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Abstract: AI-driven reaction modeling in synthetic chemistry faces critical data gaps: the scarcity of mechanistic

descriptors and inconsistent experimental protocols, leading models trained on sparse reactant-product pairs to falter

in tasks like yield prediction, selectivity control, or condition optimization. Recent advances in mechanism-aware

data curation, such as hybrid rule-ML frameworks and computational datasets, demonstrate progress but remain

limited to small molecules (≤10 heavy atoms) or gas-phase approximations. Concurrently, robot-based high-

throughput experimentation (HTE) platforms standardize protocols for a small number of reaction classes yet lack

end-to-end traceability, often omitting workup and followed separation and purification steps. To bridge these gaps,

we propose a closed-loop framework integrating computational chemistry, robotic HTE, and multimodal AI to

resolve critical reaction modeling tasks. From the perspective of future work, the field necessitates expanded

collaboration across the community to tackle complex systems, extend HTE to underrepresented reactions, and align

data ontologies. Interdisciplinary collaboration is essential to transition from retrospective pattern recognition to

mechanism-driven discovery, anchoring AI in datasets that encode why reactions succeed, not merely what products

form.
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1. Introduction

The emergence of self-driving laboratories (SDLs) for chemical
synthesis, enabled by advances in robotic automation and artificial
intelligence (AI)-driven decision-making tools, has created
unprecedented opportunities to accelerate molecular discovery
[1,2]. While AI models for synthesis planning have demonstrated
remarkable capabilities in retro-synthetic route design and forward
reaction prediction [3,4], their broader application to critical
reaction modeling tasks (e.g., yield prediction, condition selection,
and selectivity control) remains hindered by a persistent challenge:
the inability of models trained on conventional reaction datasets to
generalize reliably beyond their training domains. This
"generalizability gap" stems not from algorithmic limitations but

from fundamental inadequacies in existing reaction data [5],
including sparse mechanistic annotations, inconsistent experimental
protocols, incomplete documentation of experimental processes,
and inadequate metadata about failed attempts, that collectively
obscure the application potential of AI modeling for critical
reaction tasks.

Reaction yield prediction, a cornerstone task for improving
synthesis efficiency, exemplifies the limitations of current AI
modeling approaches. Studies reveal a stark contrast in model
generalizability: while HTE datasets enable strong transferability
(e.g., transformer models achieving high accuracy using SMILES
inputs), models trained on patent, literature, or electronic lab
notebook (ELN) data exhibit poor generalization. For instance,
transformer-based yield predictors excel on HTE data but fail with
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patent-derived reactions due to reporting inconsistencies [6].
Similarly, a benchmark of 41,239 amide coupling reactions from
literature by including 2D/3D descriptors and physical properties as
modeling features achieved only modest accuracy (R²=0.395),
constrained by reactivity cliffs and measurement variability [7].
Even ELN datasets, such as AstraZeneca’s Buchwald–Hartwig
reactions, prove challenging for advanced graph neural networks
(best R²=0.266), exposing inherent biases and noise in real-world
data [8]. While hybrid models combining DFT features and
fingerprints (trained on AbbVie’s 24,000+ Suzuki reactions)
outperform human chemists in guiding synthesis, their accuracy
plummets for complex tasks (R²=0.137–0.723), underscoring
unresolved gaps [9]. Critically, yield discrepancies often stem from
undocumented variables: analytical vs. isolated yields depend on
workup protocols, reagent purity, or isolation methods, for which
rarely captured in datasets for reaction modeling [10]. These
findings highlight that advancing AI-driven reaction modeling
demands not just algorithmic innovation but standardized data
with rigorous experimental metadata to disentangle chemical
outcomes from protocol artifacts.

