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Abstract: In recent years, the rapid advancements in computer science have spurred the development of various cutting-edge
intelligent algorithms. Among these, the transformer, which is built upon a multi-head attention mechanism, is one of the most
prominent Al models. The advent of such algorithms has significantly advanced retrosynthesis prediction, though challenges
remain in chemical interpretability and real-world deployment. Unlike traditional models, Al-based retrosynthesis prediction
systems can automatically extract chemical knowledge from vast datasets to forecast retrosynthesis pathways. This review
provides a comprehensive overview of modern intelligent algorithms applied to retrosynthesis prediction, with a particular
focus on artificial intelligence techniques. We begin by discussing key deep learning models, then explore available chemical
reaction datasets and molecular representations. The discussion extends to the latest state-of-the art in Al-assisted retrosynthesis
models, including template-based, template-free, and semi-template-based approaches. Finally, we compare these models across
various classifications, highlighting several challenges and limitations of current methods, and suggesting promising directions

for future research.
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1. Introduction

Organic synthesis, often regarded as an art due to its reliance on
creativity, inspiration and aesthetic judgment [1,2], is a crucial
branch of chemistry with extensive applications in drug design and
synthetic biology [3—6]. Retrosynthetic analysis, a common method
in organic synthesis design [7], involves deducing a synthetic route
by working backward from the target compound. The process
systematically identifies potential starting materials that can be
reassembled to yield the desired compound. However, the growing
complexity and diversity of target molecules have made the design
of organic synthesis pathways increasingly challenging. To address
these obstacles and enhance reproducibility and efficiency, there
has been a burgeoning interest in automating organic retrosynthesis
[8-10]. Computer-aided synthesis planning (CASP) emerged from
this need, tracing its origins to Corey's groundbreaking rule-based
synthesis prediction systems, the Logic and Heuristics for
(LHASA) [11]. its
innovative approach, early rule-based approaches were limited by

Automated Synthesis Analysis Despite
computational power and data availability.

Recent advancements in computer science have facilitated the
development of intelligent algorithms capable of addressing a wide
range of tasks [12], such as beam search algorithms, Monte Carlo
tree search algorithms, genetic algorithms and neural network
algorithms. The influx of big data has propelled the development of
numerous artificial intelligence models [13,14], reinvigorating
interest in Al applications across chemistry and drug discovery
[15,16].

For chemists, CASP poses significant challenges, especially in
retrosynthesis prediction, where limited input data can lead to
numerous possible outputs. Recent models for retrosynthesis
prediction have been designed to automate the identification of
candidate reactants from a given product. When these reactants are
not commercially available, a recursive expansion strategy is
employed, iteratively breaking down the reactants into simpler
precursors until all components are accessible or a predefined step
limit is reached. Once reliable single-step retrosynthesis is achieved,
multi-step retrosynthesis focuses on optimizing the reaction
sequence to minimize synthesis steps, costs and waste production.

These models can be broadly categorized into three classes:

1. Template-based models utilize domain knowledge and
formal rules derived from prior chemical experiences. Utilizing
predefined reaction templates, which specify the transformation of
reactants into products, they offer high interpretability and accuracy.
However, their applicability is often constrained to scenarios within
the predefined knowledge scope, limiting their generalizability.

2. Template-free models, typically devoid of explicit chemical
knowledge, such as deep neural networks are considered black-box
approaches. While these models have lower interpretability and are
prone to violating chemical principles, they have shown promise in
discovering new reaction pathways.

3. Semi-template-based models operate in two phases:
identifying reaction centers to transform the product into synthons,
and then completing these synthons into reactants.

This a comprehensive exploration of
contemporary strategies,
advancements in retrosynthesis prediction models. It examines the

review provides

retrosynthetic focusing on recent

integration of artificial intelligence (Al) into retrosynthesis

prediction, with comparative analysis of commonly utilized data
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sources and molecular representations. Furthermore, the review
evaluates the applications of modern intelligent algorithms across
template-based, template-free and semi-template-based models.
Finally, it highlights the challenges and outlines potential future
directions for this rapidly evolving field.

2. Deep learning algorithms

Artificial intelligence (Al) algorithms are designed to emulate
human intelligence, extracting potential rules from datasets and
leveraging these rules to make predictions with new data. Deep
learning (DL), a rapidly advancing branch of Al, has demonstrated
exceptional performance across a variety of tasks, fueled by
enhanced computational power and modern algorithms. Generally,
DL models can be divided into three categories: supervised
learning, unsupervised learning, and reinforcement learning (RL).

In supervised learning, models are trained using datasets
containing labeled samples, where the models learn to map input
features to output labels. There are two primary types of supervised
learning: classification and regression. Classification models
predict discrete output labels, while regression models are designed
to forecast continuous values. Unsupervised learning, on the other
hand, involves training models with datasets of unlabeled samples.
These models autonomously identify patterns and relationships in
the data without explicit guidance. Reinforcement learning allows
an agent to learn through trial and error within a specific
environment. The agent receives rewards for actions that produce
desirable outcomes and penalties for undesirable ones, aiming to
develop a strategy that maximizes expected rewards over time.
Most retrosynthesis prediction models employ the supervised
learning strategy, as illustrated in Figure 1.
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Figure 1. The process of supervised learning method.

Common DL algorithms used in retrosynthesis prediction include
sequence to sequence (Seq2Seq) models, graph neural networks

(GNNs), reinforcement learning (RL), and various search
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algorithms.
2.1 Sequence generation model

Molecules can be represented as SMILES-based sequences,
allowing the retrosynthesis prediction task to be transformed into a
sequence-to-sequence task. Widely applied in the natural language
processing (NLP) domain, Seq2Seq models have demonstrated
their efficacy in chemical sequence modeling. These models
generate sequences of chemical reactants from a chemical product,
even when input and output sequences vary in length. In this review,
we emphasize recurrent neural network-based Seq2Seq models and
attention-based Seq2Seq models.

To address sequence generation challenges, such as those
found in machine translation, recurrent neural networks (RNNs)
were introduced for encoding and decoding tasks [17,18]. Unlike
feed-forward neural networks, RNNs employ hidden states to store
previous information. The RNN encoder translates an input
sentence into a fixed-length vector, while the decoder sequentially
generates the corresponding target words. The framework of RNN
is illustrated in Figure 2. However, traditional RNN models face
difficulties in capturing long-distance dependencies and lack the
ability to parallelize computations. The Bidirectional Long Short-
Term Memory (biLSTM), a variant of RNN, overcomes these
limitations by selectively retaining long-distance dependencies
using gating mechanisms. Additionally, the attention mechanism,
which prioritizes limited resources on crucial information,
enhances the biLSTM framework by allowing hidden states to
incorporate global information, addressing the issue of non-
parallelizable computations [19]. To further improve global focus, a
multi-step attention mechanism is introduced at each decoder layer.
The Transformer model, pioneered by Vaswani et al., features
encoders and decoders that depend solely on Multi-Head Self-
Attention mechanisms. This design enables effective capture of
long-range correlations within sequences. In recent years,
transformer-based models have emerged as a leading approach in
purely data-driven retrosynthesis prediction, thanks to their
exceptional performance.

The attention mechanism in deep learning assigns weights to
different parts of the input data, prioritizing areas of greater
importance by assigning higher weights. The self-attention

mechanism, a specific type of attention, applies this concept within
the same sequence, enabling the model to discern relationship
between any two positions. This is essential for understanding the
structural and contextual information embedded in the sequence.
The self-attention mechanism is implemented using query, key, and
value vectors: the query vector assesses the similarity with key
vectors, and the resulting weights are applied to the value vectors to
compute the output.

