COMMUNICATION

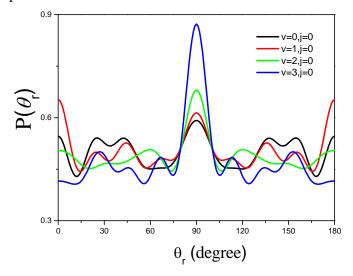
Theoretical Calculation of Vector Correlations of the Reaction D (2S)

 $+HS\rightarrow S+DH$

Yu-Ao Guo, Bo Zhou and Qiang Wei *

Department of Applied Physics, Chongqing University of Technology, Chongqing 400050, China Received 8 Oct 2013; Accepted (in revised version) 15 Nov 2013

Abstract: Quasi-classical trajectory calculations were performed to study the abstraction and exchange processes in the title reaction on an accurate ¹A'potential energy surface [J. Chem. Phys. 116, 4124 (2002)]. The alignment and orientation of the product DH and the polarized differential cross-section have been calculated at collision energies of 35 kcl/mol. Moreover, the effect of vibrational excitation on the alignment and the orientation of product molecule have also been obtained and discussed.

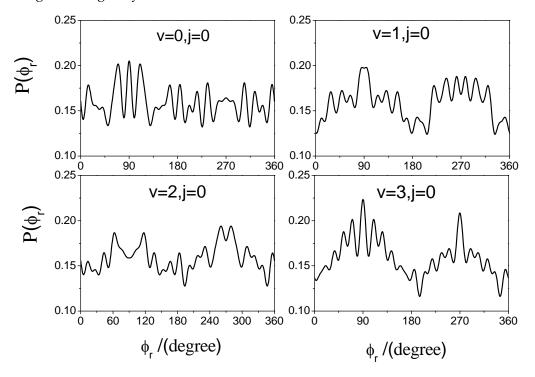

AMS subject classifications: 81U10, 81V45

Keywords: Quasi-classical trajectory, Vibrational excitation, Alignment, Orientation

From the last two decades, the S (¹D, ³P) + H₂ reactions and its reverse reaction as well as the isotopic variants have received considerable interest due to their important role in combustion and atmospherica chemistry. Many dynamic properties such as integral cross sections and differential cross sections [1-3], product translational energy distribution and isotope branching ratio [4-7], potential energy surface [8-10], as well as the remarkable noadiabatic effect have been extensively studied [11-14]. Very recently, Guo and coworkers employed the QCT method to study the integrated cross-sections [15-16] and stereodynamics of abstract reaction D+DS on the ³A″potential energy surface (PES). The results indicated that the product rotational angular momentum vectors are not only aligned, but also oriented. Lv [17-18] et al studied the exchange reaction H + HS and D+DS rections on the ¹A′ potential energy surface (PES) by using the quantum time dependent wave packet (TDWP) and quasiclassical trajectory (QCT) calculations. However, to the best of our knowledge, up to now there is still no correlative work to study the stereodynamics properties of the D+HS

^{*} Corresponding author. *E-mail*: qiangwei@cqut.edu.cn (W. Qiang) http://www.global-sci.org/cicc

reaction on ¹A'PES. In this paper we mainly focus our attention on energy dependence on stereodynamics properties of this reaction restricted on ¹A'PES.


Figure 1: The distributions of $p(\theta_r)$ of the DH product from the reaction D (2 S) +HS (v=0,1,2,3 j=0)→S + DH at the collision energy of 35 kcal/mol.

The center-of-mass (c.m.) frame is utilized in our calculations. The CM frame is used in the present study. The z-axis is parallel to the reagent relative velocity vector k, while the xz-plane (also called the scattering plane) contains k and k' with k' on the x \geq 0 half plane. The y-axis is perpendicular to the scattering plane, θ_r is the angle between k and j', θ_r is the dihedral angle between the scattering plane and the plane containing k and j', θ_r is the angle between the k'. In the c.m. frame, the product rotational polarization can be depicted through angular distributions $P(\theta_r)$, $P(\Phi_r)$ and polarization-dependent generalized differential cross section (PDDCS). The product rotational polarization for the title reactions is investigated, using the stereo-QCT procedure which was developed by Han et al. [19-22]. Each reaction runs 100 000 trajectories and the integration step size is set as 0.1 fs to guarantee the conservation of total angular momentum and total energy. The calculations of the product rotational polarization with the initial rotational quantum number j=0 and initial vibrational quantum number v=0, 1, 2, 3. The collision energy is 35 kcal/mol and the initial collision length is 15Å for each reaction.

