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Abstract: This study employed molecular dynamics (MD) simulations, utilizing both a machine learning force field (MACE-

OFF) and a traditional force field (PCFF), to predict the thermal properties of poly(hexamethylene terephthalamide-co-

isophthalamide) (PA6T/6I) copolymers. The simulations are benchmarked against experimental data to assess the predictive 

accuracy of these two methodologies for the thermal properties of PA6T/6I copolymers. Our findings reveal that the MACE-OFF 

force field, after calibration for the PA6T/6I copolymer, offers significant precision in modeling π-π and hydrogen-bonding 

interactions, closely mirroring the results from M06 functional simulations. The MD simulations underscore the MACE-OFF 

model's ability to deliver more stable thermal properties, including the glass transition temperature (Tg) and density, for copolymer 

systems with varying PA6T content, aligning well with experimental observations. Furthermore, a comprehensive analysis of 

dynamic properties, such as mean squared displacement and free volume, within the PA6T/6I copolymers was performed to 

decipher the mechanisms underlying the temperature-dependent changes in thermal properties observed throughout the simulation 

process. A thorough examination of the fluctuations in inter-chain and intra-chain hydrogen bonding within the copolymer systems 

has unveiled the correlation between the molecular packing arrangement and thermal properties. This research establishes that the 

MACE-OFF model accurately simulates the thermal dynamical behavior of PA6T/6I copolymers, a capability that could be 

extended to other polyamide systems. 
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1. Introduction

Simulating the thermal properties of polymers necessitates an 
understanding of their microstructures, which is challenging due to 
the intricate conformations of polymers and the time-consuming 
nature of such predictions. Hence, selecting an appropriate method 
for polymer dynamics simulations is crucial for accurately predicting 
polymer properties. Although ab initio molecular dynamics (AIMD) 
methods [1,2], which employ density functional theory (DFT) [3], 
offer highly accurate depictions of the electronic structure and enable 
precise capturing of intermolecular interactions, they are restricted 
to small systems with relatively short timescales and are 
computationally intensive. Consequently, their application to 
complex systems like polymers is problematic [4,5]. As a result, 
classical molecular dynamics (MD) simulations are frequently 
utilized for large-scale polymer computations.6 However, traditional 

MD simulations depend on empirically derived potential functions, 
which can compromise the accuracy of the simulations [7]. 
Therefore, there is a pressing need to develop efficient methods that 
balance precision and computational efficiency in polymer dynamics 
simulations. 

In recent years, the advent of machine learning techniques, 
particularly machine learning force fields (MLFF) [8-12], has 
presented a promising solution for the precise study of polymer MD. 
Machine learning potentials learn nonlinear functional relationships 
from extensive datasets of structural samples and their 
corresponding property outputs, akin to an effective set of quantum 
mechanical potential rules [13], thus circumventing the need to 
directly solve the complex and elusive physical relationships 
between sample structures and their properties. One of the early 
algorithms associated with machine learning is the feedforward 
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neural network [14]. However, this approach lacks a clear feature 
selection mechanism and is limited in its capacity to represent 
complex molecular structures and interactions. For instance, Teso-
Fz-Betoño et al. encountered issues such as vanishing gradients and 
contradictory gradient directions when training with feedforward 
networks [15]. The Behler-Parrinello neural network (BPNN) 
method [16] can handle the spatial positions of all atoms in a system, 
thereby predicting the total energy and forces. Vassilev-Galindo et al. 
applied the BPNN model to predict the thermal isomerization 
process of azobenzene and found that BPNN is overly reliant on 
local descriptors, which hinders its ability to effectively capture 
long-range interactions [17]. This limitation leads to suboptimal 
performance when dealing with larger or more complex flexible 
molecules [17]. The message passing neural network (MPNN) 
[18,19] is a neural network architecture designed for graph-
structured data, learning the representation of the graph through a 
message-passing mechanism between nodes and edges. Xue et al. 
combined MPNN with ReaxFF, using MPNN to compute bond order 
and bond energy, thereby enhancing the performance in calculating 
the potential energy surface, reaction energies, and equation of 
state.20 However, most MPNN-based interatomic potentials use 
message passing that only considers two-body interactions, which 
may pose challenges to the generalizability of the model [21]. 

Due to the issues mentioned above, finding a suitable model 
framework for MD simulations is particularly important. The MACE 
model [22], based on an equivariant graph neural network 
architecture, is characterized by its use of a high-order many-body 
message passing mechanism, which enables high-precision 
predictions with very few message passing iterations. Grunert et al. 
were able to accurately predict properties such as activation energy 
in MD processes and significantly improve accuracy through simple 
fine-tuning [23]. The model trained with MACE demonstrated high 
accuracy in bond dissociation predictions and exhibited strong 
extrapolation capabilities, enabling predictions for non-equilibrium 
structures [24]. In summary, the MACE model has demonstrated 
high accuracy and excellent extrapolation capability on several 
datasets [25,26], performing exceptionally well even under high-
temperature conditions [23]. 

