REGULAR ARTICLE

Quasiclassical Trajectory Calculations of the Photodissociation of

CH₃CHO: the HCCH + H₂O Product Channel

Yong-Chang Han^{1,2*}and Shu-Lin Cong¹

- ¹ School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China, P. R. 116024
- ² Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia, USA, 30322

Received 15 December 2012; Accepted (in revised version) 20 February 2013

Special Issue: Guo-Zhong He Festschrift

Abstract: The photodissociation of the acetaldehyde molecule has been studied based on the quasiclassical trajectory calculations using a global *ab initio*-based potential energy surface. Out of many products channels, the minor channel producing water plus acetylene has been studied. The distributions of the internal energies of the two products, and the relative translational energy have been presented and examined in detail. The distributions are ascribed to the sum of two components corresponding to two reaction pathways, respectively. One pathway is the direct dissociation giving colder HCCH and hotter H₂O. The other is the dissociation via the vinylidene intermediate giving hotter HCCH and colder H₂O.

AMS subject classifications: 37M05, 35F45, 65M22

Key words: acetaldehyde, vinylidene, energy distribution, quasiclassical trajectory

1 Introduction

The acetaldehyde molecule is of great importance in combustion chemistry, and in the nature and polluted troposphere. The photodissociation of the acetaldehyde molecule has been

^{*} Corresponding author. *Email address*: ychan@dlut.edu.cn (Y. C. Han)

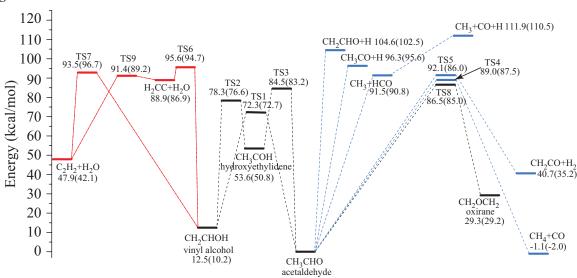
studied for decades. The photodissociation process generally involves three electronic states, the ground state S0, the first excited singlet state, S1, and the first triplet state, T1. Briefly speaking, the acetaldehyde molecules are initially excited from the S0 state to the S1 state. Starting from the S1 state, the molecules can return to the S0 state via internal conversion, or to the T1 state via intersystem crossing. The resulting energetic molecules can then dissociate on the S0 state to form multiple product channels. The dissociation can also occur on the T1 state to form the radical products, CH3 + HCO; however, this process is not of further interest here.

The two major product channels, the molecule products CH₄ + CO and the radical products CH₃ + HCO, on the S0 state in the dissociation dynamics of the acetaldehyde molecules have been studied extensively [1-26]. Kurosaki and Yokoyama performed direct-dynamics quasiclassical trajectory (QCT) calculations of the photodissociation dynamics focusing on the CH₄ + CO channel [17, 18] and on some other product channels [19, 20]. The roaming mechanism in the formation of the CH₄ + CO channel is one of the most interesting aspects in the study of the photodissociation dynamics. The "roaming" mechanism known as an alternative pathway, with respect to the conventional transition state theory pathway, has first been discovered in the photodissociation of the formaldehyde molecules [26]. The photodissociation of the acetaldehyde to CH₄ + CO has been named as the second example for the roaming mechanism [21-25].

The high-energy photolysis or the thermal decomposition is another interesting aspect in the study of the dissociation of the acetaldehyde molecules. Recently, Lee [10] reported the high-energy photolysis experiments at 157 nm, in which numerous products with CH3 + CO + H accounting for approximately half of the total branching have been observed. Vasiliou et al. [12] reported the thermal decomposition of CH₃CHO at 1700 K, where the decomposition products included CH₃, CO, H, H₂, CH₂CO, CH₂CHOH, and H₂O + C₂H₂. They also proposed that the water plus acetylene products are formed via two pathways: one that produces these products directly, and a very interesting one that first produces water plus vinylidene, and the vinylidene then isomerizes to the acetylene. These proposed pathways are analogous to ones reported in recent dynamics calculations of the unimolecular dissociation of the allyl radical to form CH₃ + C₂H₂ [27,28]. Stimulated by these experiments, we presented a quasiclassical trajectory study of the photodissociation of CH3CHO using a global ab initio-based potential energy surface [29]. Calculations are performed at a total energy of 160 kcal/mol, corresponding to a photolysis wavelength of 230 nm. Various product channels have been found at this high energy, which are in agreement with the experimental thermal decomposition findings at 1700 K. We have also identified the two pathways producing water accompanied by acetylene or vinylidene with the intermediate vinyl alcohol:

