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Abstract: This study employed molecular dynamics (MD) simulations, utilizing both a machine learning force field (MACE-

OFF) and a traditional force field (PCFF), to predict the thermal properties of poly(hexamethylene terephthalamide-co-

isophthalamide) (PA6T/6I) copolymers. The simulations are benchmarked against experimental data to assess the predictive 

accuracy of these two methodologies for the thermal properties of PA6T/6I copolymers. Our findings reveal that the MACE-OFF 

force field, after calibration for the PA6T/6I copolymer, offers significant precision in modeling π-π and hydrogen-bonding 

interactions, closely mirroring the results from M06 functional simulations. The MD simulations underscore the MACE-OFF 

model's ability to deliver more stable thermal properties, including the glass transition temperature (Tg) and density, for copolymer 

systems with varying PA6T content, aligning well with experimental observations. Furthermore, a comprehensive analysis of 

dynamic properties, such as mean squared displacement and free volume, within the PA6T/6I copolymers was performed to 

decipher the mechanisms underlying the temperature-dependent changes in thermal properties observed throughout the simulation 

process. A thorough examination of the fluctuations in inter-chain and intra-chain hydrogen bonding within the copolymer systems 

has unveiled the correlation between the molecular packing arrangement and thermal properties. This research establishes that the 

MACE-OFF model accurately simulates the thermal dynamical behavior of PA6T/6I copolymers, a capability that could be 

extended to other polyamide systems. 
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1. Introduction

Simulating the thermal properties of polymers necessitates an 
understanding of their microstructures, which is challenging due to 
the intricate conformations of polymers and the time-consuming 
nature of such predictions. Hence, selecting an appropriate method 
for polymer dynamics simulations is crucial for accurately predicting 
polymer properties. Although ab initio molecular dynamics (AIMD) 
methods [1,2], which employ density functional theory (DFT) [3], 
offer highly accurate depictions of the electronic structure and enable 
precise capturing of intermolecular interactions, they are restricted 
to small systems with relatively short timescales and are 
computationally intensive. Consequently, their application to 
complex systems like polymers is problematic [4,5]. As a result, 
classical molecular dynamics (MD) simulations are frequently 
utilized for large-scale polymer computations.6 However, traditional 

MD simulations depend on empirically derived potential functions, 
which can compromise the accuracy of the simulations [7]. 
Therefore, there is a pressing need to develop efficient methods that 
balance precision and computational efficiency in polymer dynamics 
simulations. 

In recent years, the advent of machine learning techniques, 
particularly machine learning force fields (MLFF) [8-12], has 
presented a promising solution for the precise study of polymer MD. 
Machine learning potentials learn nonlinear functional relationships 
from extensive datasets of structural samples and their 
corresponding property outputs, akin to an effective set of quantum 
mechanical potential rules [13], thus circumventing the need to 
directly solve the complex and elusive physical relationships 
between sample structures and their properties. One of the early 
algorithms associated with machine learning is the feedforward 
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neural network [14]. However, this approach lacks a clear feature 
selection mechanism and is limited in its capacity to represent 
complex molecular structures and interactions. For instance, Teso-
Fz-Betoño et al. encountered issues such as vanishing gradients and 
contradictory gradient directions when training with feedforward 
networks [15]. The Behler-Parrinello neural network (BPNN) 
method [16] can handle the spatial positions of all atoms in a system, 
thereby predicting the total energy and forces. Vassilev-Galindo et al. 
applied the BPNN model to predict the thermal isomerization 
process of azobenzene and found that BPNN is overly reliant on 
local descriptors, which hinders its ability to effectively capture 
long-range interactions [17]. This limitation leads to suboptimal 
performance when dealing with larger or more complex flexible 
molecules [17]. The message passing neural network (MPNN) 
[18,19] is a neural network architecture designed for graph-
structured data, learning the representation of the graph through a 
message-passing mechanism between nodes and edges. Xue et al. 
combined MPNN with ReaxFF, using MPNN to compute bond order 
and bond energy, thereby enhancing the performance in calculating 
the potential energy surface, reaction energies, and equation of 
state.20 However, most MPNN-based interatomic potentials use 
message passing that only considers two-body interactions, which 
may pose challenges to the generalizability of the model [21]. 

