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Abstract: A new criterion that can be used to locate the lowest excited state in a
variational self-consistent field framework has been proposed. Molecular orbital
(MO) relaxation effects are included in our method. The excitation energies
calculated using the present formula are in good agreement with experimental
values. The MOs obtained from our formula appear to be the approximate natural
orbitals of the corresponding configuration interaction singles (CIS) excited states.
This approach can be used for the construction of a pure spin state. Several
properties of the excited-state wave function have been investigated, and the utility
of a single Slater determinant to describe excited states has been verified.
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1. Introduction

Exploration of electronic excited states via the variational self-consistent field (SCF) method
is a fundamental problem in the domain of quantum chemistry. According to the Ritz
variational principle [1], for any trial wave function W, the energy expectation value E is an
upper bound to the exact ground state energy Ej:

* Corresponding author. Email address: shiboier@gmail.com (B. Shi)
http://www.global-sci.org/cicc ©2014 Global-Science Press
69



70 B. Shi / Commun. Comput. Chem.,2 (2014), pp. 69-87

(P[H[¥)

T

>E,

, (1)
When one applies this theorem to excited states that have the same symmetry as the ground
state, variational collapse always occurs and the upper bound to the excited-state energy is
no longer valid. Bound excited states can be obtained, however, as higher roots of a secular
equation such as the configuration interaction singles (CIS) [2] according to the
Hylleraas-Undheim-MacDonald (HUM) theorem [3,4], which asserts that the approximate
excited-state wave function is orthogonal and non-interacting with all approximate wave
functions of lower-lying states and that the corresponding energy is higher than the exact
excited-state energy. In other words, when the above two conditions (orthogonality and
non-interaction with lower-lying wave functions) are satisfied, the wave functions of
lower-lying states are not required to be exact. Many studies, however, require only
orthogonality and hence, in principle, need exact lower-lying states as reference states to
obey the HUM theorem. In practical calculations, however, only approximate lower-state
wave functions can be determined (such as the Hartree-Fock-Slater determinants), and the
orthogonal relation between approximate wave functions is not strictly met. Some explicit or
implicit formulas have been proposed to take orthogonality into consideration [5-12], but the
foundations of those methods need to be revisited. On the other hand, the orthogonal
constraint is not convenient for practical calculations, especially when more than one excited
state is explored [6]. Gilbert et al. proposed a criterion that requires maximum overlap
between new and old molecular orbitals in each SCF iteration [13], so that the excited state is
located in an SCF framework. In fact, the philosophy of the maximum overlap method
(MOM) is similar to that of the delta-SCF (ASCF) method, which abandons the Aufbau
principle and maintains a single electronic state throughout the SCF procedure.

The main objective of this report is to propose a new criterion that can be used to locate
an excited state in a variational SCF framework. In this manner, we can obtain excited states
and the ground state on an equal footing without variational collapse. We explore the
difference between the ground state and excited states from the point of view of electron
occupation in the orbital space. The excited state can be seen as promoting one electron from
the occupied space of the ground state to the virtual space of a reference state; some proper
constraint conditions may be imposed on the variational functional, and an effective
single-electron equation can be obtained and solved to construct the determinant wave
function of the excited state to calculate the corresponding energy. Finally, we explore the
properties of the excited-state wave functions to validate the use of a single Slater
determinant to describe the excited state. We have found that the spin-adapted excited-state
configurations of a closed-shell system can be written as a linear combination of
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two-determinant wave functions obtained by the present method.

2. Method

If a single Slater determinant is used to describe an excited state, the electron density p, can
be written as

NGCC
Pe= 2 W @
The molecular orbitals (MOs) ¥; of an excited state can be expanded as a linear combination
of the MOs of the ground state

z// ZCU(// + Z Cyv?, (©)
a=Ngge+1
where the superscripts e and g denote the excited and ground state, respectively; Noc
denotes the number of occupied orbitals; and Nt denotes the number of basis sets. As usual,
the subscripts i (j, k) and a (b, c) are used to denote the occupied molecular orbitals and
virtual orbitals, respectively. Integration of p, will give the number of electrons N,.