Owing to these benefits, MACE has been extensively utilized 
in MD simulations, with our particular emphasis on its application 
within polymer systems. Poly(hexamethylene terephthalamide-co-
isophthalamide) (noted as PA6T/6I) is a semi-aromatic polyamide 
known for its combination of the superior processing flowability 
characteristic of aliphatic polyamides, along with low water 
absorption, exceptional heat resistance, and notably enhanced 
mechanical properties [27,28]. The processing of PA6T/6I enables 
the development of a range of high-performance plastics and fibers. 
Consequently, conducting MD simulations on PA6T/6I to explore its 
thermodynamic properties is of considerable importance. 

In this study, we compared the glass transition temperature (Tg) 
results obtained from simulations using the PCFF and the machine 
learning force field (MACE-OFF) against experimental values, 
thereby validating the precision of the MACE-OFF simulations. 
Moreover, we employed both methodologies to scrutinize the impact 
of varying PA6T contents and temperatures on the free volume, 
mean square displacement, and hydrogen bond numbers within the 
copolymer system. Ultimately, we delved into the correlation 
between the stacking pattern of the benzene rings and the number of 
hydrogen bonds. This research underscores the viability of 
employing MACE-based models in polymer dynamics simulations 

and illustrates that machine learning force fields can precisely 
elucidate the interplay between the structure and properties of 
materials. 

2. Simulation models and computational details

2.1   Machine learning force fields 

We utilized the MACE-OFF model, a short-range, transferable force 
field specifically designed for organic molecules and constructed on 
the foundation of the MACE model architecture [29]. This model is 
developed from first-principles reference data, which are generated 
using cutting-edge machine learning techniques [29]. It is 
parameterized for key chemical elements that are prevalent in 
organic chemistry, a feature that empowers the MACE-OFF model 
to precisely simulate neutral molecular systems, including drug 
molecules and biopolymers. MPNNs [30,31] represent a category of 
graph neural networks (GNNs) [32-35] that map a labeled graph to 
a target space, which can be either a graph or a vector space. The 
MPNN operates through a message passing mechanism between 
nodes, where, at each layer, a node's feature information is integrated 
with the features of its neighboring nodes. This process enables the 
model to learn a comprehensive representation of both the individual 
nodes and the graph as a whole. 

Figure 1. Workflow of the MACE model. 

The workflow of the MACE model is illustrated in Figure 1. MACE 
[22] is a machine learning architecture that takes the positions and
chemical elements of atoms as input and learns to predict the
potential energy of atomic systems. The total energy is decomposed
into atomic site energies, enabling linear scaling with system size:
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Each atom and its environment are represented as a graph, where 
nodes correspond to atoms, and edges are defined for neighboring 
atoms within a cutoff distance r&'! . The initial node features are 
learnable embeddings of the atomic numbers: 
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These features are updated through a message-passing process, 
which iteratively incorporates information from neighboring atoms 
and their geometric arrangement. At each layer t, atomic features are 
updated as: 
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where m4,)‾./
(!)  are messages constructed from equivariant many-

body features of the local environment. In the first layer (t = 0), only 
the first term is present. After two iterations (layers), the site energy 
of each atom is obtained via read-out functions applied to the 
updated features: 
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The total force and stress are computed as analytical derivatives of 
the predicted total energy with respect to atomic positions and strain, 
respectively. Additional mathematical details and all intermediate 
equations are provided in the Supporting Information (SI, ESI†). 

2.2   MD simulations of copolymers 

The glass transition process can be explained by the free volume 
theory proposed by Fox and Flory [36-38], at lower temperatures, 
the change in the free volume of the polymer is very small, and a 
sudden change occurs at Tg, which is the temperature at which the 
free volume reaches a critical value. In this study, we employed two 
methods to analyze the density-temperature curves of PA6T/6I 
copolymers with different PA6T content based on this theory, 
thereby calculating their Tg. This has become a well-established 
method for studying the glass transition process of polymers. We 
constructed PA6T/6I copolymer systems with mass fractions of 45%, 
50%, 55%, and 60% (denoted as P-45, P-50, P-55, and P-60, 
respectively) to systematically study the effects of temperature, 
PA6T content, and different computational methods on the thermal 
properties of the copolymer. 

Figure 2. The structure of the PA6T/6I copolymer (where x = 9 and 
x = 11 represent the number of repeating units of PA6T in P-45 and 
P-55, respectively; x = 5 and x = 6 represent the number of repeating
units of PA6T in P-50 and P-60, respectively). In P-45 and P-55, the
number of repeating units of PA6I is given by y = 20 - x; in P-50 and
P-60, the number of repeating units of PA6I is given by y = 10 - x.

