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Abstract: Most of the existing studies are devoted to the quantum Zeno and anti-Zeno 

effects in open quantum systems under quantization environment; little attention has 

been paid to the quantum zeno dynamics behavior under classical noise. In this paper, 

we analyze the quantum Zeno and anti-Zeno dynamics under the random telegraph 

noise and the family of low-frequency noise with 1 𝑓𝛼⁄  spectrum. Based on qualitative 

analysis of effective decay rate, we find that the two kinds of classical noise under 

different conditions have significant influence on the Zeno and anti-Zeno dynamics. For 

random telegraph noise, the switching rate 𝛾 >  2 can influence the coupling strength 

between the system and the environment so that it can make the effective decay rate 

present different properties. In the case of colored noise, different coefficient and number 

of fluctuators 𝑁𝑓 will make the effective decay rate change. Moreover, we also give 

physical explanations for these phenomena. 
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I. INTRODUCTION 

One of the appealing consequences of the quantum mechanics is that the observation 

unavoidably disturbs the observed system [1]. This is particularly revealed by the so-called 

quantum Zeno effect [2–4] which shows that rapidly repeated measurements can slow down 

the evolution of a quantum system. In the limiting case of continuous measurement, the 

evolution is expected to come to a standstill. The quantum Zeno effect is thought to be a 

general feature of quantum mechanics, applicable to radioactive [5] or radiative decay 
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processes [6, 7]. In some cases, however, when the measurements are not frequent enough, 

they may actually accelerate the evolution, an effect called the anti-Zeno effect [8, 9]. It was 

shown in Ref. [9] that the inhibitory quantum Zeno effect may be feasible in a limited class of 

systems, the opposite effect–anti-Zeno effect–appears to be much more ubiquitous. The first 

observation of the quantum Zeno and anti-Zeno effects in an unstable system is report in Ref. 

[10]. 

The transition between quantum Zeno effect and anti-Zeno effect was studied recently. 

Facchi proposed that the crossover from Zeno effect to anti-Zeno effect can be specified by 

comparing the effective decay rate with the natural decay rate which does not involve 

measurement [11]. The quantum Zeno effect occurs when the effective decay rate is smaller 

than the natural decay rate whereas the anti-Zeno effect occurs. The transition between the 

quantum Zeno effect and anti-Zeno effect in a model of a damped quantum harmonic 

oscillator has been studied [12]. They showed that the short time behaviors of the 

environmentally induced decoherence plays an important role. Besides, the transition also 

can be observed in spin-bath models [13], and it is controlled by the system-bath 

dimensionless coupling strength, as well as the temperature and the energy bias between the 

spin states. Quantum Zeno and anti-Zeno effects on pure dephasing have been studied [14]. 

They showed that if the system environment coupling strength is not weak, the nontrivial 

evolution of the environment between measurement scan considerably alter the quantum 

Zeno effect and anti-Zeno effect. We note that these works focus on the Gaussian noise cases. 

As far as we know, little attention has been paid to the quantum Zeno and anti-Zeno effects in 

non-Guassian noise case. 

When the physical systems are at very low temperature, experiments show that the 

decoherence is typically dominated by coupling with localized modes, e.g. the hopping 

background charges or general quantum bistable fluctuators in superconducting qubits [15–

19], and nuclear spins [20]. Therefore, these localized modes could be described as 

finite-dimensional Hilbert spaces with finite energy cutoffs and could be mapped onto an 

environment of quantum system we concern. In this case different microscopic configurations 

of the environment leading to the same spectra may correspond to different physical 

phenomena. Under certain condition the knowledge of the noise spectrum is not sufficient to 

describe decoherence phenomena, then the noise is referred to as non-Gaussian. The role of 

non-Gaussian noise becomes important when the systems become smaller [21–23]. 

Non-Gaussian random telegraph noise commonly appears in semiconductor, metal, and 

superconducting devices [23]. Recently, the characteristic parameters of non-Gaussian noise 

are estimated by using a single quantum probe [24].The non-markovianity of random 

telegraph noise and decoherence induced by random telegraph noise have been investigated 

in Refs. [22, 23]. 