Ipe drN_f[fcu ij Z Caj aJJ (4)

a=Ny +1

We consider only single-electron excitations throughout this report. If one electron is
excited from the occupied space to the virtual space of the ground state, that is, if
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where the conditions in eq. (5) can be rewritten as
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set, while the "1" on the right side is simply a number. If only the spin-up (T) electron is
excited, eq. (7) can be rewritten as

a

Z<l//ieT HgT "//.e'r> =N, -1, (8a)
Na

D (v [T ) =1 (8b)

for spin-up electrons and
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for spin-down electrons ({). In the above equations, N,(Ng) refers to the number of spin-up
(spin-down) electrons. Eq. (9) restricts the f-orbitals in the excited-state rotation to be within
the occupied space of the ground state. At this stage, a functional E[{¥Y5HY¥]}] can be
defined using egs. (8) and (9) as constraints:
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where EUHF is the energy functional of the system, and A and y are the Lagrange
multipliers corresponding to constraints (8a) and (9b), respectively. In should be noted that
condition (8a) projects an electron out of the occupied space and (8b) ensures that a single
electron goes into the virtual space. The two conditions in egs. (8a) and (8b) are equivalent if
the number of electrons is conserved, and then only one needs to be applied to EVHF as a
constraint.

The effective single-electron equation for excited-state molecular orbitals takes the form

(fT+/1HgT)‘Wk¢>:§k¢“//kT>r (11a)

(F +y@-T1,))|w,, ) =& v (11b)

where f'and f'are Fock operators similar to those of the ground state. In this paper, we
wish to explore the lowest nondegenerate excited state. If the HOMO-LUMO transition or
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any one-to-one or one-to-many transition from the occupied space to the virtual space of the
ground state is the main contribution to the lowest excited state, condition (8a) may be
rewritten as (for the HOMO-virtual orbital transition case):

N[I

AT

where ‘P;T is the HOMO for spin-up electrons in the ground state. Defined as

vi)=0, (12)

o =[v" )" |, (13)
Then, eq. (11a) can be rewritten as
(FT+ A |y ) = G v ), (14)
Combining (14) with (11b)
(F +y@-T1, )|w, ) =& v ), (15)

we get the working equations that can be solved self-consistently to locate the first excited
state. For high-spin open-shell systems, there is a possibility that the lowest excitation comes
from a closed shell. It is easy to find examples of this behavior, such as in oxygen atoms or
high-spin transition metal complexes. In this case, the operator (13) should be defined for the
p-electron (if the unpaired electrons are a-electrons).

Based on the works of Glushkov [12] and Zhao and Parr [14], the conditions in egs. (9b)
and (12) will be met if and only if the Lagrange multipliers A and y approach infinity. In
practical calculations, however, constraints (9b) and (12) will be satisfied when the values of
A and y are sufficiently large [15].In the Results section, we show that A =y =~ 5000a.u. is
sufficient for most atoms and molecules to obtain convergent results.

In practical calculations, atomic central basis sets are used to expand the molecule
orbitals of excited states:

vi=2 i (16)
Substituting this into eqs. (14) and (15), we have, for a-electrons,
Z (FlII + ﬂHUV)CVm = gm Z SUVCV[T'I

Vv )

, (17)
1_Iuv = <Zu |HgT|/1/v> = Zsur PTSTSO'V

where S is the overlap matrix and P9'denotes the density matrix constructed from the
HOMO orbital of the ground state. Similar equations can be obtained for spin-down
electrons.
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The formula presented above has been implemented along with Pulay’s direct inversion
of the iterative subspace (DIIS) method [16] to improve the convergence speed. The
6-311G(3+, 3+) basis sets are used for all calculations, except for helium atoms and the
molecular ion HeH*, where the Dunning correlation-consistent basis sets aug-cc-pVDZ and
6-31g(d,p) were used, respectively. The calculations for Hz, N2, H20, and H20:2 were carried
out in the experimental gas phase geometries given in [6]. For CO, R(CO) = 1.128 A [17].For
ethylene and formaldehyde, we wused the optimal geometries calculated at the
MP2/6-311G(3+, 3+) level.

3. Benchmark Testing and Discussion

3.1 Convergence properties of working equations (14) and (15)

The energies of the lowest excited states corresponding to different A have been calculated,
and the results are listed in Table 1. As the value of A increases, the energy approaches a
stable value; when the value of A exceeds 1000 a.u., convergence is usually achieved. In
practical calculations, we set A = 5000 a.u., which is sufficient to achieve convergence. The
time requirement for convergence is similar to ground state SCF calculations and only a few
iteration steps are needed to locate the excited states.