The molecular structures of the PA6T/6I copolymers are shown in 
Figure 2, with each copolymer model consisting of five chains. Each 
chain in the P-45 and P-55 models contained 20 repeating units, 
while it contained 10 repeating units in the P-50 and P-60 models. 
To reduce potential human bias and guarantee the stability of the 
structure, the initial positions of the polymer chains were set 
randomly during the copolymer model construction. This 
randomization method effectively simulates the amorphous nature of 
the copolymers observed in experiments, thereby reducing any bias 
in the initial configurations. The polymer consistent force field 
(PCFF) [39] can simultaneously simulate both covalent bonding and 
non-covalent interactions in polymers, making it highly suitable for 
complex macromolecular systems. It has been widely used in studies 
of structural and dynamic properties of polymer materials [40,41], 
including polyamides and other polymers [42-44]. In this study, we 
utilized both the PCFF and the MACE-OFF machine learning model 
to perform MD simulations on four PA6T/6I models. In the 
simulations, both molecular and non-bonded interactions were 

accounted for, with van der Waals forces computed using the 
Lennard-Jones 9-6 potential and electrostatic interactions handled 
through the Coulombic contribution. 

The simulations were carried out using the LAMMPS package 
(large-scale atomic/molecular massively parallel simulator) [45], 
with data visualization performed through OVITO software [46]. To 
solve the equations of motion, the Verlet algorithm [47] was 
employed with a timestep of 1 fs, and periodic boundary conditions 
were applied in all directions. Temperature and pressure were 
regulated using the Nosé–Hoover thermostat and the Barostat [48], 
respectively. A cutoff distance of 12 Å was set for the van der Waals 
interactions, and long-range electrostatic interactions were 
computed using the particle-particle, particle-pesh (PPPM) method 
[49], ensuring a precision of 10-6 to maintain result accuracy. 

The initial molecular structures were energy minimized using 
the steepest descent method. As mentioned earlier, we ensured that 
the initial models were constructed with disorder to avoid any 
human-induced errors. To prevent any unreasonable local 
configurations in the initial model, the system was gradually heated 
from 260 K to 640 K under constant temperature and pressure (NPT) 
conditions. Once at 640 K, the system was held for 2 ns to relieve 
any residual stresses and optimize the local structure. Following this, 
the system was cooled from 640 K to 260 K at a rate of 9.5 K/ns. 
During each 20 K decrease in temperature, the system was 
equilibrated for 1 ns at the new temperature using NVT conditions, 
followed by a 3 ns NPT simulation, with the final 2 ns dedicated to 
data collection. Throughout the simulations, the pressure was kept 
constant at 0.1 MPa. 

The MACE-OFF MD simulations were performed using the 
atomic simulation environment (ASE) [50], a Python-based package 
designed for setting up, guiding, and analyzing atomic-scale 
simulations. A timestep of 1 fs was used, with periodic boundary 
conditions applied in all directions. Temperature and pressure were 
controlled using the Nosé–Hoover thermostat and Barostat, 
respectively. To eliminate potential unreasonable local 
configurations in the initial model, we use the final frame of the NPT 
process under each cooling condition from the PCFF as the initial 
structure for the ASE dynamic simulation. This approach eliminates 
potential unreasonable local configurations in the initial model and 
significantly reduces the simulation time for the machine learning 
model's dynamics. The machine learning model is then applied to 
simulate a 1 ns dynamic process at each temperature point. For more 
details on the MACE-OFF simulations, please refer to the 
Supplementary Information (SI, ESI†). 

We calculated the free volume fraction (FFV) using the atomic 
volume and surface module in Materials Studio [51], while the 
system's free volume was determined via the Connolly surface 
method, employing a hard sphere probe with a radius of 0.1 nm [52] . 
The rate of change in free volume shows significant differences near 
the Tg, primarily due to the different responses of free volume to 
temperature changes above and below Tg. To determine Tg, we 
performed linear fitting of the density data in the low and high-
temperature regions, with the intersection of the lines corresponding 
to the system's Tg. 

