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Abstract: The detailed mechanisms of cascade [2 + 2 + 2] cycloaddition reaction of 

bimolecular ketenes with isothiocyanate under the N-heterocyclic carbene (NHC) 

catalysis have been systematically investigated in depth with the density functional 

theory (DFT) calculations. The calculated results indicate that this reaction occurs 

through four steps: i.e., the complexation of ketene and NHC, regioselective addition of 

N-benzoyl isothiocyanate to enolate intermediate, addition of another molecule of 

ketene for the formation of six-membered heterocycle, and the regeneration of the 

catalyst. The computational results show that the second step is the rate-determining 

step. Moreover, the stereoselectivities associated with the chiral carbon center and the 

carbon double bond, are predicted to be determined in the second and third steps, 

respectively, and the E-type with R-configuration of the product is the predominant 

product, which is consistent with the experimental outcomes. The mechanistic insights 

obtained in the present study should be valuable for the synthesis of heterocycles under 

NHC catalysis. 

AMS subject classifications: 92E99 
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1. Introduction 

Privileged heterocyclic systems are important objectives in chemical synthesis and 
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pharmaceutical sciences, due to their wide existence in numerous biologically active 

molecules. During the past decades, N-heterocyclic carbene (NHC) catalysis has emerged as 

a powerful tool for synthesis. Owing to the unique properties of NHC catalysts, huge 

advances have been made. As an important organocatalyst, NHC has been successfully used 

in carbon-carbon and carbon-heteroatom bond formation reactions including 

crossed-benzoin, Stetter, homoenolate, annulation, and cycloaddition reactions [1-5]. Among 

these advances in several different types of cycloaddition reactions, NHCs have been found 

to be powerful organocatalysts for ketene cycloaddition reactions (i.e., [2 + 2] [6-8], [2 + 2 + 2] 

[9], and [4 + 2] [10, 11]) with high stereoselectivities, which can afford a facile and also 

effective route to obtain various heterocyclic skeletons. 

A unique propensity in ketene chemistry is to give facile [2 + 2] or formal cascade [2 + 2 

+ 2] cycloaddition reactions with various reaction partners, such as alkenes, ketones, imines, 

isothiocyanates, and so on. It was first reported by Staudinger in 1905 [12], and then many 

modifications and improvements introduced during the last hundred years had extended 

the versatility of ketene cycloaddition reactions. However, these noncatalyzed ketene 

cycloaddition reactions between relatively unreactive reaction partners typically require 

forcing conditions. For example, Snider and co-workers explored a scope of intramolecular 

α,β-unsaturated ketene-alkene [2 + 2] cycloadditions with a yield of 75% in toluene at a high 

temperature [13]. Interestingly, many studies found that ketene cycloaddition reactions can 

proceed easily with the presence of Lewis acid. It should be noted that the recent reports 

show that the Lewis acid catalyst (especially for N-heterocyclic carbene) can also promote 

the cycloaddition reactions of ketene and significantly improve their stereoselectivities. An 

outstanding example of NHC-catalyzed cascade ketene [2 + 2 + 2] cycloaddition reaction 

with isothiocyanate (Scheme 1) is first reported by Ye’s group [14], which deserves particular 

attention if we note the fact that the chemoselectivities of this reaction remain unsettled 

though cycloadditions of ketene have been widely reported. 

 

Scheme 1. The NHC-catalyzed [2 + 2 + 2] cycloaddition reaction of bimolecular ketenes with isothiocyanate. 