Table 1 Convergent properties of the energy of the lowest excited state related to the Lagrange multiplier

for some atoms and a molecule

System A E (a.u.)
50 -2.06776365
100 -2.06776365
He 1000 —-2.06776365
5000 —-2.06776365
50 —7.36429264
Li 100 —7.36429205
1000 —7.36429144
5000 —7.36429138
50 —-75.75275651
O 100 —-75.75275651
1000 —-75.75275651

5000 —75.75275651
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3.2 Excitation energies for atoms and small molecules

Excitation energies for a few of the atoms have been calculated, and the results are listed in
Table 2. The abbreviations "eHF" and "eDFT" in the following sections refer to the ground
state wave function as a Hartree-Fock Slater determinant and Kohn-Sham determinant,
respectively.

Table 2 Excitation energies for various atoms in eV. Exp denotes the experimental values. The values in
parentheses represent the absolute deviation of the calculated value from the experimental value. MOM/HF
refers to the results obtained from MOM method at HF levels and <5?> denotes the expected value of the

spin square operator.

Atom Term eHF Expli8l MOM/HEF!3! <52
0.7500 (G)
H 25 10.200.00)  10.20 10.20(0.00)
0.7500 (E)
0.0000 (G)
He 15 2143(0.82)  20.61 19.29(1.32)
1.0000 (E)
0.7500 (G)
Li 2p 1.84 (0.01) 1.85 1.84 (0.01)
0.7500 (E)
0.0000 (G)
Be P 3.53(1.75) 5.28 3.51(1.77)
1.0000 (E)

G: ground state, E: excited state

The values calculated by our method are in good agreement with experimental values.
For open-shell atoms, such as hydrogen and lithium, the calculated results are highly
consistent with experimental values. For those atoms, the first excited state is a spin-adapted
configuration that can be seen from the expectation value of the spin-square operator. When
the ground state of the atom is a closed shell, such as in He and Be, spin contamination
occurs.

Excitation energies for several small molecules are listed in Table 3. The excitation
energies calculated using the present method is in good agreement with experimental values.
In this table, we also list the excitation energies calculated using eq. (17) in the density
functional theory (DFT) framework [23] where the B3LYP hybrid functional was used for the
exchange-correlation potential. From the results in Table 3, the excitation energies found
using the Hartree-Fock method are superior to the corresponding DFT energies. This may
arise from a fortuitous cancellation of errors in the Hartree-Fock method and lack of a
suitable exchange-correlation functional for excited states in the time-independent DFT [24].
The results obtained from the MOM at the Hartree-Fock level are also listed in the last
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columns of Tables 2 and Table 3 [13]. For atoms, our method yields similar results as
obtained using the MOM. For molecules, however, our method is superior to the MOM.

Table 3 Excitation energies for various molecules in eV units. Exp denotes the experimental values. The
values in parentheses represent the absolute deviation of the calculated value from the experimental value.
MOM/HF refers to the results obtained from MOM method at HF levels. The transitions type of those
molecules are: Haz: X2} - A'X}; CO: 'Z-'TL Nz X'5} - A'l,; H:0: 'A1-'Bi, HOx X'A; » A*4,;
Formaldehyde: n —» n*; Ethylene: m — 3s.

Exp eHF eDFT/B3LYP MOM/HF!"!
H> 11.19 11.76 (0.57) 11.82 (0.63)
co 8.51 7.17 (1.34) 6.99 (1.52)
N2 9.31091 9.01 (0.30) 8.92 (0.39)
H:0 7.40 7.19 (0.21) 7.74 (0.34)
H20: 5.16/20) 5.43 (0.27) 4.87 (0.29)
Formaldehyde 4.07121 3.78 (0.29) 3.72 (0.35) 2.56(1.51)
Ethylene 7.1102 6.64 (0.47) 6.04 (1.07) 5.94(1.17)

Table 4 Excitation energies for polymer blends TFB/F8BT in two different stacking orientations. E(g) is the
total energy of the ground state. E(e) is the energy of the excited state calculated by the present formula.