The limitations observed in yield prediction extend to other

critical reaction modeling tasks, where incomplete mechanistic and
kinetic data constrain model generalizability (Figure 1). For
example, machine learning models trained on >10,000 Suzuki-
Miyaura couplings from literature failed to outperform simple
frequency-based heuristics in predicting optimal solvents or bases,
as human reporting biases and the absence of negative data
obscured underlying condition-outcome relationships [11]. Similar
challenges arise in reactivity and selectivity prediction: most
models rely solely on reactant structures and static reaction
conditions as inputs, overlooking the role of transition states (TS)
in governing reaction pathways. While thermodynamic product
stability often guides predictions, kinetic barriers dictated by TS
geometries and energies ultimately determine reaction feasibility,
site selectivity, and condition sensitivity. Current models, however,
lack explicit incorporation of TS characteristics, limiting their
ability to resolve competing pathways or guide condition
optimization. This disconnect highlights a critical data gap that
reaction datasets rarely encode TS descriptors or kinetic profiles,
forcing models to infer mechanistic drivers indirectly from sparse
reactant-product pairs.

Figure 1. Accurate modeling for chemical reactions needs both standardized experimental data and computed reaction mechanism data

The core challenge for AI-driven reaction modeling lies in two
interconnected data deficiencies: (1) the systematic omission of
mechanistic descriptors (e.g., transition-state geometries, kinetic
profiles, or competing pathway data) in conventional reaction
databases, and (2) the inconsistency of experimental protocols
across datasets, which conflates chemical causality with procedural
artifacts (Figure 1). To bridge this gap, we propose dual strategies:
first, curating mechanism-oriented reaction libraries that explicitly
encode energetic landscapes, structural and stereoelectronic
features along the reaction pathway to consider thermodynamic and
kinetic drivers of reactivity; second, leveraging automated HTE to
generate protocol-standardized datasets with full traceability of
reaction parameters. Combining these approaches enables models
to distinguish intrinsic chemical behavior from experimental noise
while capturing kinetic bottlenecks that govern selectivity.
Achieving this demands interdisciplinary integration of
computational chemistry (for mechanism annotation), robotic
automation (for protocol reproducibility), and data science (for
causality extraction), and thus a collaborative framework to
establish "chemically intelligent" datasets as the foundation for

reliable AI tools in synthesis planning.

2. Challenges and advances in reaction mechanism
data curation

Mechanistic understanding is critical for modeling reaction
outcomes, from predicting optimal conditions (temperature, solvent,
catalyst loading) to controlling regio-/stereoselectivity and
resolving competing pathways. TS geometries govern kinetic
feasibility, while electronic interactions between catalysts and
substrates (e.g., charge-transfer dynamics) dictate selectivity
thresholds. Thermodynamic stability of intermediates and products,
combined with kinetic activation barriers, further determines
pathway dominance. Despite this foundational role of mechanistic
data, its integration into reaction modeling remains constrained by
limited access to standardized databases that systematically encode
TS descriptors, energetic landscapes, or kinetic profiles. Current
datasets predominantly focus on reactant-product pairs [12,13],
omitting the multidimensional parameters needed to correlate
mechanistic drivers with experimental outcomes.
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Efforts to address mechanistic data scarcity are progressing
through hybrid strategies that combine rule-based systems with
machine learning (ML), enabling the systematic annotation of
reaction pathways. Rule-based approaches, such as expert
systems codified with >1,500 transformation rules (e.g., electron-
pushing diagrams and elementary reaction steps), provide
chemically grounded frameworks for mechanistic analysis and
retrosynthetic validation [14] (Figure 2). These systems, however,
face limitations in scalability and coverage of novel reaction types.
To overcome these constraints, ML models like ELECTRO
leverage graph neural networks to infer electron flow directly from
atom-mapped reaction data, achieving state-of-the-art accuracy on
curated datasets like USPTO while implicitly capturing functional
group selectivity [15]. While promising, such models occasionally
generate pathways misaligned with expert intuition due to reliance
on implicit chemical constraints rather than explicit mechanistic
guidance. Bridging this gap, initiatives like mech-USPTO-31K
demonstrate scalable solutions: using automated template
extraction (e.g., MechFinder) and expert curation, they annotate
31,364 reactions with polar mechanisms validated by chemists
(74% accuracy) [16]. Similarly, platforms like Allchemy integrate
mechanistic transforms (e.g., nucleophilic interactions, pericyclic
reactions) with physical-organic principles to predict reaction
networks and yields (MAE = 7.3–10.5%) [17]. These hybrid
frameworks—combining rule-based granularity with data-driven
scalability—highlight the potential of mechanistic datasets to
enhance predictive models, though challenges persist in
stereochemical fidelity and coverage of nonpolar pathways.
Collectively, these advances underscore the need for open,
standardized resources like mech-USPTO-31K to train next-
generation AI while maintaining chemical rigor.

