COMMUNICATION

Straightforward Stepwise Excited State Dual Proton Transfer Mechanism for 9-10-HBQ System

Jin-Dou Huang ^a, Jing-Yuan Wu ^b, Hao Dong ^a, Peng Song ^a, Jin-Feng Zhao ^{a*}

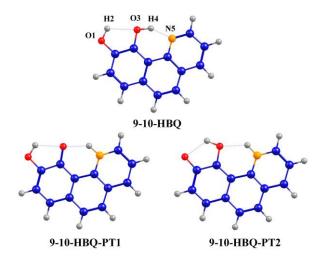
Received 10 April 2017; Accepted (in revised version) 10 May 2017

Abstract: A new molecule 9,10-dihydroxybenzo[h] quinoline (i.e. 9-10-HBQ) is focused in the present work about its excited state proton transfer (ESPT) mechanism. Though comparing potential energy barriers, it is found that the ultrafast ESPT process could occur in the S₁ state without potential energy barrier along with hydrogen bond O₃-H₄···N₅ forming 9-10-HBQ-PT1 structure, subsequently, the second proton transfers via another intramolecular hydrogen bonded wire O₁-H₂···N₃ with a low potential energy barrier (about 7.69 kcal/mol) in the S₁ state forming 9-10-HBQ-PT2 configuration. After completing excited state dynamical process, the S₁-state could turn back to S₀ state with occurring reversed ground state proton transfer forming initial 9-10-HBQ structure.

AMS subject classifications: 65D18, 78M50, 74E40

Keywords: Proton transfer; frontier molecular orbital analysis; potential energy curves.

Due to its significance in nature, hydrogen bond has drawn great attention on the relevant topics [1-4]. Particularly, excited state hydrogen bond dynamics, elaborating properties involved in hydrogen bond in the excited state, plays important roles in many photophysical and photochemical processes, such as photo-induced electron transfer (PET), intra- or intermolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), and so forth [5-8]. As one of the fast and quite complex reactions involved in hydrogen bond, the excited


^a State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.

^b Measurement and Testing Institute of Mongolian Autonomous County of Fuxin, Fuxin, 123100, P. R. China

^{*} Corresponding author. *E-mail*: jfzhao1990112@163.com http://www.global-sci.org/cicc

state intra- or inter- molecular proton transfer (ESIPT) is considered to be one of the most fundamental and important processes in chemistry, biology and materials [9-14]. Since half a century ago, the ESIPT process was firstly reported by Weller and co-workers in experiment with methylsalicylate [15], it has been a popular research [16-19]. The proton-transfer tautomerization form (normally named keto in the S₀ state and keto* in the S₁ state) has charge redistribution characteristic, which are very fascinating towards the application of laser dyes, UV filters, fluorescence chemosensors, molecular switch, and so on [20-23]. Furthermore, some molecules are highly sensitive to the change in the microenvironments, based on which Sytnik *et al.* reported how the ESIPT chromophores can be used in the study of protein conformations and binding site polarity [24]. Indeed, a lot of spectroscopic techniques were applied to study the ESIPT process in recent years, however, only some indirect information about photochemical and photophysical properties could be provided through experimental investigations, and thus the explanation of ESIPT mechanism still have numerous challenges.

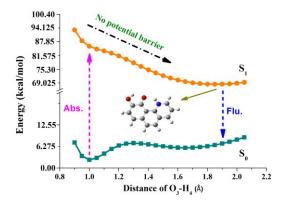
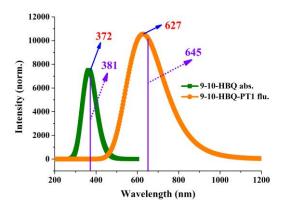

In effect, most of previous reports about ESIPT reactions are single-proton transfer, which occurs along with one intra- or inter- hydrogen bonded wire. Whereas only investigating about this kind of single-proton transfer process in the excited state is not enough, since more and more proton transfer processes in biological systems refer to multiple-proton transfer reactions [25]. Therefore, as a fundamental bridge, more and more inter- or intra- molecular systems containing double or multiple hydrogen bonds have been focused [26, 27]. Recently, as a kind of 10-hydroxybenzo[h]quinoline (10-HBQ) derivative, a

Figure 1: Views of optimized structures for 9-10-HBQ structures (9-10-HBQ-PT1: the single-proton transfer form; 9-10-HBQ-PT2: the double-proton transfer form) based on B3LYP/TZVP theoretical level. (Blue: C atom; Gray: H atom; Yellow: N atom; Red: O atom).