Those two values are in a.u units, eDFT is the excitation energy in eV units

E(g) E(e) eDFT TDDFTR  Exp(FBT*)
Eclipsed ~ -7262.74930 -7262.66560 2.277 2.40 23
Staggered  -7262.75079 -7262.66512 2.33 2.36 23

3.3 Excitation energies for fluorene-based polymer blends TFB/F8BT

Polyfluorene-based polymer blends have been utilized in the development of optoelectronic
devices. The constituent copolymers are chemically designed to facilitate more efficient
electron/hole mobility. Poly[9,9-dioctylfluorene-co-N-(4-butylphenyl) diphenylamine] (TFB/
F8BT) is an example of such polymer blend. Semiempirical models have been used to
examine these systems [25]. TDDFT has also been applied to this system in [26], but the
extent of the computational effort and availability of required computational resources are
bottlenecks for this type of calculation. The present formula has been utilized for this
polymer using the 6-31g(d) basis sets, and the results are listed in Table 4. The calculations
were carried out in the geometries given in [26]. For our calculation, only the SCF iterative
process is needed, meaning the required computational resources are similar to the ground
state SCF calculation.
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(b)staggered orientation
(a)eclipsed onentation 88

Figure 1: TFB/F8BT structures showing two different stacking orientations of the polymer constituents. (a)

eclipsed orientation (b)staggered orientation.

Two different stacking orientations of TFB/F8BT were constructed, as shown in Figure 1.
The total energies of the ground state indicate that the staggered orientation is more stable
than the eclipsed orientation by 40.3 meV. For excited states, however, the eclipsed
orientation is more stable than the staggered orientation by 12.98 meV. The excitation
energies of the staggered and eclipsed orientations are 2.33 eV and 2.28 eV, respectively. For
both cases, the excitation energies are in general agreement with the experimental F8BT
emission at 2.3 eV. This indicates that the excited state obtained by our method is the
localized excited state TFB/F8BT*, which can be characterized as the excitonic state given in
[26].

3.4 Potential energy curves of the molecular ion HeH*

The present formula has been used to calculate the potential energy curves of the lowest
electronic excited state of the molecular ion HeH?*; the results are shown in Figure 2. For
comparison, we also calculate the potential energy curve of HeH* using the CIS method. The
curve for the !X ground state comes from the unrestricted Hartree-Fock (UHF) calculation in
which HeH* dissociates to He(1s?) and H*.

-13

Total Energy (Hartree)

Figure 2: Potential energy curves for the ground and first excited state of HeH* with different method.

For the lowest excited state, our method describes the system correctly as He*(1s) and
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H(1s) at large internuclear distances with an energy ca. -2.492 Ha, which is almost equal to
the exact value of —2.5 Ha [27]. The curve denoted "gHF(T)" that refers to the high-spin UHF
wave function, used for the lowest triplet state 3%, also dissociates HeH*to He* and H, with
an energy ca. —2.492 Ha. The first excited state (eHF) potential energy curve obtained using
our approach and the lowest triplet state (gHF(T)) potential energy curve found with UHF
method are virtually indistinguishable for He-H separations over 2.5 A. The CIS first
excited-state energy is higher than those produced by the other two methods, and leads to a
dissociation limit of ca. —2.439 Ha. Throughout the studied range of He-H separations, our
method predicts that the first excited-state energy is lower than the CIS value and higher
than that of the UHF triplet state.

3.5 Wave function: Spin-adapted or not ?

As shown above, for open-shell atoms such as hydrogen and lithium, the first excited state
has a spin-adapted configuration. Although some authors have proposed that an additional
constraint should be added to the variational functional to arrive at a spin-adapted solution
[28], this is not necessary for open-shell atoms or molecules. Considering the electron
occupation, the additional constraint in [28] corresponds to a double-electron excitation for
closed-shell systems; this is not suitable for single-electron excited states with
single-determinant wave functions (see appendix A for more details). Of course, the
spin-adapted excited state can be obtained using a linear combination of Slater determinants
as in the case of the CIS wave function. It is interesting to note that the expectation values of
the spin square operators for closed-shell atoms and molecules are exactly equal to one (see
Table 2). This stems from mixing with higher multiplicity components. Imposing orthogonal
constraints to obtain excited states shows similar spin features [6]. Thus, rather than
obtaining a pure singlet or triplet state we obtain broken-symmetry solutions for closed-shell
atoms and molecules. However, the spin-adapted wave function of the excited state for a
closed-shell system can be obtained from the present formula. The expectation values of the
spin square operators for those systems are equal to one, indicating the wave function
obtained from eHF or eDFT calculations is a linear combination of singlet and triplet states
with equal weighting. Consider a two-electron system with a double-occupied molecular
orbital and virtual orbital for the ground state, which we denote a and b, respectively. The
excited-state single-determinant solutions for closed-shell systems using the present formula
are

