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Abstract: The sorption features of a metal-organic framework (MOFs) constructed
by Zn4O clusters with bdc and bpz linkers with methanol and methanal molecules
are investigated by theoretical methods. Two different interactions are presented
for the association of methanol molecules. One is the coordination bond like with
large binding energy and the other one is hydrogen bond with small binding
energy. These two kinds of interactions are corresponding to the mechanisms of the
intriguing two-step sorption behavior for methanol. On the other hand, the
dominant contribution for the absorption of methanal is demonstrated to be
C-H--7t interaction. The strong interaction between methanal molecule and the
MOFs molecule is indicated by the large total binding energy as 94.55 kJ/mol. This
MOFs is proposed to have fine sorption capability as well as the high performance
as luminescent detection for methanal. The findings in this paper provide a
comprehensive understanding about the sorption mechanism for this kind of
material with small organic molecules and shed light on the synthesis and
application of novel and stable MOFs.
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1 Introduction

Porous metal-organic frameworks (MOFs) are widely regarded as promising materials for
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applications in catalysis1-4, separation [5-8], gas storage [9-12], molecular recognition [13-23],
molecular magnets [23-28] and semiconductors [29-32]. Compared to classical microporous
inorganic materials such as zeolites with limited components, these organic structures have
the potential for more flexible rational design, which is provided by variety of metal ions,
organic linkers, and structural motifs [1-34]. The first few porous MOFs with permanent
porosity established by gas adsorption studies [11, 33-34], as exemplified by the most
well-known material: MOF-5 with significantly high surface area of greater than 3000 m?/g
are reported in 1999, in which the oxide-centered Zn4O tetrahedra as nodes linked by
organic molecules. Since then, the research endeavors have been mainly focused on the
realization of functional pores and thus their specific properties and applications [9, 35-43].
In early work by Eddaoudi and co-workers, the isoreticular MOF (IRMOF) series was
synthesized utilizing the same ZniO corner with struts of varying size and chemical
functionality [44, 45]. Several MOFs constructed by Zn4O corner have high thermal stability
and guest adsorption capacity, which are promising for industrial application [46-49].

Functional luminescent MOF materials can be developed by introduction of metal
motifs or organic linkers which can provide the platforms to generate luminescence into the
structure. In fact, a variety of luminescent MOFs have been realized for their diverse
applications on chemical sensing, light-emitting devices, and biomedicine over the past two
decades [13-23, 50-56]. The chemical bonding, electronic structure and optical properties of
the metal-organic framework MOF-5 has been investigated by Yang et al., theoretically [57].
Weak interactions such as hydrogen bond, m-7t stacking and C-H--7t are indicated to play
significant role in determination of the photochemical and photophysical properties of thess
materials [57-60].

Many important properties of ZnsO contained MOFs in various aspects has been
invesigated, widely, such as electronic properties, electrostatic potential and charge density,
mechanical properties including bulk moduli and elastic constants and even the possibility
used as photocatalyst [1-4], quantum dot and semiconductor [29-32] materials. However, in
order to optimize these MOFs for potential industrial applications, an improved and
comprehensive understanding about many interesting properties of them is still desired. For
example, a porous metal-organic framework based on u4-oxo tetrazinc (Zn«O) clusters
connected by two kinds of tetradentate ligand: 3,3',5,5'-tetramethyl-4,4"-bipyrazolate (bpz)
(Figure 1b) and 1,4-benzenedicarboxylate (bdc) (Figure 1c) has been reported by Chen and
co-workers,® which reveals guest-dependent luminescent properties and high sorption
performance of methanol, benzene, toluene and xylene. However, the mechanism of the
intriguing two-step sorption behavior for methanol and guest-dependent luminescent
properties has not been clarified. In the present work, we have performed a computational
study on these problems of this MOFs material (1) using density functional theory (DFT)
calculations. A central feature of the paper is the detailed investigation of the chemical
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binding mechanism for methanol sorption, which is responsible to the interesting two-step
sorption behavior. On the other hand, the sorption performance, the chemical binding
mechanism and the luminescent properties for methanal sorption are also depicted, which
we believe will provide valuable insight into this novel material for luminescent detector of
methanal.

2 Theoretical methods

The geometries for the ground-state structures of the monomers and complexes with
methanol and methanal molecules have been optimized using the density functional theory
(DFT). M06-2X functional is chosen because of its high performance for the study of
noncovalent interactions [62-64]. All the calculations are carried out using Gaussian 09
program [65] suite with 6-31+G(d) basis set for nonmetallic elements as well as the
pseudopotential LANL2DZ basis sets for Zn atom [66, 67]. The binding energies are also
calculated with the basis set superposition error (BSSE) correction. All the local minima are
confirmed by no imaginary mode from vibrational analysis calculations.