$$CH_3CHO \rightarrow CH_2CHOH \rightarrow HCCH + H_2O$$
 (1.1)

$$CH_3CHO \rightarrow CH_2CHOH \rightarrow [H_2CC] + H_2O \rightarrow HCCH + H_2O$$
 (1.2)


In this paper, as an extension of Ref. [29], we focus on the two pathways producing the HCCH + H₂O products. We are stimulated by the question how these two pathways affect on the final energy distributions of the products. Based on the quasiclassical trajectory calculations on the full-dimensional *ab initio*-based potential energy surface, we calculated the internal energy distributions and the relative translational energy distribution, and examined them in detail.

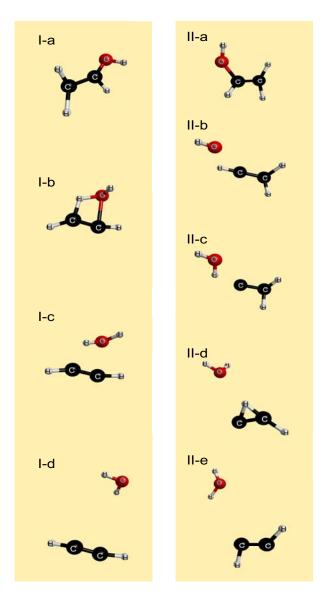
The paper is organized as follows. The full-dimensional potential energy surface is briefly described in the next section. The QCT method and the corresponding results have been presented and discussed in detail in Section 3. The conclusions have been summarized in Section 4.

2 Potential Energy Surface

In the previous calculations of CH₃CHO dissociation [23, 24], we employed two PESs, which were fits to roughly 170 000 ab initio energies. These energies were calculated at the CCSD(T)/AVTZ level of theory. The PESs can describe the complex regions and the fragments of all possible channels. To improve the accuracy of the previous PESs, we performed MRCI/VTZ calculations in the open-shell complex region like CH3•••HCO, CH3CO•••H; MRCI/AVTZ calculations in the biradical (•CH2CH2O•) region; and CCSD(T)/AVTZ calculations in the vinyl alcohol and hydroxyethylidene regions. Both the MRCI/VTZ and MRCI/AVTZ energies are properly shifted before being added to the CCSD(T)/AVTZ data base. All these added energies were obtained with MOLPRO [30]. Currently, the entire data set of roughly 200 000 energies was fit, as before, using a basis of permutationally invariant polynomial in Morse-like variables in all the inter-nuclear distances. The fit is of maximum fifth order and has an rms fitting error of 2.9 kcal/mol, for energies up to 160 kcal/mol above the CH₃CHO minimum. The fit, which we refer to henceforth as the potential energy surface (PES) describes stationary points of complex region and fragment channels very well. The detail descriptions of constructing the global ab initio potential energy surface can be referred to Ref. [29].

The energy profile of the stationary points and fragment channels is shown in **Figure 1**. The relative two pathways to form the HCCH+H₂O products have been marked as red. As shown in **Figure 1**, there are two pathways for the vinyl alcohol to dissociate into the water and acetylene. One is via TS7 (~93.5 kcal/mol) to form acetylene and water directly, corresponding to (1.1); the other one is via TS6 (~95.6 kcal/mol) to form vinylidene and water first, and then the vinylidene isomerizes to acetylene, i.e. (1.2). Other possible dissociation channels have been marked as blue. The isomerization pathways between the acetaldehyde

global minimum and other local minima have been marked as black.