Verr@ =| a(T)b(‘L) |

, (18)
Verr(2) =| a(‘L)b(T) |
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which correspond to two degenerate states with an excited a- or [3-electron, respectively. The
correct singlet (s) and triplet (t) wave functions of the excited state can be written as a linear
combinations of the above two determinants

@, =1/32 (la(Mb) |- |a(¥)b(T) )

/ (19)
@ =1/V2(la(Mb) [+]athb(M])
where the energies of the above two states are
E, = <‘//eHF | H |‘//eHF > - <‘//eHF(1) | H ‘//eHF(Z)> (20)

E = <‘/’er | H |‘//eHF>+<'/’eHF(1) | H '/’eHF(2)>

The excited-state energy calculated by the present method is the first term in the right side of
the above equation. From eq. (20), we obtain

E +E = 2<V/eHF | H |‘//eHF> =2E,

E-E = 2<l//eHF(1) | H %HF(Z)> I
E, =2E, -E

21)

where E; can be easily calculated using normal HF or DFT methods by noticing that the
following three triplet states are degenerate:

®; =12 (la(Mb) | +]ah)b(M)
@ ={a(Mb(M)] : (22)
@ a({)b(d)|
The energy of the singlet excited state can be readily obtained from the eq. (21), which leads
to the purification formula eHF(c) = eHF X 2 — E¢ig(r), and  the results are listed in Table 5.

From the above discussion, the spin-adapted process for excited states can be
represented by the following generalized eigenvalue equation

Eene <‘/’eHF(1)|H WeHF(2)> (1/\/5 Jz(Et O](l/\/a ]/ (23)
<‘//eHF(2) | H '//eHF(l)> Eene il/\/i 0 E ilr/\/E

3.6 Reference state: Slater determinant of the excited state

Molecular orbital relaxation effects have been taken into account in our formula, which is
different from the CIS method where the orbital spaces are frozen. Mayer has demonstrated
that a CIS wave function can be decomposed into several linear combinations of Slater
determinants and usually only one main contribution term (see appendix B) [32]. The

single-determinant wave function obtained from our method mainly resembles the lead
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term of Mayer's CIS wave function. For open-shell atoms such as H and Li, the molecular
orbitals obtained using the present SCF scheme may be viewed as approximate natural
orbitals of the CIS lowest excited state [33]. Of course, this does not mean that our method is
merely a different form of the CIS wave function; the two methods are fundamentally
different in nature. To shed further light on this issue, we used the single-determinant wave
function of the lowest excited state of the Li atom as a reference state; then, we performed a
CIS calculation on the excited-state wave function. The results are listed in Table 6. The
single-determinant wave function is suitable for representing the first excited state. Using
this state as the reference determinant and performing a CIS calculation, we arrive at the
same excitation energy for the higher excited state as found using the CIS model. In addition,
from the CIS calculation, we notice that the CIS lowest excited state mainly comes from four
pairs of orbital transitions: s(1) — v(6), amplitude = 0.2859; s(1) — v(10), amplitude =
0.6897; s(1) — v(13), amplitude = - 0.6155; and s(1) — v( 17), amplitude = 0.2423. A singly
occupied orbital is denoted by "s" and a virtual orbital by "v". The numbers in parentheses
represent the serial numbers of the molecular orbitals, and the amplitude is the square of the
combination coefficients in the CIS wave function. This means that more than four Slater
determinants are needed to construct the first excited state in the CIS model. In our formula,
however, only a single determinant is used to represent the same excited states, which is a
direct outcome of molecular orbital relaxation effects that are neglected in CIS but taken into
account in our present formula. On the other hand, if we obtain the determinant wave

function of the excited state and corresponding MOs, we can perform an electron correlation

Table 5: Excitation energies for various atoms and molecules calculated using the present method and CIS
method. eHF(c) = eHF X 2 — E¢igry accounting for the presence of a triplet component in the wave
function. All values are in eV. The transitions type of those molecules are: H2:X 12; - Az}, CO: 1X-11, H20:

1A1-1B1

System eHF Ecis eHF(c) Exp

He (1s2s)!S  21.43 20.14(T) 22.72 20.61
22.43(S)
1.70(T

Be (2s2p)'P  3.53 o(m) 5.36 5.28
5.05(5)

H> 11.76 9:95(T) 13.57 11.19129
12.69(S)

cO 717 5-70(T) 8.64 8.511301
8.69(5)

H0 7.19 788(T) 6.50 7.4061

8.56(5)

T:triplet S:singlet
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calculation using configuration interaction, couple-cluster, or many-body perturbation
methods similar to those used in treatment of the ground state [1]. This could be a direct

method for evaluating electron correlation effects of excited states.
3.7 Difference and connection between the present and previous formulas

Two steps, carried out sequentially, describe the present formula: (a) promoting one electron
from the occupied space of the ground state to the virtual space of the reference state
through the constraints in eqgs. (8) and (9) and (b) allowing orbital relaxation to achieve
self-consistency. This may seem similar to the ASCF technique, but we argue that in the ASCF
method one would need, after abandoning the occupancy rule for the ground state, to
maintain this electronic state throughout the SCF procedure; this is also the case for the
MOM formula [13]. Some disagreement exists in those methods, mainly depending on
primitive guesses. Indeed, the first process is out of the domain of the iterative process of the
self-consistent field in the ASCF technique or MOM. On the other hand, ASCF assumes
implicitly that a transition can be represented by an excitation involving only two orbitals,
which generally seems not to be satisfied. However, in our method, this drawback is
avoided. Davidson et al. have proposed a method [34-36] that produces the correct singlet
excited state that is both orthogonal and non-interacting with the ground state, but their
method can be applied only to smaller atoms and molecules.

In another class of methods, which more closely relate to the present one, the
orthogonality condition between the ground and excited states is considered explicitly. As
mentioned in the Introduction, those methods are conceptually misleading; for practical
applications, our method is more straightforward and conceptually clear. The Huzinaga
equation for excited states [9, 10] also uses the projection operator technique, but in their
method the occupancy of virtual orbitals varies independently in order to fulfill the
orthogonality condition. This is quite different from our formula where both occupancy and
virtual orbitals are variable in one SCF process. Glushkov et al. [28] have proposed a method
that also considers the orthogonality condition. The reader may find that condition (12) is
similar to the orthogonality constraint in Glushkov's method, but the starting points are
obviously different.

Finally, a popular alternative to the study of excited-state properties is time-dependent
DFT (TDDEFT) in its adiabatic formulation [37, 38], which has been used as a compromise
between accuracy and computational cost in many applications. However, TDDFT using
popular exchange-correlation functionals fails for charge transfer excitation. It has been
noted that the failure of TDDFT for charge transfer excitation is related to the orbital

response parameter, which is kept at second order in the TDDFT energy expression [39, 40].
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In contrast, our method takes into account the higher order response terms through orbital
relaxation, which we expect is suitable for charge transfer excitation. We will revisit this
point in future studies. Additionally, it is difficult for TDDFT to consider double electron
transitions, which is easily achieved using our formula (see the following section for more
details).

Table 6 Excitation energies in eV units of lithium atoms (?P) using the lowest excited state as the reference
state and calculated by the CIS method. Exp denotes the experimental values. The values of third column
correspond to the addition of the lowest excitation energy, 1.84 eV, to the value in the second column.
Because the 3p configuration is triply degenerate, we label this as x, y, and z

Li eHF-CIS eHF CIS Expli8l
1s3s 1.49 3.33 3.34 3.37
1s3px 1.95 3.79 3.80 3.83
1s3py 1.95 3.79 3.80 3.83
1s3p- 1.95 3.79 3.80 3.83

4. Concluding Remarks

In this report, we proposed a new criterion to locate the lowest excited state of atoms and
molecules without variational collapse. Molecular orbital relaxation effects are included in
our method. The excitation energies calculated using the present formula are in good
agreement with experimental values. This approach can be used for the construction of a
pure spin state. The wave function of the corresponding excited state is a proper reference
state, which is suitable for the calculation of electron correlation energy, similar to the
Hartree-Fock wave function for the ground state. The MOs obtained from our formula
appear to be the approximate natural orbitals of the corresponding CIS excited states.