More specifically, for a set of column vectors,
[0 ] -

conceptualized as a process that establishes interactions between

the self-attention mechanisms can be

different vectors /; in a linearly projected space. The encoding
formulas of self-attention mechanisms are as follows:

self-att( , , )=V~softmax<—> )

T
@

Here, denotes the dimension of the column vectors in the input
(queries) and  (keys). denotes the dimension of
column vectors in the matrices V (values). o,

o, X are three projection matrices.
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The use of Multi-Head Self-Attention allows for the capture of
varied interaction information across multiple distinct projection
spaces. When the self-attention model is applied within such

projection spaces, it can be mathematically represented as follows:
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Figure 2. Transformer framework and RNN framework.
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X

Here is the output projection matrix, and
o, *  and X are the projection
matrices for {1,... }
Figure 2 illustrates the network architecture of the

Transformer model, which can be divided into two parts: the
encoder and the decoder. The encoder comprises multiple layers of
multi-head attention modules. The decoder generates the target
sequence autoregressively, consisting of masked self-attention
modules, decoder-to-encoder attention modules, and feedforward
neural networks.

Besides RNN-based models and attention mechanisms-based
models, Gehring et al. proposed a framework for sequence
modeling [20] known as the convolutional sequence to sequence
(ConvS2S) model. Its encoders and decoders consist of multilayer
convolution neural networks, which are more efficient than RNNs
in some cases.

2.2 Graph neural networks

Molecules can be represented not only by encoding them into
sequences but also as undirected weighted graphs, a data structure
derived from graph theory. These consists of a set of vertices, a set
of edges, and a set of global information. Each edge is assigned a
weight, and connections between vertices are directionless. For a
detailed discussion about graph-based molecular representations,

please refer to Section 4.3.

There are three general types of prediction tasks on graphs:
graph-level, node-level, and edge-level. The prediction of chemical
molecules typically falls under the graph-level category, which can
be solved with Graph Neural Networks (GNNs). GNNs are
promising parameter-efficient tools for learning the structural
information of graphs, enabling the predictions of molecular
transformations in reactions [21]. A GNN is an optimizable
transformation applied to all attributes of the graph that preserves
graph symmetries (permutation invariances). Sperduti was the
pioneer in applying neural networks to directed acyclic graphs [22].
This approach is also applicable to the undirected graph
representation of chemical molecules.

Figure 3 illustrates an example of a GNN using the “message
passing neural network” framework for a binary classification task,
which can easily be extended to the multi-class or regression tasks.
With the numerical representation of graphs as input, this GNN
learns new embeddings for all graph attributes (nodes, edges,
global) without using the connectivity of the graph. This GNN uses
a separate multilayer perceptron (MLP) on each component of a
graph referred to as a GNN layer. For each graph attribute vector,
the MLP is applied, and a learned vector is generated. Finally, it
makes predictions by pooling information, such as gathering
information from edges to nodes.
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Figure 3. GNN framework with message passing neural network for classification tasks.

Researchers have further proposed Recurrent Graph Neural
Networks (RecGNNs) [23,24], where neighbor information is
propagated iteratively to update the representations of target nodes.
Due to the significant success of convolutional neural networks
(CNNs) in computer vision, convolutional operations were
introduced into GNNs, leading to the development of Graph
Convolutional Networks (GCNs) [25]. The convolution operation
in GCN is a weighted average of the features of the graph to
aggregate information about features and their neighbors. However,
the weights lack
permutation invariances. To overcome this problem, researchers

generated by the aggregation operation
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have introduced attention mechanisms into GNN and proposed
Graph Attention Networks (GATs) [26] and Gated Attention
Networks (GAANSs) [27]. Building upon these advances, Graph
Autoencoders (GAEs) [28], Graph Generation Networks (GGNs)
[29], and Spatio-Temporal Graph Convolutional
(STGCNs) [30] have been further developed.

Networks

2.3 Reinforcement learning

Reinforcement Learning (RL) is a type of unsupervised learning
method [31]. It addresses problems where an agent learns by
interacting with the environment to achieve specific objectives,
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such as maximizing rewards. Similar to deep learning, a crucial
challenge in RL is the allocation of contributions. Each action does
not receive direct supervised feedback but relies on a delayed
supervised signal (reward) from the entire model. The primary
distinction between RL and supervised learning is that RL does not
require a predefined "correct" strategy as supervised information;
instead, it focuses on maximizing expected returns by refining
strategies based on delayed rewards.

In RL, two interacting entities exist: the agent and the
environment. The agent perceives the state and reward of the
environment, engaging in learning and decision-making. Decision-
making involves selecting actions based on the current state of the
environment, while learning adjusts strategies in response to
received rewards. The environment comprises all external elements
to the agent, subject to changes in its state due to the agent's actions
and providing corresponding rewards to guide the agent’s behavior.

The fundamental components of RL include:

(1) States (s): A description of the environment, which can be
discrete or continuous, forming the state space

(2) Actions : Representing the agent's behavior, also in
discrete or continuous forms, forming the action space

(3) Policy (| ): A mapping that determines the agent’s next
action based on the environment's state

(4) State transition probabilities ( | , ): The probability of
the environment transitioning to a new state ' after the agent takes
action a from the current state

(5) Immediate rewards (, , '): Scalar functions that provide
feedback to the agent based on its action in the current state
often correlated with the subsequent state '

The objective of RL is to learn a policy ( | ) that maximizes
the expected return. The objective function is represented as:

-1

()

]

Here, 6 represents the parameters of the policy function. Value

ol OI= ()[

=0

functions are used to evaluate the expected return of a policy =,
including state value functions and state-action value functions (Q-
Function). The policy can be iteratively optimized based on these
Additionally,
maximized by directly searching the policy space, using methods
[32,33]

value functions. the expected return can be

like gradient-based optimization and gradient-free
optimization.

Deep Reinforcement Learning combines RL and deep learning
methodologies, employing RL to define problems and optimization
goals, using deep learning to address the modeling of policy and
subsequently  employing  error
backpropagation algorithms to optimize the objective function.
Mnih et al. proposed Deep Q-Networks (DQNSs) [34], a cornerstone
in the field of deep RL. DQNs use convolutional neural networks to

value  functions, and

estimate Q values. Two pivotal measures in the Deep Q-Network
are:

1. Freezing of target networks: The parameters of the target
network are fixed for a specified duration to stabilize learning
objectives.

2. Experience replay: An experience pool is constructed to
climinate data correlations. This pool stores recent experiences
gathered by the agent as a dataset. During training, random samples
are drawn from the experience pool to replace current samples.
This approach breaks the similarity between adjacent training
samples, preventing the model from converging to local optima.
The learning process of DQNss is illustrated below.

Algorithm: DQN with Experience Replay

Input: State space , Action space

, Discount rate , Learning rate

, obtain immediate reward and the new state

(ss, aa))z;

1  Initialize experience pool  with capacity ;
2 Randomly initialize parameters of the Q network ;
3 Randomly initialize parameters of the target Q network = ;
4 | Repeat
5 Initialize the starting state ;
6 Repeat
7 In state , select action =
8 Execute action
9 Place , , , into ;
10 Sample , , , "from
, "is terminal state

1 =1 o+ (ss,a), otherwise
12 Train the Q network with the loss function: ( —
13 -
14 Every C steps, execute action: ;
15 Until is the terminal state;
16 | Until . (, ) converges;

Output: (, )

Since the advent of value-based approaches, numerous extensions
have been introduced to enhance their efficiency and applicability
[35]. In addition, model-based methodologies have been proposed
[36],
predictive models and direct optimization of policy networks. Deep

enabling the prediction of post-action states through

RL also addresses more complex decision-making problems, such
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as those with goal conditions [37], hierarchical task decomposition
[38], and multiple agents [39]. It has achieved significant success
across diverse applications, ranging from games [40], robotics [41],
and autonomous driving [42] to molecule generation [43]. Such
advancements are widely recognized as crucial milestones toward
the realization of general Al [44].
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2.4 Search algorithms

Search algorithms retrieve stored information from a data structure
or compute it within a search space, forming the foundation for
multi-step retrosynthesis prediction in planning synthesis routes.
Generally, these algorithms are classified into two categories:
uninformed searches and informed searches. Uninformed searches
do not use information regarding the cost of state transitions;
common examples include depth-first search and breadth-first
search. In contrast, informed searches use heuristic functions to
estimate the distance between the current stage and the goal,
thereby guiding the search process. While not necessarily optimal,
this approach provides favorable solutions within a reasonable time
frame. Best-first searches represent typical heuristic searches

employing a priority queue concept. The OPEN list contains
currently traversable nodes, while the CLOSED list stores traversed
nodes. Beam search enhances best-first search by expanding the
most promising nodes within a limited set [45]. A search
amalgamates the merits of uniform cost search and best-first search,
ensuring optimality in solutions [46]. In this context, the cost of
cach state comprises the actual cost from the starting state to the
current one and the heuristic cost from the current state to the goal
state. Monte Carlo Tree Search (MCTS) [47] refines value
estimates from the current state to the goal state. AlphaGo [48]
stands as one of the most renowned applications of MCTS, where it
explores potential moves and tracks outcomes within a Go search
tree. MCTS consists of four phases:
Simulation and Backpropagation. (see Figure 4)
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Figure 4. The process of MCTS: selection, expansion, simulation, and backpropagation.