While hybrid rule and ML frameworks address mechanistic
annotation gaps, advancing AI models to predict reactivity and
selectivity reliably requires datasets that integrate 3D structural
coordinates, energetic profiles (activation barriers, enthalpies), and
kinetic parameters that are critical for modeling spatial and
electronic drivers of reaction outcomes (Figure 2). Recent efforts
prioritize computational datasets combining quantum chemistry
(QC) calculations with automated TS searches. For example,
​ ​ Transition1x [18] leverages nudged elastic band (NEB)
methods to generate 9.6 million DFT calculations along reaction
pathways, enabling graph neural networks to predict TS geometries
and reaction barriers with higher accuracy than equilibrium-
geometry datasets (e.g., ANI1x). Similarly, the Reaction Graph
Depth 1 (RGD1) dataset [19] employs multi-level QC (GFN2-xTB
to CCSD(T)-F12) to curate 176,992 validated reactions with TS
geometries, activation energies, and enthalpies, spanning diverse
C/H/O/N chemistry. By automating TS searches across ~708,000
elementary reactions, RGD1 addresses scalability and chemical
diversity limitations of earlier QC datasets, though computational
costs restrict its scope to small molecules (≤10 heavy atoms). These
datasets highlight three critical advances: (1) explicit encoding of
TS geometries and energetic landscapes bridges the gap between
static reactant-product pairs and dynamic reaction pathways; (2)
automated QC workflows enable systematic TS exploration at scale;
(3) multi-level validation (DFT to CCSD(T)) ensures data
reliability for training ML potentials. However, challenges persist:
gas-phase calculations overlook solvent effects and narrow
elemental coverage (H/C/N/O) limits generalizability. Overcoming
these limitations demands synergistic integration of more efficient
and accurate reaction pathway generation method developed and
more computing resources available for these data curation projects.

Figure 2. The curation of reaction mechanism data with different methods

To scale reaction pathway data generation, researchers are
integrating computational chemistry methods with ML to balance
accuracy and efficiency (Figure 2). Multi-scale
frameworks combine TS search algorithms (e.g., NEB, GSM),
molecular dynamics (MD) simulations, and generative ML models
to map reaction landscapes hierarchically. For example, the Yet
Another Reaction Program (YARP) [20] automates TS
exploration by enumerating elementary reaction steps (bond