3 Results and Discussion

The central part of 1 is tetrahedral cluster Zn«O as shown in Figure 1a. The clusters are
bridged by two kinds of tetradentate ligand: 3,3',5,5'-tetramethyl-4,4"-bipyrazolate (bpz)
(Figure 1b) and 1,4-benzenedicarboxylate (bdc) (Figure 1c) to construct the framework. The
cubelike cavity within 1 formed by eight tetranuclear clusters is shown in Figure 1d. It has
been reported that the dimension of the cavity is 12.9x11.5x11.5 A3 by Chen and co-workers
[61]. Since there are O atoms in the bdc ligand, hydrogen bond might play vital role in
absorption of guest molecules containing hydroxyl, such as methanol. On the other hand,
both bpz and bdc ligands have fine m conjugation systems, such as benzene and pyrazole
structures. When guest molecules without hydroxyl are absorbed, the dominant factor will
be m-m stacking and C-H--7t interaction. Herein, the significant effects of these different
interactions are clarified by investigation on the complex formed by the monomer of
tetranuclear cluster and the guest molecules, such as methanol and methanol.

The tetranuclear cluster is the primary composition unit of 1. The optimized geometric
structure of the cluster and complexes with methanol and methanal molecules are shown in
Figure 2. In the monomer, the bond length of O1-Zni, Zni-Os3, O3-Zn2 and Zn2-O: are 2.004,
1.986, 1.986 and 2.004A, respectively. The six-membered ring C1-O1-Zni-O3-Zn-O: is planar
with the dihedral angle of O3-Zn2-O2-C1 as 0°. In the dimer with one methanol molecule, the
structure is changed, obviously. The bond length of Os-Zn2 and Zn2-O:2 are changed to be
2.030 and 2.097A. The dihedral angle of O3-Zn2-O>-Ci is changed to be -9.66°. There’s no
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hydrogen bond are formed between the molecule of methanol and the molecule of 1.
Moreover, the distance between the Os atom of the methanol molecule and the Zn2 atom of 1
molecule is 2.268A. The binding energy is calculated to be 54.36 kJ/mol, which is beyond the
hydrogen bonding energy [68, 69]. This interaction is assumed as coordination bond like. In
the trimer complex with two methanol molecules, significant change of the structure is
observed. The bond length of O3-Zn2 and Zn2>-O: are changed to be 2.044 and 2.164A. The
dihedral angle of O3-Zn2-O2-C1 is changed to be -40.45°. The distance between the Os atom of
the methanol molecule and the Zn2 atom of 1 molecule is shortened to be 2.167 A, which
indicates that the interaction is enhanced. On the other hand, two hydrogen bonds are
formed, one is between two methanol molecules with the bond length as 1.631 A, the other
one is between the second methanol molecule and the 1 molecule with the bond length as
1.739 A. The total binding energy of these two hydrogen bonds is calculated as 35.18 kJ/mol.
The average value is 17.59 kJ/mol which is close to the binding energy of hydrogen bond
O-H--O [68, 69]. It has been reported by Chen and co-workers the sorption behavior for
methanol of 1 is separated into two steps [61]. Herein, two different interactions are
observed corresponding to the different sorption mechanisms of the two-step sorption
behavior. The strong coordination bond like interaction is corresponding to the first step in
low pressure. The low sorption capability is ascribed to the low pressure and the large steric
hindrance effect caused by the limited space and site for coordination of Zn atom in 1.
Furthermore, the relatively weak interaction of hydrogen bond is proposed to be the
dominant factor for the second step sorption in high pressure. Since the absorbed site is the
O atom in the framework with large space and the main interaction is hydrogen bond with
less saturated and steric hindrance feature, the second sorption step reveals very high
sorption capability.

Figure 1: a) the tetranuclear cluster b) the 1,4-benzenedicarboxylate (bdc) ligand c) the
3,3',5,5"-tetramethyl-4,4'-bipyrazolate (bpz) ligand d. cubelike cavity within 1 formed by
eight tetranuclear clusters (Zn, cyan; N, blue; O, red; C, grey). The CCDC number of 1 is
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683566. Hydrogen atoms are omitted for clarity.