3. Data sources

In CASP tasks, whether employing symbolic Al or purely data-
driven modeling, a dataset that can be parsed by a computer is a
fundamental requirement. The quality of the dataset determines the
model's upper performance limit. It is no exaggeration to state that
the quality of the dataset is often more important than the model
itself [49]. Therefore, computational chemists must pay particular
attention to the characteristics of the input dataset. This section
provides a summary and comparison of commonly used chemical
reaction databases.

Journals and publishing houses have made their datasets
available under licensing agreements in computer-readable format,
through automatic extraction by algorithms and expert manual
coding. Examples include the Reaxys database, published by
Elsevier, which, as of 2023, contains over 73 million reactions. It
offers comprehensive and up-to-date journal and patent coverage
from 16,000 journals and 105 patent offices. To extract information
from chemical patents, Elsevier and the University of Melbourne,
Australia initiated a project based on NLP models, called ChREMU
[50]. The Chemical Abstracts
approximately 150 million reactions spanning from 1840 to 2023,

Service (CAS) encompasses

including organic, inorganic, total synthesis of natural products,
and biotransformation reactions, making it the largest provider of
reaction data. Its data sources derive from journals, patents,
dissertations, and seminal reference works. Furthermore, smaller-
scale datasets include SPRESI, developed by InfoChem, which
encompasses 4.6 million reactions spanning the period from 1974
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to 2014. Another prominent dataset, Pistachio, created by
NextMove Software, comprises patent data from 1976 to 2023,
encompassing a vast corpus of over 13,118,970 reactions. Among
researchers, the most extensively employed dataset is a subset of
patent data extracted by Lowe during the period from 1976 to 2016,
which encompasses 3.3 million reactions. This dataset is presently
the sole publicly accessible repository of reaction data and is
commonly called USPTO [51]. Moreover, USPTO 50K, a subset
and preprocessed iteration of Chemical reactions from USPTO, is
composed of 50,000 randomly selected reactions, covering ten
distinct reaction types [52]. USPTO-MIT [53] is also a commonly
used subset, which contains a wider range of reagents and possible
catalysts compared to USPTO-50K. The specific details of
commonly used datasets are listed in Table 1.

Although the datasets mentioned above include details on
molecular structures, reaction conditions (e.g., solvents, catalysts,
reagents), and yields, they are not immune to errors. Additionally,
the prevalence of positive data in most patents and literature
contributes to an uneven distribution of product representations
[54,55], which can negatively impact model performance.
Furthermore, within the CASP framework, instances of failed
reactions play an important role, especially in situations concerning
regioselectivity and chemoselectivity. To address these challenges,
efforts have been made to publish data that ensures greater
consistency [56]. IBM has developed a method leveraging Natural
Language Processing (NLP) to extract experimental procedures
from patents and scientific literature, thereby creating structured,
automation-friendly formats [57]. The Pistoia Alliance has
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collaborated with Elsevier to define a Unified Data Model (UDM)
for the exchange of reaction information. Electronic laboratory
notebooks (ELNs), a novel dataset extracted from the electronic
laboratory notebooks of a large pharmaceutical company, are not
subject to the publication bias toward high-yielding reactions
[58,59].

Of notable mention is that, when comparing various data

Table 1. Overview of dataset used for retrosynthesis prediction models.

sources, such as patents (USPTO and Pistachio), literature and
patents (Reaxys), and industrial data (AstraZeneca ELN), despite
similarities in the size of their template sets, they differ in the
coverage of reaction space33. Reaxys stands out for its extensive
and uniquely diverse collection of reaction templates, providing a
broader reaction space [60].

Dataset Source

Sample size

Reaction space
coverage

License/Accessibility
Notes

journals and

Reaxys patent

ChEMU patents N/A

journals and

CAS patent

SPRESI literature

Pistachio USPTO + EPO

USPTO-full USPTO

USPTO 50K USPTO 50k

7300k

15000k

4600k

9000k

3300k

Commercial annual
license, includes
confidentiality clauses

Creative Commons
Attribution 4.0
International (CC BY 4.0)

Commercial license,
contact CAS for public or
commercial use
Commercial database,
typically accessed via
institutional/national site
licenses
Commerecial license
(NextMove Software
product), contact directly
for details
Public domain within
U.S., USPTO reserves
international copyright,
may contain third-party
copyrighted content
Derived from public
domain USPTO patents, no
explicit license, academic
attribution generally
expected

-+

N/A

N/A

N/A

++

+H+

+++

Note: + symbols indicate reaction space coverage level (+ = low, +++++ = very high)

N/A: Not Available / Not Applicable, indicating the information is not provided by the dataset source or is outside its scope.

4. Molecular representation

In CASP tasks, the quality of the dataset and the art of feature
engineering play determining roles in the performance of the model.
Therefore, chemists have developed numerous distinct molecular
representation methods with the aid of mathematical tools. These
methods aim to encapsulate the complete information of molecules
through  abstract mathematical symbols. 1D  molecular
representation methods can solely represent global molecular
properties exclusive of structural patterns, such as pKa, logP, etc.
2D molecular representation methods can represent structural
patterns without explicit 3D information, including SMILES
(Simplified Molecular [61,62],

fingerprints, and molecular graphs, which are the mainstream

Input Line Entry System)

methods used in retrosynthesis tasks. 3D molecular representation
methods, such as image-based methods, can contain high-
dimensional information. However, higher dimensionality does not
always guarantee better performance. In recent years, a 3D
molecular representation learning framework has been proposed to

automatically capture richer information in higher dimensions [63].

4.1 Molecular string representation
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SMILES is the widely
representation system for encoding molecular structures. It

most adopted molecular string
combines specific syntax rules with chemical principles to
represent molecular structures in a rigorous and compact form. One
of the advantages of SMILES is its ability to transform reaction
prediction tasks into machine translation tasks. For sequence
modeling problems, leveraging natural language processing (NLP)
models in the field of artificial intelligence can solve them
efficiently [64]. For example, the Transformer architecture based
on the attention mechanism is one of the most favored NLP models
among computational chemists. For SMILES representation of
chemical reactions, reactants, reagents, and products can be linked
together using symbols, similar to the molecular fingerprint method.
The "™>" symbol is used to indicate the direction of the reaction, as
in the format: "Reactants > Reagents > Products". However,
SMILES grammar is sequence-sensitive and has trouble dealing
with stereochemical representation. SMARTS, an extension of the
SMILES language, is designed for describing molecular patterns
and properties. SMARTS can be used to create queries. One
notable feature of SMARTS is its allowance for the use of
wildcards to represent atoms and chemical bonds. This flexibility
has made SMARTS a widely used tool for efficient and versatile
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chemical structure searching.

Self-Referential Embedded Strings (SELFIES) [65] is a
method for representing molecular structures that is both 100%
robust and human-readable. SELFIES was proposed to address the
limitation of SMILES, such as grammar violations. InChl [66],
another string-based representation, offers the advantages of

uniqueness and reversibility compared to SMILES. Unlike
SMILES, these methods no longer involve atom-atom mapping to
identify reaction centers. The SMILES representation of caffeine is
shown in the following Figure 5, including the process of ensuring
its SMILES representation.

The SMILES of caffeine

o o 3

\NJIN/ - \NHN/

o)\N | N/> o)\N zl N/> = \|\|1
I |

Figure 5. The process of getting the SMILES representation of caffeine.