breaking/forming), pre-optimizing geometries with GFN2-xTB,
and refining pathways with DFT, a workflow enabling the curation
of RGD1’s 176,992 reactions. Similarly, the automated design of
chemical reaction (ADCR) program [21,22] combines MD with
coordinate-driving methods to handle large systems (>100 atoms)
and complex reactions (radicals, transition metals), though
computational costs limit its throughput. The large-scale atomistic
simulation with neural network (NN) potential (LASP) [23]
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package combining stochastic surface walking (SSW) with global
NN potential to facilitate the PES exploration for a wide range of
complex systems including applications to chemical reaction
pathway generation. The artificial force induced reaction (AFIR)
[24] method automates reaction pathway discovery by applying
artificial forces between molecular fragments (MC-AFIR for multi-
component reactions) or perturbing atom pairs within a molecule
(SC-AFIR for isomerization), guided by collision energy
parameters to navigate potential energy surfaces. But its
performance depends on careful parameter selection and can be
computationally demanding for large systems. Recently the study
by FAIR at meta uses AFIR approach to generate reactive
pathways for metal complexes and organic reactions (from
RMechDB/PMechDB), producing datasets with 1,436 metal
reactions and with elementary reaction steps for radical/polar
reactions, which consists of the reactive part of OMol25 database
[25]. Meanwhile, ML-driven tools like OA-ReactDiff (SE(3)-
equivariant diffusion model) [26] and React-OT (optimal transport)
[27] generate TS geometries with near-quantum accuracy (0.08 Å
RMSD) directly from reactant-product pairs, bypassing iterative
QC calculations. However, ML models face transferability issues:
pretrained machine learning interatomic potentials (MLIPs) require
fine-tuning on reactive data to predict TS barriers reliably, and
generative models like OA-ReactDiff depend heavily on training
data coverage. While these tools accelerate pathway sampling by
orders of magnitude, fundamental gaps persist. Gas-phase
approximations neglect solvation/entropic effects, and ML
efficiency gains are offset by dataset biases (e.g., Transition1x’s
focus on small molecules). Closing these gaps demands tighter
integration of enhanced sampling, multi-fidelity QC workflows,
and protocol standardization with end-to-end benchmark metrics
to ensure datasets capture both thermodynamic and kinetic
determinants of reactivity. Only through such synergies can
computational frameworks advance from exploratory tools to
reliable data sources for AI-driven reaction modeling.

3. Challenges and advances in automated robot-based
HTE data curation

Traditional experimental workflows, even when augmented by
ELNs, produce datasets riddled with inconsistencies that undermine
AI model reliability. Manual experimentation introduces biases
(e.g., selective reporting of successful reactions), protocol
variability (e.g., undocumented deviations in workup steps), and
fragmented metadata (e.g., missing reagent purity or analytical
settings), which obscure causal relationships between reaction
parameters and outcomes. These limitations are particularly acute
for complex tasks like selectivity prediction, where subtle
condition-dependent effects dominate. Automated HTE platforms
address these gaps by standardizing protocols and digitalizing the
end-to-end experimental process. Rapidly increasing studies have
been conducted to demonstrate the HTE ability for chemical
reactions. In one study, the researchers develop a universal
chemical programming language (xDL) to digitize 103 organic
synthesis protocols into executable code, enabling their robotic
execution on modular "ChemPU" systems [28]. They validate over
50% of these procedures robotically, achieving yields and purities
comparable to manual synthesis while demonstrating automated
purification via integrated chromatography. By using mobile robots

to integrate distributed synthesis (Chemspeed ISynth), analysis
(UPLC-MS, benchtop NMR), and specialized equipment
(photoreactor), a modular autonomous chemistry platform has been
developed with a heuristic decision-maker to process orthogonal
NMR and MS data, enabling autonomous discovery and validation
of synthetic targets including structurally diverse molecules,
supramolecular host-guest systems, and photochemical products
[29]. To enhance autonomous lab efficiency of complex
experiments, the researchers develop a multi-robot-multi-task
scheduling system with constraint programming to optimize
concurrent execution of diverse chemical experiments across three
robots and 18 stations [30]. Real-world validation with four parallel
experiments showed a 40% reduction in total time compared to
sequential execution, supporting dynamic task insertion without
significant disruption. In addition, some of these researchers also
develop ChemAgents by using a hierarchical multiagent AI
(Literature Reader, Experiment Designer, Computation Performer,
Robot Operator) powered by an on-board Llama-3.1-70B LLM to
autonomously execute complex multistep chemistry experiments,
enabling accelerated discovery with minimal human input [31].
Despite rapid development of robot-based HTE technology
together with integrating AI agents and other AI algorithms, current
HTE efforts remain narrowly focused with fewer than 5 reaction
classes dominating published datasets with public availability.