In contrast to the great development of NHC-catalyzed cycloaddition reactions of 

ketene in experiment, the theoretical investigations on the mechanisms of NHC-catalyzed 
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ketene cycloaddition reactions are rare. Our group has theoretically studied the mechanisms 

of NHC-catalyzed [2 + 2] [15, 16], [4 + 2] [17], and [2 + 2 + 2] [18] cycloaddition reactions of 

ketene using DFT methods. Actually, the reaction mechanisms might be diverse for different 

NHC catalytic cycloadditions of ketene, and these cycloaddition reactions are not always 

initiated by the coordination of NHC with ketene [17]. For example, in our previous 

theoretical study on ketene [2 + 2+ cycloaddition reaction, we found that the “ketene-first” 

mechanism was exclusively more favorable to the “imine (or ketone)-first” catalytic 

mechanism. However, the computational investigations on NHC-catalyzed [4 + 2] 

cycloaddition reaction verified that the “diazene-first” mechanism was favorable in 

comparison with the “ketene-first” mechanism. To the best of our knowledge, the 

mechanisms and stereoselectivities of catalyst-controlled divergence in NHC-catalyzed [2 + 2] 

and [2 + 2 + 2] cycloaddition reactions of ketene with isothiocyanate remain to be hitherto 

unexplored. Thus, the theoretical investigation is still necessary for these special 

organocatalytic reactions. It should be noted that our previous work on NHC-catalyzed [2 + 

2 + 2] cycloaddition reaction of ketene with carbon disulfide concentrated on the mechanism 

of this kind of cycloaddition reaction [18], while the origin of the stereoselectivity has still 

been unsettled to date.  

 

Scheme 2. The proposed catalytic cycle for the NHC-catalyzed [2 + 2 + 2] cycloaddition reaction. 

On the basis of the presumptive mechanism proposed by Ye [14], we suggested the 

possible mechanism of the reaction of ketenes with isothiocyanate catalyzed by NHC 

(Shown in Scheme 2). For the [2 + 2+ 2] cycloaddition reaction, there are generally four steps 
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in the catalytic cycle, including (i) the nucleophilic addition of Cat to R1 to form the 

zwitterionic intermediates E/Z-M1 via transition states E/Z-TS1, (ii) the reaction between 

intermediates E/Z-M1 and R2 to generate the intermediates M2R/S via transition states 

TS2R/S, (iii) the [4 + 2] cycloaddition of M2R/S with the second molecule of R1 to form the 

six-membered adducts E/Z-M3R/S via transition states E/Z-TS3R/S, and (iv) the dissociation 

of desired products E/Z-PR/S and regeneration of catalyst Cat via transition states 

E/Z-TS4R/S.  

Nevertheless, there are still some issues that need to be settled: As shown in Scheme 2, 

why the Cat cannot catalyze the [2 + 2] cycloaddition reaction of R1 with R2 and what is the 

main factor that controls the chemoselectivity in this divergent reaction? Why the NHC can 

not react with R2 firstly? As the design of a new organocatalyst relies on a detailed 

understanding of the underlying factors that govern the stereoselectivity of these kinds of 

reactions, so what are the main factors governing the stereoselectivity of this reaction? With 

these questions as motivation, the present work will pursue a theoretical investigation on the 

title reaction to not only obtain a preliminary picture from the ketene [2 + 2 + 2] 

cycloaddition reaction, but also explore the factors that control the stereochemistry of this 

reaction. We believe that the mechanistic information should be important for 

understanding the NHC-catalyzed [2 + 2 + 2] cycloaddition reaction and providing novel 

insights into recognizing this kind of reaction in detail. 

In this present study, we aim to disclose both the detailed mechanism and the 

stereoselectivity of this novel NHC-catalyzed [2 + 2 + 2] cycloaddition reaction of ketenes 

with isothiocyanate (Scheme 1) using density functional theory (DFT), which has been 

widely used in the study of organic [19-30], biological reaction mechanisms [31-34], and 

others [35, 36]. For the sake of convenience, the cycloaddition reaction between phenyl (ethyl) 

ketenes (R1, Scheme 1) and isothiocyanate (R2, Scheme 1) catalyzed by Cat (Scheme 1, 

Ar1=Ph, R1=TBS, R2=2-iPrC6H4) has been chosen as the object of investigation. 