3. Results and discussion

In this study, we primarily employed the small-accuracy MACE-
OFF model to perform MD simulations and subsequent property 
analyses. To further assess the impact of model accuracy on the 
dynamical results, MD simulations of the P-50 system were also 
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carried out using the medium- and large-accuracy MACE-OFF 
models. The corresponding results are provided in the Supporting 
Information (SI, ESI†). To accurately predict the thermal properties 
of PA6T/6I, we propose enhancing the reliability of conventional 
force fields (e.g., PCFF) by benchmarking the dynamic structures 
and derived properties from the machine learning force field, 
MACE-OFF, against experimental data. First, we performed force 
field calibration for PA6T/6I monomers, systematically evaluating 
the simulation accuracy of MACE-OFF, PCFF, and density 
functional theory with high-precision functionals. For copolymer 
systems with varying PA6T compositions, we further investigated 
the temperature dependence of hydrogen bonding and free volume 
fraction, as well as their influence on Tg. This section provides a 
comprehensive analysis of these factors across copolymer systems 
with different PA6T contents. During MD simulations, the 
copolymer system exhibits significant density variations upon 
cooling. This phenomenon arises from temperature-induced changes 
in polymer chain mobility, which directly affect the overall packing 
density of the simulated system. 

3.1   Force field calibration 

Previous studies have suggested that density functional theory(DFT) 
can provide an accurate description of both hydrogen bonding and 
π-π stacking interactions when supplemented with dispersion 
corrections [53-55]. To validate the accuracy of the PCFF and 
MACE-OFF force field parameters, we utilized a suite of highly 
precise computational approaches, encompassing the generalized 
energy-based fragmentation (GEBF) coupled with the coupled-
cluster singles and doubles with perturbative triples (CCSD(T)) 
method, as well as the M06 and ωB97M-D3(BJ) density functionals. 
The GEBF-CCSD(T) method was executed with the aid of LSQC 
3.0 software [56]. The GEBF technique stands out as an effective 
strategy for molecular fragmentation [57-59], predicated on the 
concept of segmenting a large molecule into smaller, manageable 
subsystems or fragments. The energies of these fragments are 
computed individually and then aggregated to compute the total 
energy of the molecule. In the fragmentation of PA6T, we 
strategically partitioned the benzene rings and amide groups into 
distinct segments and further divided the remaining atoms within the 
covalently bonded system into fragments, each incorporating 2 to 3 
non-hydrogen atoms. This systematic approach is visually elucidated 
in Figure S1(ESI†). These methods are expected to provide a 
reasonable description of van der Waals interactions. The calibration 
results for poly(terephthaloyl hexylenediamine) (PA6T) monomer 
interactions are shown in Figure S2(ESI†). In the calibration of 
hydrogen bond interactions, GEBF-based CCSD(T) predicts a stable 
hydrogen bond length of 2.0 Å, while both PCFF and DFT (M06 and 
ωB97M-D3(BJ)) predict a stable hydrogen bond length of 1.9 Å. For 
π-π stacking interactions (Figure S2b, ESI†), all four methods predict 
an equilibrium stacking distance of 3.5 Å. Additionally, the M06 and 
GEBF-based CCSD(T) calculations yield a maximum energy 
deviation of less than 3.0 kcal/mol, while ωB97M-D3(BJ) and PCFF 
differ by approximately 5.0 and 7.0 kcal/mol, respectively. These 
results demonstrate that the M06 method provides a more accurate 
description of both hydrogen bonding and π-π stacking interactions. 
They also indicate that ωB97M-D3(BJ) retains a reasonable level of 
accuracy. Based on these findings, we selected the M06 and 
ωB97M-D3(BJ) functionals with the cc-pVDZ basis set to further 
validate the PCFF and MACE-OFF parameters for PA6T/6I 
copolymers. It should be noted that, for the force field calibration of 

the PA6T/6I system, all structures were generated via direct single-
point energy calculations without geometry optimization. This 
approach was adopted to ensure that the inter-structural distances 
were strictly consistent with the predefined values. 

The hydrogen bond interaction calibration, shown in Figure 3a, 
spans distances from 1.5 to 5.0 Å across different methods. The 
MACE-OFF model achieves accuracy comparable to M06, with an 
energy deviation of about 1.0 kcal/mol at larger separations (4.0-5.0 
Å), defined as the O-H distance in amide groups. Both MACE-OFF 
and DFT (M06 and ωB97M-D3(BJ)) predict a stable hydrogen bond 
length of 2.1 Å, whereas PCFF yields a slightly longer bond (2.2 Å). 
This indicates that MACE-OFF better reproduces hydrogen bonding 
interactions, according to M06 method. However, compared to 
ωB97M-D3(BJ), both MACE-OFF and PCFF slightly underestimate 
hydrogen bond strength. Given the abundance of strong hydrogen 
bonds in PA6T/6I, the longer bond distance predicted by PCFF leads 
to looser chain packing, resulting in lower copolymer density, a 
factor that may compromise the accuracy of Tg predictions. 

Figure 3. Calibration results for hydrogen-bonding interactions (a) 
and π-π stacking interactions (b). The M06 and ωB97M-D3(BJ) 
calculations are performed using the cc-pVDZ basis set in 
comparison with PCFF and MACE-OFF methods. 