As we know, the distribution of $P(\theta_r)$ describes the k-j' correlation and the distributions of $P(\theta_r)$ for product DH at collision energies of 35 kcal/mol are presented in **Fig. 1**. As can be seen from **Fig. 1**, the $P(\theta_r)$ distributed at all scattering angle from 0-180° and are symmetric with respect to 90° for v=0 and 1, which indicates there is no preferentially direction the product aligned. However, with the increasing vibrational quantum numbers, it is clearly see that the largest peaks of $P(\theta_r)$ are at 90° for v=2 and 3, which directly demonstrates that the

product show obviously polarization align the perpendicular direction to relative velocity k. Furthermore, the peak of $P(\theta_r)$ at 90° becomes narrower and higher with the vibrational excitation. It can be concluded that the vibrational excitation has large effect on the distributions of $P(\theta_r)$.

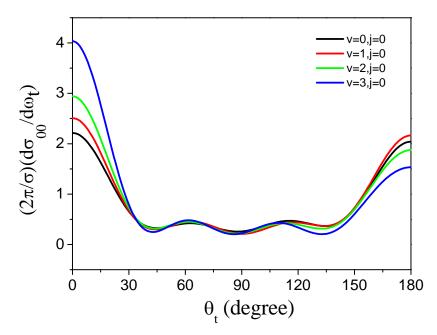

The dihedral angle distributions $P(\Phi_r)$ shown in Fig. 3 describe the k-k'-j' correlation. As can be seen from Fig.3, the distributions of $P(\Phi_r)$ are relatively broad, but peaks of $P(\Phi_r)$ around 90° and 270° are much larger than those of other angles for four vibrational states especially at v=3, which indicates that the rotational angular momentum vector of the product DH is mainly aligned along y-axis of the CM frame. In addition, the distributions of $P(\Phi_r)$ are tend to be asymmetric with respect to the k-k' scattering plane (or about $\Phi_r = 180^\circ$), directly reflecting preferred orientation of the product DH. For example, the appearance of the peaks at 90° is higher than that at 270° verified that the product rotational angular momentum vectors aligned along the y-axis.

Figure 2: The distributions of $p(\Phi_r)$ of the DH product from the reaction D (2S) +HS (v=0,1,2,3 j=0)→S + DH at the collision energy of 35 kcal/mol.

The polarization-dependent differential cross sections $((2\pi/\sigma)(d\sigma\omega/d\omega t))$ named PDDCS00, which is simply proportional to the differential cross-section (DCS), only describe the k-k' correlation or the scattering direction of the product. For v=0 and 1, one could observe that the distributions of PDDCS00 have a roughly symmetric behavior, with a small sideways scattering and a forward peak which is similar in magnitude to the backward one. This

behavior is usually observed for a reaction involving a long-lived intermediate complex in the collision process. However, with the increasing of vibrational excitation, the distributions of PDDCS₀₀ are clearly dominated by a strong forward peak and a much smaller backward scattering. This asymmetric c.m. angular distribution is consistent with a reaction which does not proceed via a long-lived intermediate complex and the preference for forward scattering simply indicates that the complex breaks before completing a rotation defined. One can conclude that the PDDCS₀₀ is dependent on the vibrational excitation and different mechanism is involved in reaction when the HS is excited to v=2 and 3. Further research is requested to reveal the more detailed mechanism of the title reaction.

Figure 3: The distributions of the polarization-dependent differential cross sections $((2\pi/\sigma)(d\sigma\omega/d\omega_t))$ of the DH product from the reaction D(2S)+HS (v=0,1,2,3 j=0) \rightarrow S + DH at the collision energy of 35 kcal/mol.

Acknowledgement

The support of the Natural Science Foundation of China (No.11204392 and No.11047125) is gratefully acknowledged.

Reference:

- [1] L. Banares, J.F. Castillo, P. Honvault and J.M. Launay, Quantum mechanical and quasi-classical trajectory reaction probabilities and cross sections for the S(1D)+H2,D2,HD insertion reactions, Phys.Chem. Chem. Phys., 7 (2005), 627-634.
- [2] S. H. Lee, K. Liu, Isotope effects and excitation functions for the reactions of S (1D) + H2, D2 and HD,