2. Computational details 

Quantum mechanical calculations reported herein were carried out using the Gaussian 09 

suite of programs [37], with density functional theory (DFT). All structures of the reactants, 

transition states, intermediates, and products were optimized using the M06-2X [38-40] 

density functional along with the 6-31G(d, p) basis set in the gas phase. The harmonic 

vibrational frequency calculations were performed at the same level of theory as that used 

for geometry optimizations to provide thermal corrections of Gibbs free energies. We 

confirmed that the local minima had no imaginary frequency, while the saddle points had 

only one imaginary frequency. The same level of intrinsic reaction coordinates (IRCs) [41, 42] 
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were calculated to confirm that each transition state structure connected the correct reactant 

and product on the potential energy surface, and the natural bond orbital (NBO) [43-45] 

analysis was employed to assign the atomic charges. 

On the basis of the optimized structures in the gas phase at the M06-2X/6-31G(d, p) level, 

the energies were then refined by M06-2X/6-311+G(d, p) single-point calculations with 

solvent effects (dichloromethane, which was chosen from the available experiment) included 

and simulated by the integral equation formalism polarizable continuum model (IEF-PCM) 

[46, 47]. In the following parts of this paper, all discussions in this theoretical study are 

based on solution phase single point energy (M06-2X/6-311+G(d, p)) corrected by gas phase 

Gibbs free energy correction (M06-2X/6-31G(d, p)). We chose to make discussions based on 

Gibbs free energies rather than Born-Oppenheimer energies, which are the electronic 

(including nuclear-repulsion) energies plus ZPEs in this study. The computed structures 

were rendered using the CYLView software [48]. 

3. Results and discussion 

It is a crucial but usually challenging issue to figure out how the catalyst will first exert its 

effect on reactants for a catalytic reaction. The answers might be different due to the various 

factors such as the specific structure of the catalyst, the reactant counterparts, and 

experimental conditions, which are important for the catalytic reactions. Based on the 

general study of the other NHC-catalyzed cycloaddition reactions, the NHCs do not always 

combine with ketene to initiate the cycloaddition. Meanwhile, in this reaction (Scheme 1), 

the two reaction patterns (R1 and R2) can both react with NHC due to their electrophilic 

propensity of the carbonyl and/or thiocarbonyl carbon atom in R1 and R2. In this present 

study, we only calculate the reaction between R1 and R2, the dimerization reaction of ketene 

is left out from our computations, because (1) the dimerization reaction of ketene is a 

competitive side reaction of the title reaction and it is unnecessary to discuss its 

stereoselectivity in detail, (2) the selected computational method, including the density 

functional, basis set, and solvation model, is verified to be able to predict the right 

stereoselectivity for the title reaction system. Therefore, we believe it is reasonable to omit 

the dimerization reaction. Furthermore, the regioselective [2 + 2] cycloaddition reaction of 

R1 with R2 catalyzed by Cat is also studied. 

3.1. Reaction mechanism catalyzed by Cat 

In this section, we firstly studied the Cat catalyzed [2 + 2 + 2] cycloaddition reaction of R1 

with R2, and then explored the Cat catalyzed [2 + 2] cycloaddition reaction of R1 with R2. 
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The detailed discussion has been presented as follows. 

3.1.1. [2 + 2 + 2] Cycloaddition mechanism 

As shown in Scheme 2, we have first suggested the fundamental catalytic cycle for the [2 + 2 

+ 2] cycloaddition reaction. Figure 1 presents the energy profile of the entire fundamental 

pathways. 

 

Scheme 3. The E/Z-type and R/S chiral configurations involved in the NHC-catalyzed [2 + 2 + 2] 

cycloaddition reaction. 

 

Figure 1: The Gibbs free energy profile of [2 + 2 + 2] cycloaddition reaction of ketenes with isothiocyanate 

catalyzed by Cat (a adding the free energy of R2 and R1, b adding the free energy of 2R1, c adding the free 

energy of R1, d adding the free energy of Cat). 
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Initially, two reaction precursors E/Z-M0 are formed with the approach of Cat to R1, 

this step is endergonic by 7.57/8.81 kcal/mol (Figure 1), respectively. From E/Z-M0, 

nucleophilic attack on the C3 atom of R1 by C1 atom in Cat via the transition states E/Z-TS1 

produces the coordinated zwitterionic intermediates E/Z-M1 with the energy barriers of 

13.12/13.18 kcal/mol (Figure 1), respectively. Notably, the C5 atom of R2 is also 

electron-deficient and can react with Cat, thus this possibility is also taken into consideration. 