Figure 1: Schematic of stationary points of relevance to the present dynamics calculations of dissociation of CH₃CHO. The fitted energies are in kcal/mol, relative to the global minimum acetaldehyde, and those shown in parentheses are from CCSD(T) /AVTZ calculations. The black lines denote the isomerization pathways, and the blue lines represent the dissociation pathways. The red lines denote the concerning H₂O + C₂H₂ and H₂CC channels.

3 Results and discussion

The QCT calculations were carried out starting at the CH₃CHO global minimum with the total energies of 160.0 kcal/mol, which is the sum of the (harmonic) CH₃CHO zero-point energy and the photon energy of 124.0 kcal/mol (i.e., 230 nm). The total angular momentum was fixed at zero. Random microcanonical sampling of the Cartesian momenta in all degrees of freedom was done to generate initial conditions, subject to the constraint of zero total angular and linear momentum, as described in detail previously [22-24]. The time step is 0.12 fs and the trajectories were integrated for a maximum of 10 million time steps (1.2 ns). 24800 trajectories have been run and roughly 1% dissociated into the HCCH + H₂O.

We took these trajectories into consideration, since we are interested in this product channel. As mentioned above, the HCCH + H₂O products result from the two pathways, (1.1) and (1.2). In both pathways, the dissociation starts from the vinyl alcohol (CH₂CHOH) which is one of the most important isomers of acetaldehyde. We picked up two trajectories that produce water plus acetylene in different pathways: One is via vinyl alcohol direct dissociation [i.e., (1.1)], and the other one is via vinylidene isomerization [i.e., (1.2)]. The

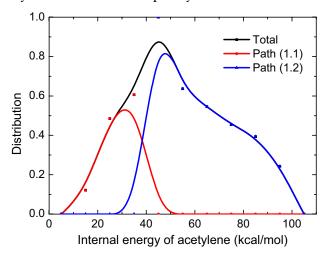

snapshots of these two trajectories are shown in **Figure 2**. The dissociation from vinyl alcohol directly to acetylene is shown in the left panels, and the dissociation from vinyl alcohol to vinylidene (H₂CC) which then isomerized to acetylene is shown in the right panels.

Figure 2: Snapshots of the two trajectories producing the acetylene plus water via two different pathways. Left panels show the direct dissociation from the vinyl alcohol to the acetylene and water corresponding to (1.1), and right panels show the dissociation from vinyl alcohol first to water and vinylidene, and the later isomerization from vinylidene to acetylene according to (1.2).

To form acetylene directly via TS7, the OH group and the H atom eliminate from the different Carbon atoms named as (1,2)-elimination, while to form vinylidene via TS6, the OH group and the H atom eliminate from the same side of Carbon which can be called (1,1)-elimination. Because the barrier height of TS7 is energetically similar to TS6, the branching ratios of the two pathways are expected to be comparable. As well known, there is a quite small barrier TS9 (roughly 2.3 kcal/mol above the vinylidene local minimum) for the vinylidene isomerizing to the acetylene [34-41]. It can be expected that those acetylene isomerized from the vinylidene can be highly excited, because of the high internal energy of vinylidene. As shown in **Figure 1**, the dissociation limit on the PES for H₂CC + H₂O is about 88.9 kcal/mol while that for HCCH + H₂O is about 47.9 kcal/mol. For these two trajectories we shown in **Figure 2**, the final internal energy of acetylene that produced via H₂CC is roughly 72 kcal/mol, which is much higher than the acetylene directly produced via vinyl alcohol (26.8 kcal/mol).

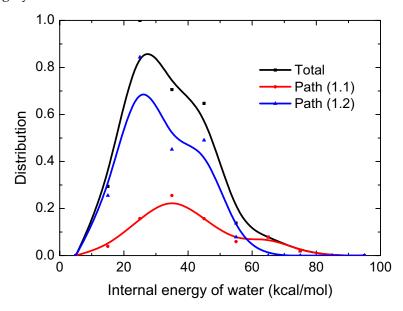

To further investigate the contributions of the two pathways to the final energy distributions, we calculated the internal energy distributions of HCCH and H₂O, respectively, and also the relative translational energy distribution. The internal energy distribution of HCCH is shown in **Figure 3**. The black line shows the total distribution taking all of the HCCH products into account. As seen, the internal energy of the HCCH products distributed in a broad energy region, from roughly 10 to roughly 105 kcal/mol. Note that there is a small amount of the acetylene molecules below the zero point energy (ZPE) 16 kcal/mol. This small unphysical distribution is caused by "ZPE-leak", a well-known issue in QCT calculations, which results from the classical intramolecular vibrational relaxation of the harmonic ZPE from the high-frequency modes to lower-frequency ones.