Systematic exploration of key cross-coupling reactions have
been conducted with HTE and datasets are made accessible through
repositories like the Open Reaction Database [12] or Github. These
HTE studies usually combine with Bayesian or active learning
algorithms for feedback-guided reaction condition optimization and
reaction space sampling for better prediction of reaction feasibility
and yield [32–35]. For Suzuki-Miyaura couplings, studies highlight
distinct approaches (Table 1):

(1) A droplet-flow microfluidic system optimized conditions
for aryl chlorides and unstable boronic acids via ~400 reactions,
using real-time HPLC-UV analysis calibrated via least-squares
regression to quantify yields [34].

(2) A nanomole-scale flow platform screened 5,760 reactions
(11 ligands, 7 bases, 4 solvents, 5 electrophiles, and 7 nucleophiles)
with LCMS-UV analysis, achieving analytical yield quantification
for the same one target product and scalable validation [36].

(3) A closed-loop workflow combined machine learning with
528 reactions across 11 substrate pairs, using LCMS-UV to validate
model-guided condition recommendations [33].

These efforts demonstrate the integration of automation with
machine learning for parameter optimization but reveal persistent
challenges in calibration (e.g., isolated vs. analytical yield
discrepancies) and scalability (e.g., limited substrate diversity).

The HTE applications extend beyond Suzuki-Miyaura
couplings to other reaction classes, though coverage remains sparse
(Table 1):

(1) Buchwald-Hartwig (C–N): A study screened 4,608
reactions (15 aryl halides, 4 ligands, 3 bases, and 23 isoxazole
additives) with LCMS-UV quantification, identifying inhibitory
oxidative addition pathways via random forest modeling [37].

(2) Amide Coupling: A Bayesian neural network (BNN)
guided 11,669 reactions, using uncalibrated LCMS-UV absorbance
ratios to predict feasibility (89.48% accuracy) and prioritize
scalable conditions [35].

(3) Mizoroki-Heck (C–C): A 384-reaction screen evaluated
Pd/Ni catalysts with aryl triflates/iodides, quantifying yields via
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GC-FID, NMR, or isolation, and deposited regioselectivity data
(>20:1 branched/linear ratios) in the Open Reaction Database [38].

While these studies illustrate HTE’s potential for protocol
standardization, limitations persist: narrow reaction scope,

inconsistent yield validation (e.g., UV calibration vs. isolation), and
incomplete mechanistic metadata (e.g., solvent effects on transition
states).

Table 1. The publicly available HTE data sets published since 2016.

Reaction Type Yield Type Number of

Reaction Data

Year of

Publish

Suzuki-Miyaura cross coupling: HPLC analytic yield with calibration ~400 2016 [34]

Suzuki-Miyaura cross coupling: LCMS analytic yield relative to the

reference value for one target product

5,760 2018 [36]

Suzuki-Miyaura cross coupling: LCMS analytic yield calibrated with

standards

~600 2022 [33]

Buchwald-Hartwig Cross Coupling: LCMS-UV with internal standard as

reference

~3000

(with yield

labels)

2018 [37]

Amide Coupling: LCMS-UV area without calibration 11,669 2025 [35]

Mizoroki-Heck: Reaction yields and regioselectivity

quantified by GC-FID, NMR, or

isolated yields

384 2023 [38]
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4. Conclusion and perspectives

The evolution of AI-driven reaction modeling hinges on resolving
two foundational data challenges: (1) the scarcity of mechanistic
descriptors that correlate reaction outcomes with
kinetic/thermodynamic principles, and (2) the inconsistency of
experimental protocols across datasets. Current strategies,
including computational datasets encoding transition-state
geometries (e.g., RGD1, Transition1x), hybrid rule-ML frameworks
(e.g., mech-USPTO-31K), and standardized HTE platforms,
demonstrate progress but still face critical gaps. Computational
workflows efficiently map reaction pathways yet struggle to
incorporate solvation effects and more complicated electronic
effects or scale to complex systems, while HTE platforms
standardize protocols but remain confined to narrow reaction
classes and mostly only cover the reaction and analysis stages
leaving the workup, separation and purification stages unquantified.