The formation of zwitterionic intermediate M1R2 via the transition state TS1R2 requires an 

energy barrier of 17.46 kcal/mol (Figure 1). The Gibbs free energy barriers via transition 

states E/Z-TS1 (13.12/13.18 kcal/mol) are found to be ~4.3 kcal/mol lower than that via TS1R2 

(17.46 kcal/mol), which reveals that the reaction between Cat and R1 occurs more favorably 

to initiate the reaction under the experimental condition. With regard to the stereoselectivity, 

as the free energy barrier difference via E-TS1 (13.12 kcal/mol) in comparison to that via 

Z-TS1 (13.18 kcal/mol) is predicted to be a value that lies within the error bar of the 

computational method, it is difficult to determine whether E-M1 or Z-M1 is preferred to be 

formed in this step. 

The subsequent C–C bond formation reaction between E/Z-M1 and R2 occurs via 

transition states TS2 (E-M1 associated with TS2S and Z-M1 associated with TS2R, 

respectively) to give the intermediates M2S and M2R, separately. The chiral center C2 atom 

is introduced during the formation of C2–C5 in this step and marked as R/S. We have only 

considered the Si face addition of E-M1 and Re face addition of Z-M1 by R2, due to the large 

steric hindrance of Re face of E-M1 and Si face of Z-M1 for the subsequent [4 + 2] 

cycloaddition. As shown in Figure 1, the C–C bond formation via TS2R/S requires the 

energy barriers of 21.31/22.52 kcal/mol (Z-M1 → TS2R and E-M1 → TS2S), respectively. 

 

Figure 2: Optimized 3-D structures involved in the third step of [2 + 2 + 2] cycloaddition reaction (distance 

in Å  and all of the hydrogens are omitted for the sake of clarity). 
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As shown in Scheme 2, since M2R/S have been formed in the C–C bond formation step, 

the following step is to construct the six-membered heterocycle that is included in the final 

product, which obviously needs to add another molecule of R1, excluding the possibility of 

involving another molecule of R2. The NBO analysis shows that the negative charges are 

populated on the S6 atom (–0.282/–0.299 e) in M2R/S but positive charges on the C3  ́atom 

(0.731 e) in R1, while in contrast the positive charges are assigned to the C3 atom (0.513/0.540 

e) in M2R/S but negative charges to the O4  ́atom (–0.442 e) in R1 molecule, the electrostatic 

attraction between C3  ́and S6 along with that between C3 and O4  ́will lead to complexes in 

either E or Z configuration, depending on which face of R1 that M2 (M2R/S) get close to. 

Subsequently, the six-membered ring is formed in E/Z-M3 (E/Z-M3R and E/Z-M3S) via 

transition states E/Z-TS3 (E/Z-TS3R and E/Z-TS3S), respectively. The IRC results 

demonstrate that the [4 + 2] cycloaddition process occurs via a concerted but highly 

asynchronous manner and the formation of C3 –́S6 bond is more preferred over the 

formation of the C3–O4  ́bond. The free energy profile mapped in Figure 1 reveals that the 

energy barriers of the [4 + 2] cycloaddition step are 16.52 (E-TS3R) and 22.02 (Z-TS3R) 

kcal/mol with respect to M2R, whereas those are 20.17 (E-TS3S) and 26.32 (Z-TS3S) kcal/mol 

with respect to M2S, respectively. Obviously, the Z-type addition owns much higher energy 

barrier and the formation of Z-M3R and Z-M3S is unfavorable compared to E-type addition 

for the formation of E-M3R and E-M3S, thus in the following parts, we think it is 

unnecessary to discuss these two possible reaction patterns. The formation of the E-M3R 

costs the lowest energy barrier and the energy barrier of E-TS3R is 3.65 kcal/mol lower than 

that of E-TS3S, which indicates that the formation of E-M3R is more energy favorable and 

supports the reported preference to form the E-type with R-configuration of the product. 

