times to obtain 
stress curves as a function of simulation time as well as breaking 
stresses. The integration time step was set as 2 fs for all above 
simulations. The velocity rescaling thermostat [29] and Parrinello-
Rahman barostat [30] were used. The cutoff distance for nonbonded 
interactions was set as 12 Å, and the long-range electrostatic 
interactions were represented using the particle mesh Ewald (PME) 
approach [31]. The CHARMM36 force field, CGenFF and TIP3P 
model were applied to proteins, ions and SDBSs, and waters, 
respectively [32-34]. All simulations at the all-atom level were 
performed with the Gromacs software package [35].  

Simulation Details of DPD. Unlike many other coarse-grained 
protein force fields such as MARTINI, here only two types of beads 
are defined to represent the hydrophobic (denoted as A) and 
hydrophilic (denoted as B) domains of proteins. In addition, the W 
bead represents the coarse-grained level of resolution for 9 water 
molecules. In DPD simulations, the total force acting on bead I is a 
sum over all other beads J within a cutoff distance Rc, that is 

𝐹! = ∑ $𝐹!"# + 𝐹!"$ + 𝐹!"%&"&!  (1)  

where FC, FD and FR represent the conservative force, dissipative 
force and random force, respectively. The dissipative and random 
forces together form a thermostat at the room temperature. The 
conservative force depends on the intrinsic properties of simulated 
systems and consists of three terms in this study: repulsion 
interaction, hydrogen-bonding interaction, and bead-spring 
interaction along chains. More details of these forces and their 
parameterization can be seen from the original literature [21,25]. 

The related characteristic length scale (Rc) and time scale (τ) in 
DPD were 9.321 Å and 0.75 ns, respectively. As shown in Figure 1c, 
each SRT and ELP segment was mapped to 5 A beads and 8 B beads, 
respectively. The box sizes were 120Rc, 80Rc and 40Rc, in which a 
unit volume was filled with an average of three beads. The fraction 
of water was set as 10% according to experimental conditions. The 
time step of DPD simulations was set as 0.03τ. The pre-equilibrium 
simulation was first implemented for 630,000 time steps, followed 
by 420,000 steps to mimic the fiber-spinning process with the Lee-
Edwards boundary condition and a shear rate of 0.01τ-1 along the x 
axis (normal to the y axis). The compressive simulation with a 
negative strain rate of -5.0 x 10-6 τ-1 along the x axis was required to 
relax the system until the residual stress generated during the 
shearing process could be ignored. The tensile process was finally 
performed for 100,000 time steps with a strain rate of 7.5 x 10-6 τ-1 
along the x axis. The Young’s modulus (denoted as Ex) can be 
obtained from the linear region of the stress-strain curve as follows 

𝐸' =
𝜎' − 0.5$𝜎( + 𝜎)&

𝜀' (2) 

Here σk and εk denote the stress and strain along the k axis (k = x, y 
or z), respectively. All simulations at the coarse-grained level were 
implemented using the LAMMPS software package [36]. 
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