Figure 3: The internal energy distribution of the acetylene products.

We then divided the above distribution into two components, according to the two different pathways. As seen in **Figure 3**, the red line is the component from the direct-dissociation pathway, (1.1), and the blue line is the component from the "vinylidene"-intermediate pathway, (1.2). The distributions of the two components are quite different. First, the internal energy of the acetylene generated from the pathway (1.1), is quite smaller than those from the pathway (1.2). Second, the yield of the acetylene from the pathway (1.2) is greater than that from (1.1). These two points are in agreement with our expectations based on the analysis of the potential energy surface.

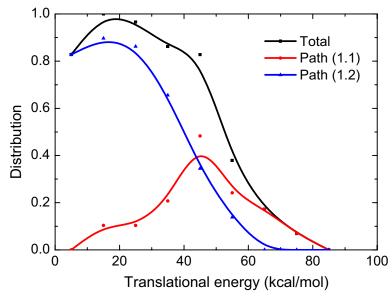

Moreover, we performed the similar analysis to the internal energy distributions of the water products. As shown in **Figure 4**, the internal energy distributions from the two components also present somewhat different. The water products generated via pathway (1.1), peaking at roughly 25 kcal/mol, is a little colder than those generated via the pathway (1.2), peaking at roughly 35 kcal/mol.

Figure 4: The internal energy distribution of the water products.

The relative translational energy distribution is shown in **Figure 5**. Accordingly, the total distribution in the black line is also divided into the two components; the red and blue lines correspond to pathways (1.1) and (1.2), respectively. The translational energy distribution for the products from pathway (1.1), is a broad one, centered at 45 kcal/mol. This is a typical translational energy distribution for the dissociation passing a transition state barrier. The distribution for the products from pathway (1.2), is quite different. It declines with the increase of the translational energy. This is similar to the typical distribution for the products

from a barrierless dissociation path. This is because the transition state TS6 is energetically close to the product channel of the vinylidene plus water. The bare energy difference between the two stationary points on the PES is roughly 6.7 kcal/mol, which is much smaller than the barrier height 95.6 kcal/mol. Thus, the translational energy distribution for the products from the "vinylidene-intermediate" pathway, is somewhat like that from a barrierless reaction pathway.

Figure 5: The relative translational energy distribution of the final water plus acetylene products.

4 Conclusions

In summary, we performed quasiclassical trajectory calculations of the photodissociation of the acetaldehyde molecule using a global *ab initio*-based potential energy surface. The total energy is set to be 160 kcal/mol, corresponding to a photolysis wavelength of 230 nm. In this work, we mainly focused on the interesting minor channel, producing water plus acetylene, although there are many other product channels. To form the acetylene and water products, the acetaldehyde molecule first isomerized to vinyl alcohol. Then starting from the vinyl alcohol isomer, the dissociation can pass two difference pathways to the final HCCH + H₂O products. One is the direct dissociation, and the other is the dissociation via the vinylidene intermediate.

The internal energy distributions of the final two products, acetylene and water, and the

relative translational energy distributions have been investigated. The energy distributions are ascribed to the sum of the two components according to the two reaction pathways, respectively. The direct dissociation pathway results in the colder HCCH and a little bit hotter H2O, while the other gives hotter HCCH and colder H2O. Also the translational energy distributions from the pathways show different features. The direct dissociation pathway leads to a typical transition state distribution, a broad one with a central peak. The "vinylidene-intermediate" pathway however leads to a barrierless-like dissociation distribution.