The present formula can be easily extended to calculate other types of excited states, such
as two-electron excitations, core-electron excited states and so on. For example, if
two-electron excited states are needed, the operator Il; in eq. (11) can be defined as

1, =)

where the orbitals in this summation are those that are occupied in the ground state but

, (24)

virtual in the excited state. If more than one excited state is needed, excluding the first
excited state, we can define a new operator

=) o)

/ (25)
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where the first orbital is the HOMO of the ground state and the second orbital is the HOMO
of the first excited state. Of course, if the HOMO-LUMO transition is not the main
contribution to the lowest excited state, more general equations (egs. (8) and (9)) should be
used. In this situation, the Zhao-Parr scheme [14] fails and an iterative scheme is needed to
optimize the value of the Lagrange multipliers A and y. This issue also occurs in the
constrained-DFT method developed by Wu et al. [41]. We will revisit this problem in future
studies.

Finally, When the HOMO-LUMO transition is the main contribution to the lowest
excited state, egs. (14) and (15) can be written in a different form. If we act on both sides of
eq. (14) with 1 — HgT and consider that Il;(1 —II,;) = 0, the following equation is produced:

A-T) T Q-1 [y ) = 6 A= TT5) vy ), (26)
Note that
(1_HZT)‘I//|<T>E‘WKT>/ (27)

Eq. (26) is similar to the Huzinaga equation [9, 10] and equivalent to eq. (14) in practical
calculations. Similar equations can be obtained for spin-down electrons.
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Appendix A: Spin-adapted single-determinant wave function of an electronic
excited state for a closed-shell system

Using a single-determinant wave function, the expectation values of the spin square
operator can be written as

<52>=S(S—1)+ N, —Trace(S”), (A1)

where s = (N, — Ng)/2 and Ny (Np) refers to the number of spin-up (spin-down) electrons.

S% is the overlap matrix of the spin-up and spin-down spatial orbital with elements

7 =(gf 1l), (A2)
A spin-adapted configuration means that
(s?)=s(s-1), (A3)
which leads to
Tr(S”)=N,, (A4)

This means that the spatial orbitals of B-electrons lie completely in the space extended by the
spatial orbitals of a-electrons and that the B-spatial orbital can at most differ from the
a-spatial orbital by a unitary transformation. If an a-electron is excited from an occupied
orbital to a virtual orbital, in order to obtain the spin-adapted single-determinant wave
function, the (-electron should also be excited to a virtual orbital in a similar manner. If an
additional constraint corresponding to eq. (A4) is added to the variational functional to
arrive at a spin-adapted solution [28], the double-electron excited state will be obtained.

Appendix B: Mayer's CIS wave function and the natural orbitals of the
corresponding excited-state wave function

In terms of canonical HF orbitals, the CIS wave function can be written as

Ve = Z z Cip¢;¢i_|HF>' (B1)

ieocc pevirt

where ¢, and ¢@; refer to the creation and annihilation operators corresponding to
canonical HF orbitals and |HF) is the Hartree-Fock ground state. Mayer has noted that by
considering the singular-value decomposition (SVD) of the CIS coefficient matrix, the CIS
wave function is simplified to contain only N determinants, where N is the number of
electrons [32].
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A .. 0
A=U'CV=: . 10} (B2)
0 - Ay

Where U and V are appropriate Ny X Ny and  Nyj¢ X Ny orthogonal matrices,
respectively, and C refers to the Ny X Ny CIS coefficient matrix.
In terms of the new orbitals
virt
vy = ZVpr(op
- (B3)

occ

Wy = Zuik¢i
i1

the CIS wave function will be transformed into the form

N
Yo :zﬂ'kl/jl\(/+§”£+|HF>f (B4)
k=1

One may expect one or a few of the A,values to differ significantly from zero, and thus these
excited configurations dominate the CIS wave function. The first-order reduced-density
matrix, using the wave function (B4), can be written as [33]

P, =0,N, — A28, + 25, (1-n,), (B5)

a“ab a

where n, = 1,0 indicates whether the orbital ¥, is occupied or virtual in the ground state.
Thus, the first-order density matrix in the basis set of eq. (B3) is diagonal; that is, the
associated orbitals are the natural orbitals of the system.