In the analysis of π-π stacking interactions (Figure 3b), the MACE-
OFF model yields predictions closely aligned with the M06 method, 
consistent with its performance for hydrogen bonding. MACE-OFF 
achieves an equilibrium stacking distance of 4.3 Å, whereas PCFF 
predicts a longer distance (4.6 Å), leading to a looser packed 
conformation and significantly influencing the system’s density 
during simulations. Compared to ωB97M-D3(BJ), PCFF 
underestimates π-π stacking interactions by about 14.0 kcal/mol, 
while showing closer agreement with M06. This substantial 
discrepancy in interaction energies further highlights the limitation 
of PCFF in accurately modeling the PA6T/6I copolymer system. We 
will compare both the packing arrangements and their derived 
thermal properties obtained from PCFF and MACE-OFF MD 
simulations. 

3.2   Thermal properties of copolymers 

The accuracy of the parameters in the force field can be validated 
through the thermal properties, such as the glass transition 
temperature (Tg) derived from the simulated microstructures. We 
compared the simulated Tg values with experimental observations 
[60], where Tg for PA6T/6I copolymers with varying PA6T content 
were obtained by fitting multiple experimental data points. The Tg of 
the polymer, determined through least squares fitting, is shown in 
Figure 4. The comparison of experimental measurements and 
simulated results is summarized in Table 1. We further compared the 
simulation results between PCFF and MACE-OFF, as illustrated in 
Figure 4. Although the trend in Tg variation is consistent with the 
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experimental results, the relative error between the PCFF simulation 
and experimental values is significant, indicating a need for more 
accurate predictions of Tg. Table 1 shows that MACE-OFF 
simulations provide an excellent agreement with the experimental 
values, with a relative error of approximately 1.0%. Specifically, as 
the PA6T content increases, the simulated Tg values of the copolymer 
also increase, which is consistent with the experimental trend. 
Drawing from experimental density measurements, the copolymer 
composed of 30 wt% PA6T and 70 wt% PA6I is reported to have a 
density of 1.185 g/cm3 [61].With the increment of PA6T content, the 
density of the copolymer system experiences a modest increase as 

well [60]. To ascertain the average densities of polymer simulations 
across varying compositions at ambient temperature (298 K), we 
employed both force fields. The PCFF simulation produced a density 
of 1.132 g/cm3, whereas the MACE-OFF simulation yielded a 
density of 1.219 g/cm3. This indicates that the density obtained from 
the MACE-OFF simulation is closer to the experimental value, 
suggesting that it provides a better description of the microstructure. 
In summary, these results demonstrate that MACE-OFF is expected 
to describe the thermal properties more accurately than the 
traditional force field, such as PCFF. 

Table 1. Tg results of P-45, P-50, P-55, and P-60 simulated using MACE-OFF and PCFF. 

System Experimental Tg

(K)60
MACE-OFF 

(K) 
Relative error 

(%) 
PCFF 
(K) 

Relative error 
(%) 

P-45 397.8 400.7 0.7 375.2 5.7 
P-50 398.2 402.5 1.1 410.1 3.0 
P-55 / 416.1 / 415.7 / 
P-60 / 417.8 / 481.1 / 

Figure 4. (a-d) Density-temperature curves for P-45, P-50, P-55, and P-60 simulated by PCFF, and (e-h) for the same compounds simulated 
by MACE-OFF. The red curves represent the fitted density data in the high and low temperature regions, with the intersection points marked 
as Tg. 

Free volume is a critical concept used to describe the available space 
for molecular chain movement within materials and the ease with 
which these chains can flow. In polymer systems, free volume is 
typically manifested as spaces between polymer chains, often 
appearing as spherical or ellipsoidal voids [62-64]. These voids play 
a crucial role in polymer research, as they directly link the free 
volume to the glass transition temperature Tg of polymers [65], 
thereby providing a theoretical foundation for understanding the 
polymer glass transition process. As a result, analyzing free volume 
is essential for studying the thermodynamic properties of polymers. 

Free volume refers to the space within the entire system in 
which molecules can move freely. The total volume (Vt) of the 
system can be considered as the sum of the void volume and the 
occupied volume (Vo), where the occupied volume can be calculated 
by summing the free volume contributions of each atom [66]. The 

fractional free volume (FFV) is defined as : 

𝐹𝐹𝑉 =
V! − V"
V!

(6) 

In this study, Vo is calculated using a hard-sphere probe technique. 
This technique involves rolling a sphere with a radius of 1 Å across 
the surface of the polymer. Once the scanning process is completed, 
the molecules are enclosed by a surface, and the volume enclosed 
within this surface is considered as Vo. 