Acknowledgments

Y.-C. Han would like to thank the support of the Fundamental Research Funds for the Central Universities [DUT12RC(3)60].

References

- [1] A. Horowitz and J. G. Calvert, Wavelength Dependence of the Primary Processes in Acetaldehyde Photolysis, J. Phys. Chem., 86 (1982), 3105--3114.
- [2] A. C. Terentis, M. Stone and S. H. Kable, Dynamics of Acetaldehyde Dissociation at 308 nm: Rotational (N, Ka) and Translational Distributions of the HCO Photoproduct, J. Phys. Chem., 98 (1994), 10802-10808
- [3] S.-H. Lee and I.-C. Chen, Photofragments CH₃(X²A₂") + HCO(X²A') from Acetaldehyde: Distributions of Rotational States and Preferential Population of K Doublets of HCO, J. Chem. Phys., 105 (1996), 4597/1-8.
- [4] C.-L. Huang, V. Chien, I.-C. Chen, C.-K. Ni and A. H. Kung, State-Resolved Dissociation Dynamics of Triplet Acetaldehyde near the Dissociation Threshold to Form CH₃ + HCO, J. Chem. Phys., 112 (2000), 1797/1-7.
- [5] B. F. Gherman, R. A. Friesner, T.-H. Wong, Z. Min and R. Bersohn, Photodissociation of Acetaldehyde: The CH₄ + CO Channel, J. Chem. Phys., 114 (2001), 6128/1-6.
- [6] K. C. Thompson, D. L. Crittenden, S. H. Kable and M. J. T. Jordan, A Classical Trajectory Study of the Photodissociation of T1 Acetaldehyde: The Transition from Impulsive to Statistical Dynamics, J. Chem. Phys., 124 (2006), 044302/1-15.
- [7] P. L. Houston and S. H. Kable, Photodissociation of Acetaldehyde as a Second Example of the Roaming Mechanism, Proc. Natl. Acad. Sci. U.S.A., 103 (2006), 16079-16082.
- [8] L. Rubio-Lago, G. A. Amaral, A. Arregui, J. G. Izquierdo, F. Wang, D. Zaouris, T. N. Kitsopoulos and L. Banares, Slice Imaging of the Photodissociation of Acetaldehyde at 248 nm. Evidence of a 300 Roaming Mechanism, Phys. Chem. Chem. Phys., 9 (2007), 6123-6127.
- [9] B. R. Heazlewood, S. J. Rowling, A. T. Maccarone, M. J. T. Jordan and S. H. Kable, Photochemical Formation of HCO and CH₃ on the Ground S0 State of CH₃CHO, J. Chem. Phys., 130 (2009), 054310/1-8.
- [10] S.-H. Lee, Dynamics of Multidissociation Paths of Acetaldehyde Photoexcited at 157 nm: Branching Ratios, Distributions of Kinetic Energy, and Angular Anisotropies of Products, J. Chem. Phys., 131