To bridge these gaps, we advocate for reaction modeling by
integrating multimodal data from AI & digitalization enhanced
automated HTE reaction data, the reaction text description data, the
reaction mechanism diagram data, and the reaction pathway data

(Figure 3). In this framework, autonomous robotic platforms
execute HTE with end-to-end traceability, recording reaction
parameters (e.g., temperature ramps, mixing rates), workup
protocols (e.g., extraction steps, drying times), analytical spectra
(e.g., inline or offline LCMS, UV, IR, Raman, and NMR etc.),
isolation and purification methods and settings, to minimize
annotation artifacts and isolate protocol-specific biases. On the one
hand, this HTE platform should tightly integrate automatic
robots for large-scale and unified-protocol experiments,
digital tools for end-to-end data record and management,
intelligent computational models for data annotation and
decision-making. On the other hand, reaction data collection
should be conducted to cover the orthogonal space composed
of widely employed reaction types, representative reactants
and conditions to not only balance the positive and negative
data but also the coverage of critical reaction space. To
maximize the impact of this integrated framework, future
efforts should prioritize overcoming analytical and resource
challenges in developing kinetic, multi-time-point datasets
that is essential for capturing rate-dependent mechanistic
insights currently obscured by conventional single-yield HTE
data [10].

Figure 3. Reaction modeling by integrating multimodal data from AI & digitalization enhanced automated HTE reaction data, the reaction
text description data, the reaction mechanism diagram data, and the reaction pathway data.

For modeling the reaction tasks, enhanced predictive
performance is observed by combining multi-modal data
from HTE (both the process and outcome data), reaction
mechanism and pathway (geometric, energetic, electronic data, and
reaction diagram), and reaction context (textual protocols and
interpretations). To enhance the yield prediction generalization,
machine learning model for amide coupling has been developed by
embedding intermediate knowledge (specifically, activated acid
intermediates formed under specific conditions) into the model's
input descriptors, improving the R² for both single conditions and
rigorous "full substrate novelty" tests [39]. For multi-component

reactions (MCRs), the yield prediction model has been developed
by integrating mechanistic reaction knowledge from the reaction
networks including main reaction pathways, immediate side
reactions, and downstream by-product interactions, effectively
generalizing to 10 novel MCRs (MAE = 7.3%) with only 20
mechanistically diverse MCRs used as training data [17]. To enable
scalable production of optoelectronic materials with minimal
catalyst loading, a catalyst-oriented design based on elementary
reactions (CODER) strategy is proposed to design Pd catalyst
achieving record-breaking turnover numbers (TON=340,000) for
triarylamine synthesis [40]. To summarize studies overcoming data
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limitations and enabling extrapolative and human-expert-level
accuracy, a recent review highlights how embedding chemical
knowledge (e.g., mechanistic descriptors, transition-state
geometries) into machine learning pipelines significantly enhances
performance prediction for organic synthesis including yield, regio-,
and stereoselectivity [41]. Collectively, these advances demonstrate
a paradigm shift toward multimodal data-guided machine learning
as compared to the AI models developed mainly on basis of
reactant and product data. However, challenges persist in
formalizing complex reaction networks, ensuring cross-reaction
transferability, and scaling lab-validated models to industrial
workflows.

From the perspective of future work, the field
necessitates expanded collaboration across the community to
tackle complex systems, extend HTE to underrepresented
reactions, and align data ontologies. Only by anchoring AI
models in chemically intelligent datasets, those that
encode why reactions succeed or fail, not just what reactants
transform into products, can synthetic chemistry transition from
retrospective pattern recognition to prospective, mechanism-driven
discovery.
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