Figure S3(a) (ESI†) displays a snapshot of the free volume 
within the P-45 equilibrium structure as simulated using the PCFF 
force field. The van der Waals surface delineates the volume 
occupied by the polymer, whereas the Connolly surface outlines the 
free volume available.67 Furthermore, the variation of free volume 
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with temperature for copolymer systems with different PA6T 
contents is illustrated in Figure S3(b) (ESI†), also simulated using 
the PCFF. As it shows, below 460 K, the free volume of the 
copolymer system increases slowly. However, above 460 K, the 
increase becomes more pronounced. It demonstrates that atomic 
positions are almost stable at lower temperatures, and the movement 
of chain segments is sluggish, resulting in minimal changes in the 
free volume of the system. In contrast, as the temperature increases 
beyond a certain threshold, thermal energy enhances the mobility of 
the chain segments. This increased mobility leads to a significant 
expansion of the space between the chains, resulting in greater 
molecular motion within the system and a rapid increase in the free 
volume. 

We present snapshots of the free volume when simulating the 
P-45 equilibrium structure using the MACE-OFF model in Figure 5,
along with the trend of free volume variation with temperature in the
copolymer system. As the temperature increases, the free volume of
the system gradually rises, a trend consistent with the results
obtained from the PCFF simulation (Figure S3(b) (ESI†)). However,
at the same temperature, the fractional free volume (FFV) values
derived from the MACE-OFF simulation are consistently lower than
those from the PCFF simulation. This observation aligns with our
previous finding that the density of the system simulated using
MACE-OFF is higher than that simulated using PCFF. These results
further confirm the positive correlation between free volume and
temperature. Additionally, they provide insights into the relationship
between free volume and system density. By elucidating these
connections, our study offers a theoretical foundation for
understanding the thermodynamic properties of the PA6T/6I
copolymer and deepens the understanding of the relationship
between microstructural changes and free volume.

Figure 5. (a) Snapshot of P-45 simulated with MACE-OFF at 
T=298.15 K, with the van der Waals surface in gray and Connolly 
surface in blue. (b) FFV values of P-45, P-50, P-55, and P-60 at 
different temperatures, simulated by MACE-OFF, with solid black 
squares, red circles, blue triangles, and green inverted triangles, 
respectively. 

The mean squared displacement (MSD) is a powerful tool for 
studying the diffusion properties of polymer segments, thereby 
providing insights into their dynamic behavior. It quantifies the 
average squared distance that polymer chain segments or the center 
of mass of the polymer chain travel over time. The slope of the MSD 
curve is directly related to the mobility of the polymer segments [68], 
and it is calculated as follows: 

𝑀𝑆𝐷(𝑡) = MNX5(𝑡) − X5(0)Q
7
R (7) 

where, X%(t) and X%(0) represent the position of atom i at time t and 
at the initial time t = 0, respectively. Figure 6 illustrates the variation 

of the MSD for PA6T/6I copolymers with different PA6T/6I ratios, 
simulated using both PCFF and MACE-OFF, over a temperature 
range from 260 K to 640 K. 

Figure 6. MSD curves for P-45(a), P-50(b), P-55(c), and P-60(d) 
simulated with MACE-OFF. 

The mean squared displacement results for the copolymer simulated 
using PCFF and MACE-OFF are presented in Figure S4(ESI†) and 
Figure 6, respectively. Both simulation methods indicate that MSD 
increases over time, with a more pronounced increase observed at 
higher temperatures. This trend is attributed to the increased thermal 
energy available at higher temperatures, which enhances the 
mobility of atoms and polymer chains. Comparing the results from 
both simulation methods reveals that, at the same temperature, the 
MSD in the MACE-OFF simulated system is significantly smaller 
than that in the PCFF simulation. This observation can be explained 
by the force field calibration results, which show that the minimum 
energy points in the MACE-OFF system are located closer together. 
The stronger π-π interactions between polymer chains at these 
shorter distances more effectively restrict chain motion, resulting in 
smaller MSD values. 

Additionally, the MSD of the system undergoes significant 
changes within a specific temperature range due to the glass 
transition process in polymers. Specifically, when the temperature 
exceeds the glass transition temperature, the increase in MSD 
becomes much more pronounced compared to temperatures below 
Tg, indicating a shift in the atomic movement pattern. 
Experimentally, Tg of the PA6T/6I copolymer is around 400 K.61 
According to the PCFF simulation results (Figure S4(ESI†)), the 
MSD experiences a sharp increase in the 380-420 K range for P-45, 
P-50, and P-60, while for P-55, the increase occurs in the 340-380 K
range. The MACE-OFF simulation results show a similar trend, with
MSD increasing sharply in the 380-420 K range for P-45 and P-50,
and in the 340-380 K range for P-55 and P-60. This phenomenon
suggests that both PCFF and MACE-OFF simulations can predict
the approximate range of the Tg for the PA6T/6I copolymer, although
with some deviation. Overall, these MSD studies indicate that the
atomic motion undergoes significant changes before and after the
glass transition in polymers. This finding provides important insights
for further investigating the relationship between polymer structural
changes and temperature.