- Chem. Phys. Lett., 290 (1998), 323-328.
- [3] S. H. Lee, K. Liu, Direct mapping of insertion reaction dynamics: S (¹D) + H₂→SH+H, Appl. Phys. B: Lasers Opt, 71 (2000), 627-633.
- [4] Y. Inagaki, S. M. Shamsuddin, Y. Matsumi, K.Masahiro. Dynamics of the reaction S (¹D) +HD, H₂, and D₂: isotopic branching ratios and translational energy release, Laser Chem, 14 (1994), 235-244
- [5] M. Lara, P.G. Jambrina, A.J.C. Varandas, J.M. Launay and F.J. Aoiz, On the role of dynamical barriers in barrierless reactions at low energies: S(1D)+H₂, J. Chem. Phys., 135 (2011), 134313(1)-(14).
- [6] H. Yang, K. L. Han, G. C. Schatz, S. H. Lee, K. Liu, D. C. Smithe, M. Hankel, Integral and differential cross sections for the S(¹D) plus HD reaction employing the ground adiabatic electronic state, Physical. Chemistry. Chemical. Physics., 11 (2009),11587-11595.
- [7] J.A. Klos, P.J. Dagdigian and M.H. Alexander, Theoretical study of the multiplet branching of the SD product in the S(¹D)+D₂ -> SD(²II)+D reaction, J. Chem. Phys., 127 (2007), 154321(1)-(10).
- [8] A. S. Zyubin, A. M. Mebel, S. D. Chao, R. T. Skodje, Reaction dynamics of S (¹D) + H₂/D₂ on a new ab initio potential surface, J. Chem. Phys., 114 (2001), 320-331.
- [9] T.S. Ho, T. Hollebeek, H. Rabitz, S. D. Chao, R. T. Skodje,, A.S. Zyubin, A.M. Mebel, A globally smooth ab initio potential surface of the 1A' state for the reaction S(1D)+H2, J. Chem. Phys., 116(2002), 4124-4134.
- [10] S. D. Chao, R. T. Skodje, Quasi-classical trajectory studies of the insertion reactions S (¹D) + H₂, D₂ and HD, J. Phys. Chem. A, 105 (2001), 2474-2484.
- [11] P. Honvault, J. M. Launay, Dynamics of the S (1D) + H₂→SH+H reaction: a quantitative description using an accurate quantum method, Chem. Phys.Lett., 370 (2003), 371-375
- [12] T. S. Chu, K. L. Han, G. C. Schatz, Significant nonadiabatic effects in the S (1D) + HD reaction [J]. J. Phys. Chem. A, 111 (2007), 8286-8290
- [13] B. Maiti, G.C. Schatz and G. Lendvay, Importance of intersystem crossing in the S(³P,¹D)+H₂ ->SH+H reaction, J. Phys. Chem. A, 108 (2004), 8772-8781.
- [14] R.L. Martin, A theoretical study of the reaction $H + HS \rightarrow H_2 + S$, Chem. Phys., 82 (1983), 337-341.
- [15] Y. H. Guo, F. Y. Zhang, H. Z. Ma, Theoretical study of stereodynamics for the D'+DS(v = 0, j = 0) \rightarrow D'D+S abstraction reaction, Chin. Phys. B., 22 (2013), 053402(1)-(6).
- [16] Y. H. Guo, F. Y. Zhang, H. Z. Ma, Collision Energies Effect on Cross Sections and Product Alignments for the D+DS Reaction, Commun. Comput. Chem. 1 (2013), 99-108.
- [17] S.J. Lv, P.Y. Zhang and G.Z. He, Exact Quantum-Scattering Study of the D (2S) +DS (2II) Reaction, Chin.Phys. Lett., 29 (2012), 073401(1)-(4).
- [18] S.J. Lv, P.Y. Zhang, K.L. Han and G.Z. He, Exact quantum scattering study of the H + HS reaction on a new ab initio potential energy surface H₂S (3A"), J. Chem. Phys., 136 (2012), 094308(1)-(7).
- [19] K.L. Han, G.Z. He and N.Q. Lou, The theoretical studies of product alignment of the reactions of Na, F with CH₃I, Chin. Chem. Lett., 4 (1993), 517-520.
- [20] K.L. Han, G.Z. He and N.Q. Lou, Effect of location of energy barrier on the product alignment of reaction A+BC, J. Chem. Phys., 105 (1996), 8699-8704.

- [21] M.L. Wang, K.L. Han and G.Z. He, Product rotational polarization in the photoinitiated bimolecular reaction A+BC -> AB+C on attractive, mixed and repulsive surfaces, J. Chem. Phys., 109 (1998),5446-5454.
- [22] M. D. Chen, K. L. Han and N. Q. Lou, Vector correlation in the H+D2 reaction and its isotopic variants:isotope effect on stereodynamics, Chem. Phys. Lett., 357 (2002), 483-90.