Due to the issues mentioned above, finding a suitable model 
framework for MD simulations is particularly important. The MACE 
model [22], based on an equivariant graph neural network 
architecture, is characterized by its use of a high-order many-body 
message passing mechanism, which enables high-precision 
predictions with very few message passing iterations. Grunert et al. 
were able to accurately predict properties such as activation energy 
in MD processes and significantly improve accuracy through simple 
fine-tuning [23]. The model trained with MACE demonstrated high 
accuracy in bond dissociation predictions and exhibited strong 
extrapolation capabilities, enabling predictions for non-equilibrium 
structures [24]. In summary, the MACE model has demonstrated 
high accuracy and excellent extrapolation capability on several 
datasets [25,26], performing exceptionally well even under high-
temperature conditions [23]. 

Owing to these benefits, MACE has been extensively utilized 
in MD simulations, with our particular emphasis on its application 
within polymer systems. Poly(hexamethylene terephthalamide-co-
isophthalamide) (noted as PA6T/6I) is a semi-aromatic polyamide 
known for its combination of the superior processing flowability 
characteristic of aliphatic polyamides, along with low water 
absorption, exceptional heat resistance, and notably enhanced 
mechanical properties [27,28]. The processing of PA6T/6I enables 
the development of a range of high-performance plastics and fibers. 
Consequently, conducting MD simulations on PA6T/6I to explore its 
thermodynamic properties is of considerable importance. 

In this study, we compared the glass transition temperature (Tg) 
results obtained from simulations using the PCFF and the machine 
learning force field (MACE-OFF) against experimental values, 
thereby validating the precision of the MACE-OFF simulations. 
Moreover, we employed both methodologies to scrutinize the impact 
of varying PA6T contents and temperatures on the free volume, 
mean square displacement, and hydrogen bond numbers within the 
copolymer system. Ultimately, we delved into the correlation 
between the stacking pattern of the benzene rings and the number of 
hydrogen bonds. This research underscores the viability of 
employing MACE-based models in polymer dynamics simulations 

and illustrates that machine learning force fields can precisely 
elucidate the interplay between the structure and properties of 
materials. 

2. Simulation models and computational details

2.1   Machine learning force fields 

We utilized the MACE-OFF model, a short-range, transferable force 
field specifically designed for organic molecules and constructed on 
the foundation of the MACE model architecture [29]. This model is 
developed from first-principles reference data, which are generated 
using cutting-edge machine learning techniques [29]. It is 
parameterized for key chemical elements that are prevalent in 
organic chemistry, a feature that empowers the MACE-OFF model 
to precisely simulate neutral molecular systems, including drug 
molecules and biopolymers. MPNNs [30,31] represent a category of 
graph neural networks (GNNs) [32-35] that map a labeled graph to 
a target space, which can be either a graph or a vector space. The 
MPNN operates through a message passing mechanism between 
nodes, where, at each layer, a node's feature information is integrated 
with the features of its neighboring nodes. This process enables the 
model to learn a comprehensive representation of both the individual 
nodes and the graph as a whole. 

Figure 1. Workflow of the MACE model. 

The workflow of the MACE model is illustrated in Figure 1. MACE 
[22] is a machine learning architecture that takes the positions and
chemical elements of atoms as input and learns to predict the
potential energy of atomic systems. The total energy is decomposed
into atomic site energies, enabling linear scaling with system size:
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Each atom and its environment are represented as a graph, where 
nodes correspond to atoms, and edges are defined for neighboring 
atoms within a cutoff distance r&'! . The initial node features are 
learnable embeddings of the atomic numbers: 
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These features are updated through a message-passing process, 
which iteratively incorporates information from neighboring atoms 
and their geometric arrangement. At each layer t, atomic features are 
updated as: 
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where m4,)‾./
(!)  are messages constructed from equivariant many-

body features of the local environment. In the first layer (t = 0), only 
the first term is present. After two iterations (layers), the site energy 
of each atom is obtained via read-out functions applied to the 
updated features: 