4.2 Molecular fingerprints

Molecular  fingerprints are another valuable tool in
cheminformatics for representing molecules. The core idea behind
molecular fingerprints is to map a molecular into a bit string or a
numeric array of length 1, where each bit encodes whether the
molecule contains a specific substructure feature. Molecular
fingerprints offer several advantages, including high computational
efficiency and ease of retrieval, making them an ideal choice for
molecular similarity assessments. Common approaches include
substructure key-based fingerprints, path-based fingerprints, and
circular fingerprints. This review focuses on widely used molecular
fingerprint methods. For a comprehensive
molecular fingerprints and related software, please refer to Cereto-
Massagué's work [67].

Substructure key-based fingerprints represent compounds as

introduction to

bit strings, encoding the presence of specific substructures or
features from a predefined list of structural keys. The MACCS
fingerprint system [68] offers two options: a 960 bits variant and a
more compact 166-bit version, both based on SMARTS patterns of
structural keys. Despite its reduced size, the 166-bit variant
effectively captures most chemically relevant features, making it
suitable for tasks such as drug discovery and virtual screening.

1.SMILES

2.Morgan fingerprint
3.radius=2,nBits=2048

(I(C)CN2C)-0)-0

Similarly, the PubChem fingerprint [69] comprises 881 structural
keys,
substructure features and forming a basis for similarity searches in
the PubChem database. The BCI fingerprint [70], with user-
customizable options and a standard substructure dictionary of
1052 keys, offers flexibility in its generation [71]. Furthermore, the
TGD and TGT fingerprints [71,72], calculated from 2D molecular
graphs,
representations, consisting of 735 and 13,824 bits, respectively.

providing a comprehensive representation of diverse

present two-point and three-point pharmacophore
These fingerprints, with their distinct characteristics, cater to a
wide range of cheminformatics applications, allowing researchers
to effectively explore and analyze chemical compound data.

by

molecular fragments that follow predefined paths (typically linear),

Path-based fingerprinting operates scrutinizing  all
up to a specific number of bonds. Subsequently, each of these paths
undergoes hashing to generate a unique fingerprint. These
fingerprints are widely used for substructure searches and
molecular filtering due to their computational efficiency. Among
them, the "Daylight Fingerprint" stands out prominently [73],
comprising as many as 2048 bits that meticulously encode all
possible connectivity paths within a molecule up to a defined
length.
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Figure 6. The result of the caffeine structure with highlighted atoms which are related to Morgan fingerprint.
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Circular fingerprints focus on recording the environment
surrounding each atom within a defined radius. While they are less
suitable for substructure verification queries due to the possibility
of identical fragments exhibiting distinct environments, they are
valuable for full-structure similarity searches. Molprint2D encodes
the atomic environments of each atom in a molecule's connectivity
table, representing these environments as strings of varying sizes
[74,75]. ECFP (Extended-Connectivity Fingerprints) is an
extension of the circular fingerprint based on the Morgan algorithm
[76]. They represent cyclic atom neighborhoods and generate
variable-length fingerprints. The commonly used ECFP variant has
a diameter of 4, often referred to as ECFP4. A diameter of 6
(ECFP6) is also quite FCFP (Functional-Class
Fingerprints) is a variant of ECFP, indexing the function roles of

atoms. Different atoms with similar functions are not distinguished

common.

in the fingerprint. It can represent stereochemistry information
which can further be used to infer structure-activity relationships.
Figure 6 shows how to convert the caffeine structure from the
SMILES representation to Morgan fingerprint.

4.3 Molecular graphs

With the rapid advancements in graph neural networks, molecular
graphs have gained significant attention from researchers in the
CASP field. An undirected graph serves as a foundational data
structure in graph theory, consisting of nodes and edges with

Molecule structure
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Figure 7. The graph representation of Caffeine.
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Compared to SMILES and molecular fingerprints, molecular
graphs offer a richer representation of chemical structures. They
capture detailed information about atom types, bond types,
topologies, as well as 3D information such as bond lengths and
bond angles. Additionally, molecular graphs are invariant to atom
ordering, making them robust for various applications. However,
the practical application of molecular graphs relies on efficient
algorithms to extract these representations from molecular
structures [78,80].

For reaction graphs, extracting reactions using pre-trained
models presents a promising approach. Atom mapping further
enhances the effectiveness of reaction graphs by enabling a single
condensed reaction graph (CGR) to represent chemical reactions
[81]. This CGR is a superposition of reactant and product graphs,
providing a comprehensive view of the reaction dynamics.

5. Retrosynthesis strategy evaluation

5.1 Candidate reaction evaluation

Molecule graph
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associated weights. In such graphs, edges lack

directionality, allowing for bidirectional connections between

explicit

nodes A and B. Representing a finite graph, the adjacency matrix is
a square matrix where each element denotes whether nodes are
interconnected by edges. The matrix’s size corresponds to the
number of vertices in the graph, and its diagonal elements are
invariably zero. A value of 1 at the intersection of row i and
column ; indicates a direct edge between node i and node ;.
However, the adjacent matrix exhibits a space complexity of O(n?),
where 7 is the number of vertices in the graph, making it inefficient
for large graphs. To enhance computational efficiency, especially
with larger matrices, adjacency matrices can be transformed into
eigenvectors representing nodes, edges and global properties.
These eigenvectors are often used as input features for graph neural
networks.

Molecules, the elemental constituents of matter, consist of
atoms and electrons arranged in three-dimensional space. Despite
interactions among all particles, a stable separation between two
atoms forms a covalent bond. Varied atomic pairs and bonding
configurations, such as single and double bonds, manifest distinct
interatomic distances. This inherent characteristic facilitates the
representation of molecules as graphs, where atoms serve as nodes
and chemical bonds as edges [77-79]. Figure 7 illustrates the
graph representation of Caffeine, showcasing its molecule structure,
molecule graph and corresponding adjacency matrix.

Adjacency matrix
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In retrosynthesis, “combinatorial explosions” present a significant
challenge. Scientists aim to constrain recursive unfolding to the
most promising bond breaks, thereby focusing on structures that are
more easily synthesized.

The synthesizability of molecular structures is crucial in
evaluating candidate reactions. The Synthesis Accessibility Score
(SA Score) measures this by evaluating the contribution of
fragments, which scale linearly with commonly synthesizable
structural features, while penalizing the presence of rare and
complex structural features [82,83]. Chematica introduces a metric
for assessing synthetic difficulty by considering structural
complexity, reaction step length, reaction conflicts and protecting
groups. The SCScore is based on the principle that reaction
products should exhibit higher synthetic complexity than their
reactants [84,85]. Other evaluation methods include the support
machine-based DRSVM [86]

complexity metrics [87].

vector and various current

5.2 Model evolution

In a CASP modeling workflow, model evaluation plays a pivotal
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role. CASP tasks, due to their specificity, differ significantly from
conventional regression and pattern recognition tasks. To select
models suitable for practical retrosynthesis tasks, evaluation
metrics tailored to these tasks must be employed. Retrosynthesis
tasks are generally divided into two categories: single-step
retrosynthesis and multi-step retrosynthesis prediction.

For single-step retrosynthesis, Top-N accuracy calculation is a
commonly used metric to evaluate the performance. It examines
whether the entire set of ground truth precursors-the actual
reactants reported in the template library for the corresponding
target molecule-is included among the first N precursors suggested
by the model. This metric demands an exact match in molecular
structure, which can be measured using a molecular similarity. A
similarity score of 1 denotes identical structures [88]. Additionally,
some alternative evaluation metrics for single-step retrosynthesis
have been introduced [89]. For multi-step retrosynthesis, evaluation
can be achieved by using single-step retrosynthesis methodology
repeatedly.

Beyond Top-N accuracy, comprehensive evaluation of
retrosynthesis models requires additional metrics that assess
practical utility. Chemical validity measures whether predicted
reactants can realistically undergo the proposed transformation,
ensuring adherence to fundamental chemical principles - a
particular concern for template-free models that may generate
suggestions.  Synthetic
evaluates the practical feasibility of obtaining predicted starting

chemically implausible accessibility

materials, with metrics like SA Score and SCScore helping

prioritize routes leading to readily available compounds.