In this paper, we pay attention to the transition between quantum zeno effect and 
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anti-zeno effect under two relevant classes of non-Gaussian noise: the random telegraph noise 

with a Lorentzian spectrum and the family of low-frequency noise with 1 𝑓𝛼⁄  spectrum. In 

the case of random telegraph noise, there is a single parameter, i.e., the switching rate γ, 

nevertheless colored noisewith 1 𝑓𝛼⁄ for spectra, the tunable parameters are the exponent 𝛼 

and the number of fluctuators 𝑁𝑓 Our result shows that the switching rate γ  characterize 

markovian or non-markovian dynamics of system, as a result of it, the effective decay rate 

appears monotonous or oscillating, and the occurrence of transition changes depending on 

these parameters. 

The paper is organized as follows: In Sec II, we introduce the physical model. In Sec III, 

we discuss the quantum Zeno and anti-Zeno effects under random telegraph noise. In Sec IV, 

we discuss the quantum Zeno and anti-Zeno effects under colored noise. And finally we 

summarize the result in Sec V. 

II. PHYSICAL MODEL 

We consider an initial pure state ρ(0) = |ψ0 >< ψ0| of aquantum system evolving under the 

impact of classical noise. The system is described by the Hamiltonian 

             H(t) = νc(t)ςZ.                              (1) 

Throughout, we work in dimensionless units and set ℏ = 1. In the ςZ eigenbasis defined 

by ςZ|e⟩  =  |e⟩  andςZ|g⟩  =  −|g⟩ .Hamiltonian (1) represents a class of models of open 

quantum systems that describe a pure dephasing process.ν is the coupling constants between 

the qubit and noise respectively. c(t) denotes a stochastic process of the environment noise 

and it may has different expressions corresponding to different kinds of noise. The density 

matrix for the qubit can be obtained by taking ensemble averages over the noise c(t): 

ρ(t)=⟨ρst(t)⟩,                                 (2) 

where ⟨. . .⟩ stands for ensemble average and the statistical density operator ρst(t) is given by 

    ρst(t) = U(t)ρ(0)U+(t),                           (3) 

where ρ(0) is the initial state of probe system. The unitary operator U(t) can be written as 

U(t) = exp[− i ∫ dt′H(t′)].                          (4) 

Then the reduced density matrix of the qubit dynamics with the time is obtained by 

ρ(t)=(
ρ00(0) ρ01(0)q(t)

ρ10(0)q(t) ρ11(0)
)                        (5) 

where q(t) is the noise term obeying the equation 
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q(t) = 〈eiφ(t)〉,                                (6) 

and satisfies 

φ(t) = ∫ c(t′)dt′
t

0
.                               (7) 

A quantum Zeno effect typically arises if one performs a series of measurements at time 

intervals t. We define the projective measurement applied in the quantum Zeno dynamics as 

P[○]  =  M ○  M  where with  M =  |ψ0 >< ψ0| . Here we take the initial state as  |ψ0⟩  =

 cos θ|g⟩ + sin θ|e⟩. After one measurement at time τ, the survival probability of the initial 

state P(1)(τ) can be expressed as 

P(1)(τ) = 1 −
1

2
sin2(2θ)[1 − P(1)(τ)].               (8) 

Because the survival probability P(n)(τ) would be just the nth power of the nth power of the 

survival probability associated with one measurement, it is convenient to P(n)(τ) ≡ e−Γ(τ)t, 

with t =  nτ and 1/Γ(τ) being an effective lifetime of the initial superposition state that 

depends on the measurement interval τ. One then obtains 

P(n)(τ) = [P(1)(τ)]
n

= e−Γ(τ)t,                     (9) 

where Γ(τ) is defined as the effective decay rate. At short times an effective decay rate is 

identified as: 

Γ(τ) =
1

τ
[1 − P(1)(τ)].                          (10) 

In what follows we use the following qualitative definition: The quantum Zeno effect takes 

place when the effective decay rate decreases when τ becomes smaller, while a system for 

which the effective decay rate increases for smaller τ, i.e., measurements enhance the decay, 

shows the anti-Zeno effect. The occurrence of maxima in Γ(τ) is an indication for Zeno effect 

to anti-Zeno effect transition. This definition for the Zeno and anti-Zeno effects is therefore 

based on the local properties of the decay rate. While we note that this is different from the 

standard classification based on the fixed, natural decay. 