3.3   Hydrogen bonding in copolymers 

Hydrogen bonds are instrumental in stabilizing the static structure of 
polymers and in modulating their dynamic properties. Recognized 
as the most potent intermolecular interaction subsequent to chemical 
bonds, the examination of hydrogen bonds is of paramount 
importance. Their influence on material properties is profound, for 
instance, they can bolster the thermal and mechanical attributes of 
materials. In the PA6T/6I copolymer system, hydrogen bonds are 
established through the interactions between hydrogen and oxygen 
atoms within the amide bonds. This study delves into the variations 
in the distance and angle of the N–H···O hydrogen bonds within the 
copolymer. The schematic representations of both inter-chain and 
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intra-chain hydrogen bonds are depicted in Figure 7a. A hydrogen 
bond is deemed to be formed when the N···O distance is less than 
3.5 Å and the N-H···O angle surpasses 160°. Given that the number 
of amide groups fluctuates across copolymer systems with varying 
PA6T contents, revealing the total hydrogen bonds in each system 
falls short for a thorough analysis. Consequently, we normalize the 
number of hydrogen bonds formed at different temperatures relative 
to the number of PA6T and PA6I monomers present in each system, 
that is, by calculating the average number of hydrogen bonds per 
monomer. This normalization allows us to more accurately analyze 
the trends in hydrogen bond quantities across systems with different 
PA6T contents. 

Moving forward, we computed the average number of 
hydrogen bonds per monomer for both inter-chain and intra-chain 
interactions across all copolymer systems at 400 K. The selection of 
400 K is predicated on the experimentally ascertained glass 
transition temperature of PA6T/6I. As illustrated in Figures 7b-c, 
which present the hydrogen bond counts (HBs), inter-chain 
hydrogen bonds (inter-chain HBs), and intra-chain hydrogen bonds 
(intra-chain HBs), it becomes evident that inter-chain hydrogen 
bonds predominantly govern the hydrogen bonding interactions and 
significantly affect the magnitude of Tg. Inter-molecular hydrogen 
bonds enhance the intermolecular interactions, thereby potentially 
elevating the Tg. In contrast, hydrogen bonds within the molecular 
chain diminish the system's rigidity, consequently lowering the Tg. 
With increasing PA6T content, the number of inter-chain hydrogen 
bonds in the copolymer systems at 400 K rises progressively, a trend 
that aligns with the observed changes in Tg. 

Figure 7. (a) A schematic diagram illustrates the inter-chain and 
intra-chain hydrogen bonds as observed from the equilibrium 
trajectory simulations. The total number of hydrogen bonds (HBs), 
which includes both intra-chain and inter-chain components, is 
presented for the P-45, P-50, P-55, and P-60 copolymer systems, all 
of which were simulated using the PCFF (b) and MACE-OFF (c). 

As depicted in Figures 8a-b, the number of hydrogen bonds in all 
systems modeled with both PCFF and MACE-OFF force fields 
gradually diminishes with rising temperature. This trend can be 
attributed to the increased mobility of polymer chain segments and 
the enhanced thermal energy provided to the system at higher 
temperatures. These factors collectively contribute to an increase in 
the inter-chain distance, which in turn leads to a progressive decrease 
in hydrogen bonding. Upon examining Figure 8a, it is evident that 
within the low-temperature regime of the PCFF-simulated systems, 
the P-50 system exhibits a higher count of hydrogen bonds compared 
to the other systems. As temperature continues to rise, the hydrogen 
bond count across all four systems tends to level off. Figure 8b 
reveals that in the MACE-OFF-simulated systems, the hydrogen 
bond count escalates with increasing PA6T content at lower 
temperatures. Furthermore, as the temperature ascends, the hydrogen 
bond count across the systems begins to converge. To delve deeper 
into the influence of polymer conformational changes on thermal 

properties and to elucidate the mechanism behind the variation in 
hydrogen bond numbers with increasing PA6T content, we 
conducted an analysis of the stacking patterns of aromatic rings 
within different PA6T/6I copolymers. 

Figure 8. (a) Average number of hydrogen bonds per monomer for 
P-45, P-50, P-55, and P-60 in the PCFF (a) and MACE-OFF
simulations (b). (c) Schematic diagram of benzene ring stacking
angles and distances. Angle α between the normal vectors of two
benzene rings with a center-to-center distance of 10 Å in the PA6T/6I
system simulated with PCFF (d-g) and MACE-OFF simulations (h-
k).