Performance on rare reaction types is equally important, as most
datasets exhibit significant class imbalance favoring common

transformations, making evaluation on underrepresented reaction
classes essential for assessing true generalization capabilities.
Additional diversity,
computational efficiency, and ultimately, experimental validation

considerations  include  prediction
rates, though the latter remains limited due to the cost and time

requirements of laboratory verification.

6. Template-based models

Template-based models often involve matching the target molecule
with an entire template library. The subgraph isomorphism problem
is then solved to obtain candidate reactants. The core of template-
based systems lies in the use of retrosynthesis templates. As shown
in Figure 8, a reaction template is represented by molecular
subgraph patterns that encode changes in the connectivity of atoms
during a reaction. Mathematically, a retrosynthesis template 7 is
denoted as the following rule:

-{ )

Where
reaction center, while

is a subgraph of the product P and can be regarded as the
is the subgraph of the ith reactant.

Starting with a target molecule, a template is selected
following predefined rules and is applied to the target molecule to
determine the reactants. While template-based methods offer better
interpretability and accuracy than template-free methods, they are
computationally demanding and have limited generalization outside
the template library. The mission of modern intelligent algorithms
is to lower the computational complexity of this process.

Reaction

Template

Figure 8. Illustration of a chemical reaction and its retrosynthesis template.

Traditionally, reaction rules have been defined and hand-coded by
experts. Szymkuc et al. provided a review on using reaction
templates coded by human experts for synthetic planning [90].
With the reaction space growing exponentially at a rate of 4.4% per
year [91], manual coding becomes an overwhelming task. An
alternative approach to reaction coding utilizes algorithms that
extract reaction centers via atom-to-atom mapping to identify
correspondences between reactants and products [92-95]. For a
given reaction, one can identify the set of atoms that change bond
connectivity as reaction centers. Then, the reaction centers and
adjacent atoms are algorithmically extracted and generalized to
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form the corresponding retrosynthesis template.

With reaction templates available, Coley et al. proposed a
retrosynthesis method based on molecular similarity metrics [96],
such as Morgan2noFeat, Dice similarity, Tanimoto similarity and
Tversky similarity. This approach decomposes target molecules
solely based on analogy to known reaction precedents, inherently
disfavoring creative disconnections. Segler et al. used extended-
connectivity fingerprints (ECFP) as input and constructed a deep
neural network-based model that can learn to resolve reactivity
conflicts and prioritize the most appropriate transformation rules,
which is one of the first ML-based template models [97]. This
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model addresses the multi-class classification problem of
categorizing similar templates into subgroups and its performance
is often used as a benchmark in template-based approaches. Watson
et al. proposed a template-based approach using reverse reaction
transforms (RRTs) [98]. RRTs are extracted from clusters of similar
reactions. By searching possible synthesis routes in the RRT-
repository, this method decomposes a target molecular into
fundamental building blocks. Genheden et al. developed the
retrosynthesis software AiZynthFinder [99], which is based on a
Monte Carlo tree search that recursively disconnects molecules into
purchasable precursors. The tree search is guided by an artificial
neural network strategy that suggests possible precursors by
utilizing a library of reaction templates. Park et al. proposed
undersampling based on the similarity (random, dissimilarity)
clustering of molecular structures of products to address the class
reaction datasets [100],

significantly improving prediction accuracy. Chen et al. proposed a

imbalance problem in chemical
local retrosynthesis framework, LocalRetro [101], which assums
that molecular changes occur mostly locally in the process of
reaction, complemented by a global attention mechanism to
account for the nonlocal effects. Seidl et al. proposed a template-
based single-step retrosynthesis model based on modern Hopfield
networks [102], which learns the encoding of molecules and
reaction templates to predict the correlation of the template with a

given molecule. This template representation allows generalization

across different reactions. AiZynthTrain, developed by Genheden et
al [103], is a robust, reproducible, and extensible end-to-end
retrosynthesis model. Its process includes two pipelines that build a
template-based one-step retrosynthesis model and a ring breaker
model, highlighting the important role of heuristics. Dai et al.
proposed a conditional graph logic network model based on a
hierarchical sampling approach [104]. A conditional graph logic
network is built on graph neural networks that learn when the rules
in a reaction template should be applied, implicitly considering
whether the final reaction is chemically feasible and strategic.
RetroComposer [105], proposed by Yan et al, can synthesize new
templates in addition to using training templates. They developed
an effective candidate scoring model that can capture atomic level
transformation.

In a broad sense, template-based models can include quantum-
computation-based retrosynthesis models, as quantum computation
can generate new reaction templates. Liu et al established a
reaction Kkinetics-based retrosynthesis planning framework to
design synthetic pathways [73]. The forward analysis component
consists of transition state theory (TST)-based reaction kinetic
and DFT calculations. The planning
component includes Decision tree model and breadth-first search

model retrosynthesis
algorithm. To address the issue of poor sample quality in datasets,
Toniato et al. proposed supplementing missing data for model
retraining using first-principal computation [106].

Table 2. Overview of retrosynthesis prediction performance for template-based methods.

source code

Methods Algorithm Dataset Features TOP-1 TOP-5 TOP-1 TOP-5 o e
availability
with reaction without reaction
class class
Retrosim Similarity - fingerprint 52.9 81.2 373 63.3 Y
Park Taylor - Butina Reaxys SMILES+ﬁng ) ) 51 g4 v
algorithm erprint
LocalRetr Attention USPTO-50k graph 639 924 534 859 Y
0 mechanism
Seidl et al. Hopfield USPTO-50k ~ SMILES - - 518 812 Y
Networks
Ne‘glalsy ANN Reaxys ECFP 553 814 444 724 Y
GLN GLN USPTO-50k graph 64.2 85.2 52.5 75.6 Y
RetroCom  Multiple DL ;gp 1) 50 graph 659 895 545 832 %
poser models

7. Template-free models

Recently, template-free methods have gained popularity in the field
of retrosynthesis as the computationally
demanding task of subgraph matching. These approaches leverage
textual representations of molecules, such as SMILES or InChl
codes, transforming retrosynthesis into a translation task. This

they circumvent

paradigm shift enables the use of advanced deep learning
techniques, eliminating the need for direct atom-to-atom mapping
to identify reaction centers. Predominantly data-driven, these
approaches generally do not require the integration of explicit
chemical knowledge. When extensive and relevant data are
available, these methods can achieve satisfactory results. The
following provides an overview of these approaches, which are
categorized into four groups: deep neural networks, sequence-to-
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sequence models, graphical neural networks, and small sample
techniques.

7.1 Deep neural networks

Baylon et al. present a multiscale retrosynthesis prediction
framework that utilizes a Deep Highway Network (DHN) [107].
This framework operates in two stages: first, a DHN model predicts
the reaction group; second, transformation rules for generating the
molecule are predicted using DHNs trained on subsets of reactions
within the identified reaction group. Hasic et al. developed
retrosynthetic models that identify potential breakpoints on
molecular substructure fingerprint representations [108]. The
model focuses solely on the molecular substructures of the target
molecule to pinpoint potential disconnection sites, without relying
on additional information such as chemical reaction class. Finally,



Jianhan Liao et al./ Commun. Comput. Chem., (2025), pp. 289-310

an essential component of retrosynthetic modeling is a
comprehensive pathway evaluation mechanism. To address this,
Mo et al. introduced a dynamic tree-structured long short-term
memory (tree-LSTM) model [109]. This model enhances the

accuracy and reliability of pathway predictions.
7.2 Sequence-to-sequence

The main concept of seq2seq is to frame retrosynthesis prediction
as a sequence modeling problem. In this framework, the target
molecule serves as the input sequence, while the reactants, reagents,
and catalysts comprise the output sequence. Among these models,
the Transformer - a seq2seq model based entirely on a multi-head
attention mechanism — has emerged as a groundbreaking approach
in recent years. Moreover, the development of Bidirectional
Encoder Representations from Transformers (BERT) [110] has
further enhanced the performance of template-free strategies.
Sequence-modeling-based  retrosynthesis  models, primarily
dependent on attention mechanisms, have become the predominant
Al models for retrosynthesis.