The last step is the dissociation of the catalyst with the product via transition state 

E-TS4R, and this leads to the regeneration of the catalyst. The free energy barrier of this step 

is 5.83 kcal/mol, revealing that the dissociation process is a facilitated process and the 

catalyst is easy to regenerate. 

3.1.2. Regioselective [2 + 2] cycloaddition mechanism 

Having established the mechanism of the Cat-catalyzed [2 + 2 + 2] cycloaddition reaction of 

R1 and R2, we alternatively considered the possibility of the regioselective [2 + 2] 

cycloaddition of one molecule of ketene and one molecule of isothiocyanate, in which the 

four-membered ring (C2–C3–N7–C5) intermediate is formed. 

 As shown in Scheme 2, these two cycloaddition reactions share the same nucleophilic 

addition of Cat to R1. Thus, we started studying the [2 + 2] cycloaddition reaction of E/Z-M1 

with R2. The IRC calculations show that the [2 + 2] cycloaddition reaction also occurs via a 
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concerted but highly asynchronous manner and the formation of the C2–C5 bond (2.00/2.11 

Å ) is preferred over the formation of the C3–N7 bond (2.83/2.78 Å ) in TS2RS/SS. The free 

energy barriers of TS2RS (23.95 kcal/mol, Figure 3) and TS2SS (28.23 kcal/mol, Figure 3) are 

higher than those of TS2R (21.31 kcal/mol, Figure 1) and TS2S (22.52 kcal/mol, Figure 1), 

which indicates that the [2 + 2] cycloaddition reaction of R1 with R2 catalyzed by Cat is 

unlikely to occur under the experimental condition. In other words, the [2 + 2 + 2] 

cycloaddition reaction in generation of six-membered ring product is preferred for Cat 

catalyzed system, which agrees with the experiment results. 

 

Figure 3: The Gibbs free energy profile of [2 + 2] cycloaddition reaction of ketene with isothiocyanate 

catalyzed by Cat (a adding the free energy of R2, b adding the free energy of Cat). 

 

Figure 4: Optimized 3-D structures involved in the second step of [2 + 2] cycloaddition reaction (distance in 

Å  and all of the hydrogens are omitted for the sake of clarity). 
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Comparing the above two cycloaddition reactions, we find that the rate-determining 

steps are both the second step, namely, the C–C bond formation step. Obviously, the [2 + 2 + 

2] cycloaddition reaction is preferred to the [2 + 2] one under the experimental condition. For 

the [2 + 2 + 2] cycloaddition reaction, the stereoselectivities associated with the chiral carbon 

center and the carbon double bond, are predicted to be determined in the second and third 

steps respectively, and the E-PR is the predominant product, which is consistent with the 

experimental outcomes. 

4. Conclusions 

In this paper, the mechanisms of the NHC-catalyzed enantioselective [2 + 2 + 2] 

cycloaddition of ketenes with isothiocyanate have been studied using the M06-2X density 

functional theory calculations. The computational results show that the most energy 

favorable reaction pathway contains four steps: i.e., complexation of R1 and Cat for the 

formation of enolate intermediate Z-M1, regioselective addition of R2 to Z-M1 to give 

intermediate M2R, addition of another molecule of R1 for the formation of six-membered 

heterocycle E-M3R, and the regeneration of the catalyst. The stereoselectivities associated 

with the chiral carbon center and the carbon double bond, are predicted to be determined in 

the second and third steps respectively, and the E-PR is the predominant product, which is 

consistent with the experimental outcomes. This work can improve our understanding of the 

enantioselective N-heterocyclic carbene-catalyzed [2 + 2 + 2] cycloaddition of ketenes and 

isothiocyanate, and provide valuable insights for predicting the regio- and stereoselectivity 

for this kind of reaction. 
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