III. RANDOM TELEGRAPH NOISE CASE 

In this section, we will discuss the quantum Zeno and anti-Zeno effects under Random 

telegraph noise. Random telegraph noise is very common in nature, generated from a bistable 
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fluctuator flipping between two values with a switching rate ξ. It appears in many 

semiconductor, metal, and superconducting devices. In order to describe a random telegraph 

noise, the quantity c(t)  in Hamiltonian flips randomly between values ±1 with  ξ .The 

correlation function for the process is 

c(t, t0) = 〈c(t)c(t0)〉 = e−2ξ|t−t0|.                    (11) 

Using Fourier transformation we can obtain the power density spectrumS(ω) 

S(ω) = ∫ c(t, t0)
+∞

−∞
e−ωi(t−t0)d(t − t0),                (12) 

where ω denotes the transition frequency of the two-level system. Simplify the equation 

above, we get the formula of S(ω) 

S(ω) ∝
ξ

4ξ2+ω2.                             (13) 

Here we use dimensionless quantities. In particular we define the dimensionless time 

𝜏 ≡ 𝜈𝑡 and switching rate γ ≡ 𝜉/𝜈. Then the qubit density matrix under the random telegraph 

noise can expressed as 

ρ(τ) = (
cos2 θ

1

2
sin 2θ G(τ, γ)

1

2
sin 2θ G(τ, γ) sin2 θ

),                (14) 

where 

                    G(τ, γ) = e−γτ (cosh δτ +
γ

δ
sinh δτ),                  (15) 

with 𝛿 = √𝛾2 − 4. We note here that to obtain Eq. (15), we should consider the higher-order 

correlation functions and spectral densities. And this will bring in more new features than 

Gaussian noise case. Without loss of generality, we let θ = π/4. After some calculation we can 

get the effective decay rate: 

    ΓRTN(τ) =
1

2τ
[1 − G(τ, γ)].                      (16) 

According to the standard definition of the quantum Zeno effect, the behavior of the 

effective decay identifies the occurrence of the Zeno or anti-Zeno effects. On account of the 

switching rate γ characterize markovian or non-markovian dynamics of system, in other 

words, the threshold between the markovian and non-markovian regime corresponds 

to γ = 2, we discuss the effective decayrate respectively with the γ > 2and γ < 2. 
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We plot the effective decay rate as a function of the scaled time τ for different values of 

switching rate γ inFig.1. From Fig.1 we can find that the effective decay rate Γ𝑅𝑇𝑁(𝜏)shows 

different properties for different values of γ. When γ > 2, according to Fig.1(a), we find that 

the effective decay rate Γ𝑅𝑇𝑁(𝜏)increases with increasing τ in the short time limit, after 

reaching a maximum, the effective decay rate reverses its qualitative dependence on τ, it 

begins to decreasesas τ increases.The presence of this maximum value clearly indicates the 

transition between quantum Zeno and anti-Zeno effects. We denote Γ𝑚𝑎𝑥 as the maximum 

value of Γ(𝜏)and τ𝑐 as the corresponding critical point of the time interval τ. We can know 

that quantum Zeno effect occurs in case of τ <  τ𝑐, while quantum anti-Zeno effect occurs in 

case of τ > τ𝑐.  

Besides, from Fig.1(a) we can also find that when  γ > 2 , the value of  Γ𝑚𝑎𝑥  and  τ𝑐 

becomes smaller with γ increase. That is, the transition between the quantum Zeno and 

anti-Zeno effects moves left if   γ become larger,the phenomenon can be significant for 

experiment. And when γ is large enough, Γ(𝜏) trend to horizontal, itmeans that the quantum 

anti-Zeno effect is not obvious any more. 

From Fig.1(b) we can find that when γ < 2, Γ(𝜏) ingeneral has more than one maximum. 