The integration of chemistry with natural language processing
(NLP) was initially proposed by Cadeddu et al [111]. Subsequently,
Liu et al. introduced an encoder-decoder framework that utilizes
two recurrent neural networks, conceptualizing retrosynthesis
prediction as a sequence-to-sequence mapping problem [112].
Compared to template-based baseline models, the Seq2seq model
offers several advantages: it can implicitly learn reaction rules and
candidate ranking metrics, eliminating the need for distinct reaction
complexity ranking metrics used in template-based approaches.
Additionally, the seq-2-seq model is more scalable than the rule-
based approach. Tetko et al. further advanced the filed by
proposing a Transformer model tailored specifically for
retrosynthetic reaction prediction tasks [113].

In recent years, Guo et al. introduced a Bayesian inference
framework [114] that includes a pretrained Molecular Transformer
for forward predictions and employs Bayes' law of conditional
probability to reverse the forward model into a backward one. This
approach allows for generating a diverse set of highly probable
reaction sequences using a Monte Carlo search algorithm combined
with backward model. Zheng et al. developed a template-free self-
correcting retrosynthesis predictor (SCROP) trained using the
Transformer model neural network framework [115]. This model
demonstrates superior accuracy for compounds outside its training
set compared to other state-of-the-art methods. Duan et al.
proposed the attention-based NMT model [116], Tensor2Tensor
(T2T), which significantly improves parallelism while reducing
training time. Tetko et al. further enhanced the Transformer model
framework by employing data augmentation techniques for both
input and target data [117], improving prediction capabilities by
minimizing the effect of memorized data. Seo et al. proposed
Graph Truncated Attention (GTA) [118], which integrates sequence
and graph representations by embedding graph information into a
seq2seq model. This model adjusts the self-attention layer in the
encoder based on the adjacency matrix of the product and modifies
the cross-attention layer in the decoder with atomic mappings
derived from an automated algorithm. Mann et al. developed a
single-step retrosynthetic method using representations based on
SMILES grammars [119], with an information-theoretic analysis
showing superior performance over traditional SMILES for
machine learning tasks. Ucak et al. introduced RetroTRAE, a
single-step retrosynthetic prediction method [120] that eschews

300

SMILES-based translation by utilizing fragment and topological
descriptors as natural inputs. Wan et al. presented Retroformer
[121], a novel structure based on Transformer that avoids
conventional cheminformatics tools for molecular editing and
employs localized attention to jointly encode molecular sequences
and maps. Fang et al. developed a substructure-level decoding
model that extracts normally conserved portions of product
molecules automatically, employing a fully data-driven approach
[122]. Schwaller et al. combined molecular Transformer modeling
with hyper-graph exploration strategies to predict reactants,
reagents [88], solvents, and catalysts for each retrosynthesis step,
and further developed an unsupervised, attention-based network of
Transformer models to learn atom mappings [123], bridging the
gap
enhancing chemical interpretability in the prediction results.

between rule-based and data-driven approaches while

The string representation of molecules, particularly using
SMILES, faces several challenges, including the generation of
invalid strings and insufficient characterization of chemical
reactions. To address these issues, Ucak et al. have introduced a
novel approach that utilizes molecular fragments combining with
template-free sequence-to-sequence models [124], offering a more
robust representation of chemical reactions. Zhang et al. have
enhanced the molecular transformer models by integrating data
expansion and normalized preprocessing strategies [125], which
significantly increase accuracy in forward reaction prediction and
single-step retrosynthesis across diverse reaction categories.
Additionally, Zhong et al. introduced Root-Aligned SMILES (R-
SMILES)
mappings between product and reactant SMILES,

[126], a method that ensures precise one-to-one
thereby
facilitating more efficient synthesis predictions.

To enhance the diversity of retrosynthesis prediction, Chen et
al. introduced a model that broadens the scope of generalizable
predictions across various retrosynthetic reactions [127]. This
model incorporates two innovative pre-training methods within the
Transformer framework and integrates a discrete latent variable
model to promote diversity in predictions. Toniato et al. further
the by appending a
classification token to the language representation of the target

explained Transformer’s capabilities
molecule [128], which enhances the diversity of the predictions.
Meanwhile, Kim et al. developed a dual-path Transformer model
that employs a cycle consistency check [129], parameter sharing,
and multinomial latent variables, significantly improving accuracy,
reducing syntactic errors, and increasing prediction diversity. Irwin
et al. introduced Chemformer [130], a Transformer-based model
that benefits from self-supervised pre-training, which not only
enhances performance but also accelerates convergence in
downstream tasks. To address the challenges of making accurate
predictions with small chemical datasets, Bai et al. implemented
transfer learning techniques in retrosynthesis analysis [131],
effectively combining them with seq2seq or Transformer models to
improve prediction and validation.

Additionally, the recommendation of reaction conditions
remains a critical aspect of retrosynthesis prediction. Addressing
this, Andronov et al. proposed a molecular Transformer framework
specifically designed to recommend reaction conditions effectively

[132].
7.3 Reinforcement learning

Schreck et al. have implemented deep reinforcement learning to
optimize reaction path searches, focusing on identifying the most
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effective reaction strategies during each step of retrosynthesis
based on user-defined cost metrics [133]. Their approach involves
training a neural network to predict expected synthetic cost using
simulation data. Wang et al. introduced a new variant of the Monte
Carlo Tree Search (MCTS) variant that enhances the balance
between exploration and exploitation within the synthesis space.
This model is augmented by a value network, trained through
reinforcement learning, and a solvent prediction neural network,
which together prove effective in identifying shorter and more
environmentally friendly synthetic routes under comparable search
conditions.

Building on these advancements, Guo et al. proposed
Retrosynthesis Zero (ReSynZ) [134], a method that integrates
Monte Carlo Tree Search with reinforcement learning, drawing
inspiration from AlphaGo Zero. A key innovation of ReSynZ is its
use of complete synthesis paths for complex molecules, derived
from reaction rules, as input for neural network training. This
allows ReSynZ's neural networks to generate multiple synthesis
pathways for a target molecule and suggest potential reaction
conditions, even when trained with relatively small datasets.
ReSynZ demonstrates strong predictive performance and offers
self-improving features, flexible reward settings, and the potential
to overcome human limitations in chemical synthesis route
planning.

7.4 Graph neural networks

Graph neural networks (GNNs) are specialized deep learning
models that excel in processing graph-structured data, particularly
for domains such as molecular chemistry, protein interactions, and
social networks. In the context of chemistry, GNNs are particularly
adept at handling undirected graphs, where atoms are represented
as nodes and chemical bonds as edges. This representation aligns
well with the inherent structure of chemical molecules, allowing
GNNs to capture the complex interactions within molecular
structures effectively.

Mao et al. introduced the Graph-enhanced Transformer model
(GET), which combines molecular sequence and graph information
[135], achieving significantly higher test accuracy than the standard
Transformer model. This framework features four different GET
designs that integrate SMILES representations with atomic
embeddings enhanced by advanced GNNs. Sun et al. proposed a
framework that merges sequence-based and graph-based
approaches within energy-based models (EBMs), employing
different energy functions [136] to highlight connections and
differences between models. Additionally, they introduced a new
framework that promotes consistency between forward and
backward predictions using dual variables. Tu et al. developed
Graph2SMILES, a model that leverages the text generation
capability of the Transformer model with the permutation
invariance of a molecular map encoder, thus minimizing the need
for input data augmentation [137]. Liu et al. introduced RetroGNN
[138], a novel method for estimating synthesizability by training a
GNN with data derived from synthesis planning used on many
random molecules, predicting outcomes for a given target
molecule. Sacha et al. proposed the Molecular Editing Diagram
Attention Network (MEGAN) [139], an end-to-end encoder-
decoder model that represents reactions as a series of edits,
allowing for effective exploration of plausible chemical reaction
spaces. Thakkar et al. introduced prompts describing molecular
disconnection to overcome biases in the training database [140],
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enabling chemists to control disconnection predictions for more
diverse and creative retrosynthesis recommendations. Wang et al.
introduced RetroExplainer [141], a model that conceptualizes the
retrosynthesis task as a molecular assembly process. This model
incorporates a multi-meaning and multi-scale graph Transformer,
structure-aware contrast learning, and dynamic adaptive multi-task
learning, significantly outperforming state-of-the-art methods in
single-step inverse synthesis with enhanced interpretability. GNN-
Retro [142], developed by Han et al., combines GNNs with
advanced search algorithms, utilizing the structure of GNN to
incorporate neighboring molecules information for improved
estimation accuracy. Jiang et al. enhanced model accuracy by
implementing atomic conservation rules through a molecular
reconstruction pretraining task and specifying reaction centers
through a reaction type-guided comparison pretraining task [143].
Finally, Liu et al. proposed a framework that uses contextual
information to improve retrosynthetic planning [144] by viewing
synthetic routes as reaction graphs and integrating context through
molecule encoding, route information aggregating, and reactant
prediction.