- (2009), 174312/1-10.
- [11] G. A. Amaral, A. Arregui, L. Rubio-Lago, J. D. Rodriguez and L. Banares, Imaging the Radical Channel in Acetaldehyde Photodissociation: Competing Mechanisms at Energies Close to the Triplet Exit Barrier, J. Chem. Phys., 133 (2010), 064303/1-8.
- [12] A. Vasiliou, K. M. Piech, X. Zhang, M. R. Nimlos, M. Ahmed, A. Golan, O. Kostko, D. L. Osborn, J. W. Daily, J. F. Stanton and G. B. Ellison, The Products of the Thermal Decomposition of CH₃CHO, J. Chem. Phys., 135 (2011), 014306/1-5.
- [13] B. R. Heazlewood, A. T. Maccarone, D. U. Andrews, D. L. Osborn, B. Lawrence, L. B. Harding, S. J. Klippenstein, J. T. M. Jordan and S. H. Kable, Near-Threshold H/D Exchange in CD₃CHO Photodissociation, Nat. Chem., 3 (2011), 443-448.
- [14] J. S. Yadav and J. D. Goddard, Acetaldehyde Photochemistry: The Radical and Molecular Dissociations, J. Chem. Phys., 84 (1986), 2682/1-9.
- [15] R. A. King, W. D. Allen and H. F. Schaefer, On Apparent Quantized Transition-State Thresholds in the Photofragmentation of Acetaldehyde, J. Chem. Phys., 112 (2000), 5585/1-8.
- [16] Y. Kurosaki and K. Yokoyama, Photodissociation of Acetaldehyde, CH₃CHO → CH₄ + CO: Direct Ab Initio Dynamics Study, J. Phys. Chem. A, 106 (2002), 11415-11421.
- [17] Y. Kurosaki and K. Yokoyama, Photodissociation of Acetaldehyde, CH₃CHO → CH₃ + HCO: Direct Ab Initio Molecular Dynamics Study, Chem. Phys. Lett., 371 (2003), 568-575.
- [18] Y. Kurosaki, Photodissociation of Acetaldehyde, CH₃CHO → CH₄ + CO: II. Direct Ab Initio Molecular Dynamics Study, Chem. Phys. Lett., 421 (2006), 549-553.
- [19] Y. Kurosaki, Hydrogen-Atom Production Channels of Acetaldehyde Photodissociation: Direct DFT Molecular Dynamics Study, J. Mol. Struct. (THEOCHEM), 850 (2008), 9-16.
- [20] S. Chen and W.-H. Fang, Insights into Photodissociation Dynamics of Acetaldehyde from Ab Initio Calculations and Molecular Dynamics Simulations, J. Chem. Phys., 131 (2009), 054306/1-6.
- [21] B. C. Shepler, B. J. Braams and J. M. Bowman, Quasiclassical Trajectory Calculations of Acetaldehyde Dissociation on a Global Potential Energy Surface Indicate Significant Non-transition State Dynamics, J. Phys. Chem. A, 111 (2007), 8282-8285.
- [22] B. C. Shepler, B. J. Braams and J. M. Bowman, "Roaming" Dynamics in CH₃CHO Photodissociation Revealed on a Global Potential Energy Surface, J. Phys. Chem. A, 112 (2008), 9344-9351.
- [23] A. G. Suits, Roaming Atoms and Radicals: A New Mechanism in Molecular Dissociation, Acc. Chem. Res., 41 (2008), 873-881.
- [24] J. M. Bowman and B. C. Shepler, Roaming Radicals, Annu. Rev. Phys. Chem., 62 (2011), 531-553.
- [25] B. R. Heazlewood, M. J. T. Jordan, S. H. Kable, T. M. Selby, D. L. Osborn, B. C. Shepler, B. J. Braams and J. M. Bowman, Roaming is the Dominant Mechanism for Molecular Products in Acetaldehyde Photodissociation, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 12719-12724.
- [26] D. Townsend, S. A. Lahankar, S. K. Lee, S. D. Chambreau, A. G. Suits, X. Zhang, J. Rheinecker, L. B. Harding and J. M. Bowman, The Roaming Atom: Straying from the Reaction Path in Formaldehyde Decomposition, Science, 306 (2004), 1158-1161.
- [27] C. Chen, B. J. Braams, D. Y. Lee, J. M. Bowman, P. L. Houston and D. Stranges, Evidence for Vinylidene Production in the Photodissociation of the Allyl Radical, J. Phys. Chem. Lett., 1 (2010), 1875-1880.
- [28] C. Chen, B. J. Braams, D. Y. Lee, J. M. Bowman, P. L. Houston and D. Stranges, The Dynamics of Allyl Radical Dissociation, J. Phys. Chem. A, 115 (2011), 6797-6804.
- [29] Y. C. Han, B. C. Shepler and J. M. Bowman, Quasiclassical Trajectory Calculations of the Dissociation Dynamics of CH₃CHO at High Energy Yield Many Products, J. Phys. Chem. Lett., 2 (2011), 1715-1719.
- [30] MOLPRO, version 2006.1, a package of *ab initio* programs, H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schuetz, P. Celani, T. Korona, G. Rauhut, R. D. Amos, A. Bernhardsson, et al., See http://www.molpro.net.