Given the substantial alterations in polymer segment motion around 
the glass transition temperature, we scrutinized the distribution of 
stacking angles between benzene rings in each system prior to 
reaching the experimental Tg value of 400 K. Our objective was to 
uncover the correlation between the system's hydrogen bond count 
and the benzene ring angles. Our analysis was further nuanced by 
focusing on aromatic ring stacking arrangements with inter-ring 
distances of less than 10 Å. Figures 8d-k illustrate the relative 
orientation distribution (α) of aromatic rings across various polymer 
chains. When the stacking angle of the aromatic rings approaches 
90°, the steric hindrance between the rings intensifies, promoting a 
T-shaped configuration over the more favorable π-π stacking. This
configuration impedes hydrogen bond formation, leading to a
reduction in their quantity. In the PCFF simulation outcomes, the P-
50 system has the smallest number of aromatic ring pairs with angles
ranging from 80° to 90°, and thus, it displays the highest number of
hydrogen bonds when compared to the other three systems.
Conversely, in the MACE-OFF simulation outcomes, P-50, P-55,
and P-60 systems have fewer aromatic ring pairs with angles
between 80° and 90° than the P-45 system, which results in these
three systems exhibiting a higher number of hydrogen bonds than
the P-45 system.

3.4.  Ab tnitio trained machine learning force fields based on 

MACE 

MACE-OFF-Small has demonstrated accuracy in predicting 
conformational energies, torsional potential energy surfaces, 
structural optimizations, and physical properties in organic 
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molecules, achieving a mean absolute error of 1.20 meV/atom for 
energy and 29.51 meV/Å for forces on its reported test datasets. 

Nevertheless, several challenges remain when applying the 
MACE-OFF model to molecular dynamics simulations of polymers. 
The model does not sufficiently account for long-range interactions 
between polymer chains, and its training set does not incorporate 
configurations, energetic, and force information specific to 
particular polymer systems. As a result, the model exhibits certain 
limitations in describing system-specific structure–property 
relationships, which restricts its generalizability and predictive 
accuracy for complex polymeric materials. To address these issues, 
a feasible strategy is to construct a high-quality dataset tailored to 
the target polyamide structure (in this study, PA6T/6I), and to train a 
machine learning force field specifically adapted to polyamide 
systems. The detailed procedure for dataset construction is presented 
in the Supporting Information (SI, ESI†). 

This comprehensive data generation workflow ensures that the 
resulting training set encompasses the structural diversity and 
relevant chemical environments present in polyamide systems, 
thereby providing a solid foundation for the development of accurate 
and transferable machine learning force fields. Although the initial 
model performance is not yet fully satisfactory, the established data 
pipeline facilitates further optimization and benchmarking. Detailed 
parameter settings and model evaluation results are also provided in 
the Supporting Information (SI, ESI†). 

However, despite these efforts, the mean absolute errors (MAEs) 
of energy and force for our trained model are 7.4 eV and 8.7 eV/Å, 
respectively. Such high errors reflect insufficient accuracy in 
describing the energies and forces of molecular structures, which 
weakens the model’s ability to provide reliable structural and 
property predictions. Therefore, further hyperparameter 
optimization is necessary to lower these errors and enhance model 
accuracy. In addition, expanding the dataset—particularly by 
incorporating structures containing benzene rings and amide 
groups—would further improve the model's predictive capabilities. 
This would enable the ab initio-trained model to more accurately 
predict key properties of polyamide and related amide-containing 
polymers, including thermodynamic properties (such as glass 
transition temperature and melting point), mechanical performance, 
and microstructural evolution. 

4. Conclusion

In this research, we conducted a comparative analysis of the glass 
transition temperature (Tg) of PA6T/6I copolymers with varying 
PA6T content, utilizing both the PCFF and MACE-OFF models. The 
calibration of the force fields revealed that the MACE-OFF model 
closely aligns with the M06 functional in characterizing hydrogen-
bonding and π-π stacking interactions among the copolymers. When 
contrasted with PCFF simulations, the MACE-OFF model yields a 
Tg value that is derived from the density-temperature equilibrium 
curve and is in good accord with experimental observations. 
Thermodynamic analyses, grounded in free volume and mean 
squared displacement, unveiled the patterns of chain segment 
mobility as a function of temperature. Subsequent examinations of 
both inter-chain and intra-chain hydrogen bonds indicated that inter-
chain hydrogen bonds are predominant in hydrogen bonding 
interactions, and there is a notable increase in Tg with an increase in 
the number of inter-chain hydrogen bonds. Ultimately, the study of 
the relationship between the stacking arrangement of benzene rings 
and the number of hydrogen bonds revealed that an increase in the 

number of benzene rings with angles between 80° and 90° leads to a 
T-shaped configuration, which is detrimental to the formation of
hydrogen bonds. This investigation offers an exhaustive exploration
of the thermal properties of PA6T/6I copolymers at the molecular
level and underscores the high precision of machine learning-based
force fields in forecasting polymer characteristics through MD
simulations.
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