7.5 Hybrid Al systems

Recent developments in chemistry-informed search methods have
effectively combined modern search algorithms with symbolic AL
Segler et al. introduced the 3N-MCTS model, which incorporates
MCTS with an expansion policy network to guide the search [145],
and an “in-scope” filter network for pre-selecting the most
promising retrosynthetic steps. This method is approximately 30
times faster than traditional search methods relying on extraction
rules and hand-coded heuristics, achieving both speed and accuracy.
Lin et al. proposed AutoSynRoute, a template-free retrosynthetic
model [146] that utilizes a Transformer model for retrosynthesis
prediction and MCTS with heuristic scoring for route planning.
This model, unlike traditional template-based models, learns the
global chemical environments of molecules but shares the inherent
limitations of SMILES-based models. Additionally, Hong et al.
developed an experience-guided Monte Carlo tree search (EG-
MCTS), which leverages synthesis experience rather than standard
rollout [147] procedures to optimize the search process.
Latendresse et al.’s SynRoute [148] utilizes a relatively small
number of reaction templates and a literature-based reaction
database to find practical synthetic routes to target compounds,
with each reaction template supported by a machine learning
classifier for enhanced prediction capabilities. Chen et al.
introduced an A* search method using neural network-based
models that represent reaction information as AND-OR trees (AND
nodes for reactions, OR nodes for molecules), with the search
guided by a neural network trained on past retrosynthesis planning
experiences to estimate synthesis costs effectively [149].
Chematica [150,151] stands out by utilizing a high-quality
chemical database of just 50,000 rules, incorporating strategies to
penalize  nonselective reactions, strained intermediates, and
unlikely structural motifs, along with heuristic searches to
efficiently navigate the reaction network. This system terminates its
routines upon identifying commercially available building blocks,
significantly reducing time and costs by minimizing purification
steps. It also includes a bond preservation rule to develop routines
distinct from patented alternatives, and notably, Chematica has
achieved success in passing the Turing test.

Incorporating  robust ranking

systems into Al-driven
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retrosynthesis models can significantly enhance their performance.
Lin et al. developed an energy-based model specifically designed to
reorder products recommended [152] by existing models such as
RetroSim, a similarity-based approach, and NeuralSym, a deep
learning approach. This reordering capability notably improves the
overall performance of these models. Furthermore, Li et al.
introduced RetroRanker [153], a graph neural network-based
ranking model that mitigates frequency bias in retrosynthesis
predictions by reordering outputs. RetroRanker evaluates potential
reaction changes for each predicted reactant set relative to the given

products, effectively deprioritizing chemically implausible
predictions. Additionally, Jeong et al. proposed ASICS (Advanced
System for Intelligent Chemical Synthesis) [154], which utilizes
pseudo-A* search strategies to identify optimal synthetic pathways.
ASICS minimizes a composite score of synthetic reaction value
which

likelihood score, and similarity score. This system uniquely

function, includes the synthetic accessibility score,
balances the exploration between confirmed reaction spaces and
unexplored reaction spaces, thereby optimizing the search process

for feasible synthetic routes.

Table 3. Overview of retrosynthesis prediction performance for template-free methods.

Methods

Algorithm

Dataset

Features

source code

TOP-1 TOP-5 TOP-1 TOP-5

availability
with reaction class without reaction class
Karpov Transformer transformer USPTO-50k SMILES - - 42.7 69.8 Y
Transformer
AutoSynRoute MCTS USPTO-50k SMILES 54.6 80.2 43.1 71.8 Y
Bayesian-Retro Transformer
(MT-predictable) LSMC USPTO-50k SMILES 62.1 88.8 53.8 84.1 N
Chemformer transformer USPTO-50k SMILES - - 54.3 62.3 Y
Pistachio+ .
tree-LSTM LSTM ASKCOS fingerprint - - 79.1 88.6 N
G2Retro MPN USPTO-50k graph 63.6 88.4 54.1 81.2 Y
GTA attention USPTO-50k  SMILES - ; 51.1 74.8 N
mechanism
LV-transformer transformer USPTO-50k SMILES - - 40.5 72.8 N
GTE GNN*trans — opro il graph 76.6 89.6 44.9 62.4 Y
former
MEGAN GAN USPTO-50k graph 60.7 87.5 48.1 78.4 Y
Graph2SMILES GNN USPTO-full graph - - 52.9 70 Y
SCROP transformer USPTO-50k SIMLES 59 78.1 43.7 65.2 N
Retroformer transformer USPTO-50k SMILES 64 86.7 53.2 76.6 Y
SMILES- transformer uspTo-s0k  SIMLES- 43.8 61.4 32.1 48.9 N
grammar-based like
T2T attention USPTO-50k  SMILES - ; 51 69 Y
mechanism
RetroTRAE transformer USPTO-full ECFP - - 58.3 - Y
Liu seq2seq USPTO-50k SMILES - - 374 57 Y
Molecular - USPTO-50k  HSFP 61.4 70.4 61.4 70.4 Y
Substructure
Fang transformer USPTO-full SMILES - - 50.4 - Y
AT transformer USPTO-50k SMILES - - 53.5 81 Y
Substructure-based seq2seq USPTO-full MACCS - - 29 - Y
Dual-TF GNN+seq2seq  USPTO-50k  Zrapht 65.7 84.7 53.6 74.6 N
SMILES ’ ’ ’ ’
Seqzlseq‘t.mmfer transfer learning  USPTO-50k  SMILES - - 60.7 83.5 N
earning
Two-way transformers transformer USPTO-50k SMILES - - 47.1 73.1 Y
RetroExplainer Graph USPTO-50k  graph 66.8 92.5 577 84.8 Y
Transformer
R-SMILES transformer USPTO-50k SMILES - - 56.3 86.2 Y
Zhang et al. transformer USPTO-50k SMILES 55 79 43 73 N
Pre-training transformer ~ USPTO-50k  SMILES 67.1 85.2 62 78.4 N

transformer
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8. Semi-template-based models

Semi-template-based methods offer an alternative approach to
retrosynthesis that does not rely directly on reaction templates for
transforming products into its reactants. Instead, these methods
first
identifying reaction centers and transforming the product into

employ a two-step workflow utilizing atom-mappings:

synthons (intermediate molecules); and second, completing these
synthons into reactants.