This means that the quantum Zeno effect regimes and the quantum anti-Zeno effect regimes 

appear alternately. This phenomenon reflects the fact that small values of γ correspond to 

non-Gaussian noise case. In this case high-order correlation functions play an important role 

in solving the model. And it means that the quantum system and the environment have a 

long-standing relationship, the coupling strength between the system and environment is 

strong. While in the case γ > 2, the effect of the high-order statistics is so small that can be 

disregarded, and then the characteristics of the non-Gaussianity become less pronounced, the 

association of system and environment is not very close, so in this case Γ(𝜏) shows just one 

maximum. 

 

FIG. 1: The effective decay rate  Γ𝑅𝑇𝑁(𝜏) as a function of the measurement interval τ with different  γ (Color 

online). Fig.1(a) shows the effective decay rate  Γ𝑅𝑇𝑁(𝜏)with γ > 2, Fig.1(b) shows the case with γ < 2. 
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IV. COLORED NOISE CASE 

Then we study the quantum Zeno and anti-Zeno effects under colored noise. Noise 

characterized by 1 𝑓𝛼⁄  spectrum is a universal noise in nature. They can be found when the 

environment can be expressed as a collection of 𝑁𝑓 random bistable fluctuators, with𝑁𝑓 ≥ 1, 

and their typical values of the coefficient 𝛼 range between 0.5 and 2. Every fluctuator has an 

unknown switching rate, taken from the ensemble { 𝛾𝑖 , 𝑝𝛼(𝛾𝑖) }, where the probability 

distribution is: 

  pα(γ) = {

1

γln (γ2/γ1)
                             (α = 1)

α−1

γα *
(γ1γ2)α−1

γ2
α−1−γ1

α−1+               (α ≠ 1)
,                (17) 

where 𝛾1 and 𝛾2 are the smallest and the biggest switching rate considered. The coefficient 

c(t) is a linear superposition of 𝑁𝑓 random bistable fluctuators, 

c(t) = ∑ 𝑐𝑖(𝑡).                                    (18) 

where 𝑐𝑖(𝑡) describes a stochastic telegraphic process with a Lorentzian spectrum. The qubit 

density matrix can thus be written as: 

ρ(τ) = (
cos2 θ

1

2
sin 2θ Λ(τ, α, Nf)

1

2
sin 2θ Λ(τ, α, Nf) sin2 θ

).             (19) 

where 

Λ(τ, α, Nf) = [∫ G(τ, γ)pα(γ)
γ2

γ1
]Nf.                 (20) 

As above we let θ = π/4. After some calculation we can get the effective decay rate: 

     ΓCN(τ) =
1

2τ
[1 − Λ(τ, α, Nf)].                     (21) 

Giving Eq. (21) we can study the influence of colored noise on the quantum Zeno dynamics 

and the quantum anti-Zeno dynamics. In Fig. 2, we give the effective decay rate Γ𝐶𝑁(𝜏) as a 

function of the scaled time 𝜏  for different values of 𝛼 . Here we take the number of 

fluctuators 𝑁𝑓 = 10 for Fig. 2 (a) and 𝑁𝑓 = 40 for Fig. 2 (b) and γ ∈ (10−4, 104). 

From the Fig. 2, we can find that Γ𝐶𝑁(𝜏) is dramatically influenced by 𝛼, for the bigger 

𝛼, it is obvious that the effective decay rate is characterized by pronounced oscillations. And 

the oscillations are less noticeable even fade away with α decreases. 

This can be explained as follow: From Eq. (17) we can find that for the smaller values of 
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𝛼  fluctuators with larger switching rate occupy the dominant probability. As with the 

random telegraph noise in Fig. 1, the dynamics of the system is generally Gaussian with less 

noticeable oscillations. The larger values of 𝛼, corresponding to the lower frequency of noise 

spectrum, the fluctuators with smaller switching rate take the larger probability so the 

dynamics is non-Gaussian. Meanwhile, the lower the frequency, the larger the enhancement 

of the oscillations. 