C ¢

Figure 2: Optimized structure of the primary composition unit of 1 and complexes with 1
methanol, 2 methanols and 1 methanal molecule. The original monomer structure is cut
from the crystal structure of 1, with the danging bonds saturated by hydrogen atoms.
According to the little influence of methyl groups within the bpz ligands on the results, they
are also replaced by hydrogen atoms in order to save computation time. a. the monomer
structure b. the complex with one methanol molecule, the thick red dash line denotes the
interaction between the O atom of methanol and the Zn2 atom c. the complex with two
methanol molecules, two green dash line denote the hydrogen bond, the thick red dash line
still denotes the interaction between the O atom of methanol and the Zn2 atom. d. the
complex with one methanal molecule, the thick red dash line denotes the interaction
between the O atom of methanal and the Zn atom, the thin red dash line denotes the vertical
distance form the H atom of methanal to the plane of one pyrazole molecule in the bpz
ligand. The grey plane denotes the plane of the pyrazole molecule. All the local minima are
confirmed by no imaginary mode from vibrational analysis calculations. The optimized
structure is consistent with the crystal structure of 1 very well.

In order to comparing with the methanol, the situation of methanal is also investigated.
As shown in Figure 2d, methanal is located in the space formed by two bpz and one bdc
ligands. The distance between the O atom of methanal and the Zni atom is 2.787 A. That of
the Hi atom and the plane of bdc ligand is 2.428 A. In addition, there is no hydrogen bond
are formed. That is to say the primary factor for methanal association is the coordination
bond like interaction and the C-H--rt interaction. The total binding energy is calculated to be
94.55 kJ/mol, which is far large than hydrogen bond. Due to this strong interaction, the
sorption behavior of methanal is proposed to be one-step, the same as those of benzene and
toluene.®! Therefore, 1 is also assumed to have high performance on absorption of methanal.

It has been reported that several Zn-MOFs exhibit potential application in luminescent
sensors, due to the guest-dependent, such as organic solvents and lanthanide ions,
luminescent properties [70-72]. Molecular orbital (MO) analysis can directly provide
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insight into the nature of the electronically excited states [73-83]. The frontier molecular
orbitals (MOs) of the monomer are shown in Figure 3. Herein, only HOMO-7, HOMO-8,
LUMO and LUMO+1 are presented, since the excited state with the largest oscillation
strength is mainly attributed to the transition of HOMO-7—LUMO+1 and HOMO-8—
LUMO. As depicted in Figure 3, one can easily find that each transition mostly occurs on the
ligand of benzene, which means this excited state is a local excited (LE) state. Metal-ligand
charge transfer (MLCT) plays a significant role in luminescent properties of metal
coordination complexes [59-60, 74]. However, it’s clearly shown that there is no MLCT
occurs, but little extent of ligand-ligand charge transfer (LLCT). According to the above
analysis, since the absorbed sites for methanol are the Zn and O atoms in the central part of
the molecule, but not the outside benzene ligand where the electronic transition occurs, it’s
rational to propose that sorption of methanol would have little influence on the luminescent
properties of 1. On the contrary, it has been demonstrated that absorption of rigid guest
molecules, such as benzene, toluene and p-xylene can induce the blue shift of the
luminescent spectra [61]. Since methanal has similar absorption mechanism as the above
rigid molecules, it'’s hypothesized that blue shifts will be observed for methanal adsorbed
samples of 1. That also means 1 may be applied in luminescent detection for methanal

molecules.

Figure 3: the frontie molecular orbitals.

4 Conclusions

In summary, we have presented a detailed investigation on the binding nature between a
metal-organic framework (MOFs) (1) constructed by ZnsO clusters and molecules of methanol
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and mathanal using theoretical methods. We attribute the interesting two-step sorption
behavior of methanol to two different interactions for the association of methanol molecules.
One is the coordination bond like with large binding energy as 54.36 kJ/mol and the other
one is hydrogen bond with small binding energy as 17.59 kJ/mol, which are corresponding
to mechanisms for the first step in low pressure with low sorption capability and the second
step in high pressure with high sorption capability, respectively. On the other hand, the
dominant contribution for the absorption of methanal is demonstrated to be C-H-m
interaction. The total binding energy between methanal molecule and the MOFs (1)
molecule is very large as 94.55 kJ/mol, which indicates the strong interaction between them.
The sorption behavior of methanal is proposed to be one-step, which is similar to that of
other rigid guest molecules such as benzene and toluene. This MOFs (1) material has been
indicated to be a promising luminescent detector for benzene [61]. Therefore, it is also
proposed to have fine sorption capability for methanal as well as the high performance as
luminescent detection for methanal. This study provides a comprehensive understanding
about the sorption mechanism for this material with small organic molecules and paves new
way on the synthesis and application of novel and stable MOFs.
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