Shi et al. introduced G2Gs [79], a method that segments the
target molecular map into synthons by identifying reaction centers
and translates these synthons into the final reactant maps through a
variogram translation framework. This approach outperforms
traditional  template-based methods like RetroSim [96] and
Neuralsym [97]. Similarly, Chen et al. developed the one-step
retrosynthesis prediction framework G2Retro, which predicts
reactive centers in a target molecule, identifies synthons to
assemble the target, and converts these synthons into reactants,
thereby defining a comprehensive set of reactive center types.
Nicolaou et al. introduced a chemical context-aware data-driven
method based on DDRAM algorithm, which recommends synthetic
routes matching a precedent-derived template [155]. Yan et al.
proposed RetroXpert [156], which decomposes retrosynthesis into
two steps: identifying potential reaction centers in the target
molecule using graph neural networks, and predicting relevant
reactants based on the obtained synthetics with a reactant
generation model. Wang et al. developed RetroPrime, a single-step,

template-free approach based on the Transformer model. [157].
This method decomposes a molecule into a synthon and then
generates a reactant by attaching leaving groups, utilizing a
generalized Transformer model. Somnath et al. propose a graph-
based approach that assumes the graph topology of precursor
molecules remains invariant during chemical reactions [158]. The
model first predicts a set of graph edits that transform the target
into a synthon, which are then expanded into molecules. ReTReK,
introduced by Ishida et al.,, is a data-driven and rule-based
retrosynthesis model that formlates four scores for synthesis route
evaluation, using a GCN and MCTS for retrosynthesis prediction
and path search, respectively [159]. Zhang et al. employ a
chemistry-informed molecular graph (CIMG) as a molecular
representation [160], which includes features like NMR chemical
shifts, bond dissociation energies, and solvent/catalyst information,
and uses Message Passing Neural Networks (MPNN)-layered GNN
models to select reaction templates, infer reactants, and verify the
plausibility of the proposed reaction. Lin et al. proposed a graph-to-
graph transformation model, G2GT [161], which is built on the
standard Transformer model structure with data augmentation and
enhanced by a weak ensemble approach that combines beam search,
kernel, and top-k sampling methods to boost diversity. Finally,
Zhong et al. propose Graph2Edits, an end-to-end framework [162]
based on a graphical neural network that predicts edits of a product
graph in an auto-regressive manner, thereby streamlining the
transformation of intermediates and final reactants in a unified
learning process.

Table 4. Overview of retrosynthesis prediction performance for semi-template-based methods.

Methods Algorithm dataset features TOP-1 TOP-5 TOP-1 TOP-5 source code availability
with reaction class without reaction class

G2Gs GCN USSIE)T(O_ graph 61 86 48.9 72.5 N
ReTReK GCN+MCTS Reaxys SMILES - - 36.1 - Y
G2GT GNN-transformer USSI:)£O- graph - - 54.1 74.5 N
GraphRetro MPN USSIg(O- graph 63.9 85.2 53.7 72.2 Y
RetroPrime transformer USSIE)};O_ SMILES 64.8 81.6 51.4 74 Y
Graph2Edits GNN USSPO{(O' graph 67.1 91.5 55.1 83.4 Y
RetroXpert GNN USSIg(O- graph 62.1 75.8 50.4 62.3 N

distribution reveals that both template-based and semi-template-

9. Comparison of three categorizations based models feature more tightly clustered distributions,

Top-k accuracy is a vital metric for evaluating single-step
retrosynthesis models, especially given the multiplicity of viable
pathways in organic synthesis. Therefore, it is important to assess
model performance using both top-1 and top-5 accuracy metrics to
avoid misleading conclusions that might arise from focusing solely
on top-1 accuracy.

As shown in Figure 9, template-based and semi-template-
based models demonstrate higher average accuracy in scenarios
where the reaction class is known. These models also maintain
relatively high average accuracy even when the reaction class is
unspecified, highlighting their robustness. Further analysis of data
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suggesting greater stability in their predictive performance. In
contrast, template-free models show higher dispersion and lower
stability, which underscores the significant variability in their
performance.

In conclusion, while template-based models demonstrate
consistently high accuracy and stability, semi-template-based
models also show promising results and the potential to lead in
performance. However, the substantial variability observed in
template-free methods calls for cautious application and ongoing
development to the in  Al-assisted

overcome challenges

retrosynthesis.
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Figure 9. TOP-k accuracy for template-based, template-free, and semi-template-based methods.

10. Challenges and future directions for retrosynthesis

prediction researchers

In recent years, the rapid development of Al-assisted retrosynthesis

models has been remarkable, yet there remain significant
challenges and limitations that need addressing:

1. Data Quality and Diversity: One of the foremost
challenges is the lack of sufficient high-quality data. The
development of high-performance Al models is contingent upon the

availability of both substantial quantity and quality of training data.

Public datasets are often limited compared to commercial databases.

There is a critical need for collaboration among computational
chemists to prepare expansive and diverse datasets. These datasets
should
information,

information such as
catalysts. The
comprehensive chemical reaction database requires developing

include varied stereochemistry

solvents, and creation of a
standardized methods for managing and integrating diverse data
sources.

2. Model

frequently suffer from a lack of interpretability, making it difficult

Interpretability: Purely data-driven models

for researchers to understand the underlying reasons behind
predictions. Employing model-agnostic techniques like LIME
[163—165], SHAP [163], [166]
interpretability by providing both global and local explanations

and Anchors can enhance
while highlighting key features influence the model decisions.

Furthermore, the adoption of explainable neural networks
[167,168], which incorporate interpretable layers via attention and
gating mechanisms, is strongly encouraged.

3. Template-free Model Limitations: Template-free models,
often trained on text sequences, may overlook the chemical
significance of bond disconnection, which can occasionally result
in impractical suggestions. These models may also exhibit bias due

stemming from the underrepresentation of rare reactions in training
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datasets. A promising approach to mitigate these issues is to blend
data-driven methods with fundamental chemical principles to
reduce bias and improve the model’s utility.

4. Experimental Validation: For any in silico design process,
suggested synthesis routes must be validated experimentally. High-
throughput and parallelized experimentation are vital for rapid data
generation and validation. However, the lack of experimental
conditions in most retrosynthesis prediction models adds an extra
layer of challenge to experimental planning. Recent advancements
in automated experimental design, which leverage Al to optimize
and pinpoint feasible reaction conditions [169,170], are crucial
steps forward.

Given these challenges, several promising research directions
emerge for further retrosynthesis prediction:

1. Developing high-quality and diverse chemical reaction
datasets and creating intelligent algorithms capable of handling
incomplete or inaccurate data represent fundamental research
priorities.

2. Focusing on model interpretability and visualization will
likely be a key research direction. Integrating design of
experiments (DoE) with robotic experimental steps is also essential.

3.1t is recommended to
comprehensive models that can encompass a wider range of
reaction types and conditions.

create more intricate and

4. Exploring the synergy between Al algorithms and
traditional rules could yield substantial improvement.

5. Greater emphasis should be placed on developing more
efficient and environmentally friendly

chemical synthesis

conditions within retrosynthesis predictions.

11. Conclusion

CASP studies play an integral role in enhancing drug design,
significantly accelerating the synthesis process and reducing
associated costs. With the advent of modern intelligent algorithms,



Application of Modern Intelligent Algorithms in Retrosynthesis Prediction

there is substantial potential to further enhance the efficiency and
accuracy of CASP. Future research in this area should prioritize the
development of robust, interpretable retrosynthesis models and the
extraction of higher-quality chemical reaction datasets from patents
and literature. A pivotal aspect of CASP research is ensuring the
interpretability of Al analyses, which is essential for improving the
transparency and reliability of Al-driven predictions. The efficacy
of data-oriented methods heavily relies on the quality of the
thus,
indispensable. Moreover, interdisciplinary collaborations among

reaction databases, ensuring high-quality datasets is

computer scientists, statisticians, organic chemists, and
computational chemists are becoming increasingly vital. These
collaborations can merge diverse perspectives and expertise to
address complex organic retrosynthesis tasks effectively. The state
of Al-assisted still

comprehensive assessments are necessary to fully evaluate its

synthetic planning is evolving, and
potential. Due to variations in training datasets, direct comparisons
of Al model performances using identical evaluation metrics may
not always be feasible, and no single model consistently
outperforms others across all tasks.

This review offers an extensive overview of the latest
in CASP driven by

categorizing existing models into three main types: template-based,

developments intelligent algorithms,
template-free, and semi-template-based models. Our comparative
analysis reveals that semi-template-based models typically exhibit
superior performance. We also outline the major challenges
currently facing this field and suggest future directions for CASP
research. Recent studies highlight the significant potential of
artificial intelligence in retrosynthetic prediction, which could
alleviate the time and cost burdens on organic chemists in synthesis
planning. By the end of this review, it is our hope that scientists
engaged in Al-assisted retrosynthesis prediction will find the
insights needed to select methodologies that best align with their
research objectives. The discussions provided here should inspire
future enhancements and explorations in the field. As retrosynthesis
techniques continue to mature, we anticipate their integration into
[171],
revolutionize the manufacturing of chemical compounds and have

automated chemical synthesis systems which could

profound social and technological impacts.
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