In Fig. 3 we give the effective decay rate as a function of the scaled time τ for different 

values of Nf. Here we choose 𝛼 = 1.2. From Fig. 3, we can find that Γ𝐶𝑁(𝜏) is dramatically 

influenced by the number of fluctuators 𝑁𝑓. For small 𝑁𝑓, the coupling strength between the 

system and the environment is enhanced, and the memory of the environment is obvious, 

Γ𝐶𝑁(𝜏) shows oscillating behavior which indicates the quantum Zeno effect regimes and the 

quantum anti-Zeno effect regimes appears alternately. When the value of 𝑁𝑓 increases, the 

coupling strength between the quantum system and the environment decreases, the 

correlation decreases, and the dynamic evolution of the system gradually exhibits markovian 

properties, so the oscillations are less and less noticeable. When the value of 𝑁𝑓  is 

sufficiently large,the effective decay rate has no oscillation anymore, as the case of 𝑁𝑓 = 50, 

which means if 𝑁𝑓 is large enough, that is the number of fluctuators is enough, the coupling 

strength between the system and the environment is weak, the effective decay rate Γ𝐶𝑁(𝜏) 

presents Gaussian characteristics with the measurement interval 𝜏. 

This can be explained by the central limit theorem. In probability theory, the central limit 

theorem establishes that, when independent random variables are added, their sum tends 

toward a Gaussian distribution even if the original variables themselves are not normally 

distributed. For a small number of fluctuators and a noise spectrum dominated by low 

frequencies indicates Non-Gaussian. This is why the oscillations of  Γ𝐶𝑁(𝜏) are noticeable for 

small 𝑁𝑓  When 𝑁𝑓  becomes large enough, the noise become Gaussian one. Then the 

oscillations of  Γ𝐶𝑁(𝜏) become less noticeable. 

 

FIG. 2: The effective decay rate  Γ𝐶𝑁(𝜏)for a qubit subject to 1 𝑓𝛼⁄  noise generated by fixed random 

fluctuators for different values of 𝛼 (Color online). Fig. 2 (a) shows𝑁𝑓 = 10, Fig. 2 (b) shows 𝑁𝑓 = 40. 
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V. CONCLUSION 

In summary, we have investigated the quantum Zeno and anti-Zeno dynamics under the 

non-Gaussian noise, which are characterized by the random telegraph noise and the family of 

low-frequency noise with 1 𝑓𝛼⁄  spectrum. First we get the explicit formula of the effective 

decay rate under the two typical non-Gaussian noise. Then we show that quantum Zeno and 

anti-Zeno dynamics is greatly influenced by the classical noise. Specifically, for random 

telegraph noise, when the switching rate γ > 2,the coupling strength between the system and 

the environment is small, the dynamic behavior of the system presents the markovian 

characteristics, the transition between Zeno effect and anti-Zeno effect occurs when the 

measurement time interval increases. On the contrary, when γ < 2, the coupling strength 

between the system and the environment is large, the dynamic behavior of the system 

presents the non-markovian characteristics, the effective decay rate shows damped oscillation 

as the measurement time interval increases, which indicates that the quantum Zeno effect and 

anti-Zeno effect appear alternately. In the case of colored noise, different coefficient 𝛼 and 

number of fluctuators 𝑁𝑓 will make the effective decay rate change. We find that for fixed 𝑁𝑓, 

when 𝛼 is small, the oscillation of effective decay rate is not obvious, which indicates that the 

quantum anti-Zeno effect is not obvious, when 𝛼 increases, the oscillation of effective decay 

rate begin to appear and gradually obvious, which indicates that quantum anti-Zeno effect 

appear significantly and quantum Zeno effect and anti-Zeno effect appear alternately with 

the measurement time interval increases. For fixed 𝛼, the coupling strength between the 

system and the environment weakens with the increase of 𝑁𝑓, the oscillation of effective 

decay rate disappear gradually. This is because when the Nf increases, a number of 

independent noise and collective behavior will show Gaussian features according to the  

FIG. 3: (Color online) For the fixed value of 𝛼 = 1.2, theeffective decay rate Γ𝐶𝑁(𝜏) subject to 1 𝑓𝛼⁄  noise as a 

function ofdifferent number of fluctuators. 
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central limit theorem of probability theory. Therefore, with the increase of 𝑁𝑓, the evolution of  

the system gradually changed from non-Gaussian to Gaussian. All these phenomena help us 

to better understand the behavior of quantum Zeno and quantum anti-Zeno dynamics, so as 

to provide a good foundation for understanding the evolution of quantum system under the 

classical noise. 
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