new molecule 9,10-dihydroxybenzo[h]quinoline (9-10-HBQ), containing two intramolecular hydrogen bonds (see **Figure 1**), was synthesized and characterized by UV-Vis spectra [28]. For sake of the interpretation of experimental data, the absorption and emission spectra of 9-10-HBQ and its photo tautomer were simulated using time-dependent DFT (TD-DFT) calculations; however, solvent effect of dichloromethane, which has significant influence on the intramolecular hydrogen bond strength and ESIPT process, was not considered in their calculations. Structurally, 9-10-HBQ is similar to 7-hydroxyquinoline-8-carboxylic acid [26] and 1,8-dihydroxy-2-naphthaldehyde [38], whether 9-10-HBQ can also occur excited state double proton transfer (ESDPT) process? In addition, 10-HBQ is a classical ESIPT molecule and reported in numerous previous works [29-33], whether the 9-10-HBQ owns the similar properties with 10-HBQ is also worth to be discussed.

In this work, all the theoretical calculations presented were accomplished using the DFT and TDDFT methods with Becke's three-parameter hybrid exchange function with the Lee–Yang–Parr gradient-corrected correlation functional (B3LYP) [34-37] as well as the triple-ζ valence quality with one set of polarisation functions (TZVP) [38] basis set by Gaussian 09 programs [39]. Solvent effects (dichloromethane) were included in all calculations based on the Polarizable Continuum Model (PCM) using the integral equation formalism variant (IEF-PCM) [40-42] in our work. All the ground-stated geometries of all the relative structures were optimized without constraint based on DFT methodology, in addition, vibrational frequencies were analyzed at the optimized forms to confirm that all these configurations corresponds to the local minima on the S₀ potential energy curve. All the stationary points along the reaction coordinate were scanned by constraining optimizations and frequency analyses (no imaginary frequency) to obtain the thermodynamic corrections in the corresponding electronic state.

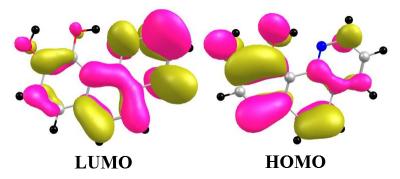
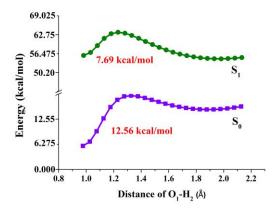
Figure 2: The constructed potential energy curves of both S_0 and S_1 states of 9-10-HBQ as functions of keeping O₃-H₄ bond length fixed from 0.85 to 2.05 Å in steps of 0.05 Å.

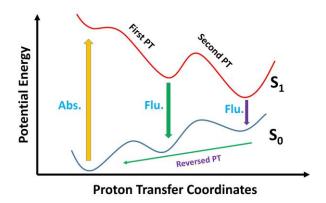
Three kinds of stable structures 9-10-HBQ, 9-10-HBQ-PT1 and 9-10-HBQ-PT2 involved in this work have been calculated based on DFT (S₀ state) and TDDFT (S₁ state) methods (see **Figure 1**). It is interesting that the optimized S₁-state 9-10-HBQ structure is identical to the optimization result of 9-10-HBQ-PT1, that is to say, maybe there is not stable 9-10-HBQ configuration in the S₁ state, and the ultrafast ESIPT process occurs without potential energy barrier upon photo excitation. To verify our speculation, we have constructed the potential energy curves of 9-10-HBQ system at S₀ and S₁ states, as shown in **Figure 2**. It is worth mentioning that some previous work has indicated the feasibility of DFT and TDDFT methods to provide qualitative energetic pathways for inter- or intra- molecular proton transfer process [43-45]. From **Figure 2**, it can be clearly found that a no potential barrier process happens in the S₁ state along with the increase of O₃-H₄ bond length from 0.85 to 2.05 Å in steps of 0.05 Å. For the S₀ state, however, it needs to cross a potential energy barrier to finish the proton transfer reaction. Compared to the S₁-state barrierless process, we believe that 9-10-HBQ is more likely to occur ESIPT process.

Figure 3: The calculated absorption and fluorescence spectra of 9-10-HBQ and 9-10-HBQ-PT1 at the TDDFT/B3LYP/TZVP theoretical level. Herein, vertical lines denote experimental results.

Furthermore, we also calculated the absorption and fluorescence spectra of 9-10-HBQ system to verify the validity of our calculations. The simulation results are displayed in **Figure 3**, and the vertical lines denote experimental results reported by Chen *et al.* [28]. It should be noted that our calculated absorption peak for 9-10-HBQ is located at 372 nm, which is in consistent with experimental result (381 nm) [28]. Due to no stable S₁-state 9-10-HBQ configuration, we can only provide the fluorescence peak of 9-10-HBQ-PT1 structure. Also the calculated emission peak (627 nm) is in good agreement with experiment (645 nm). The good consistence between our simulation results and experimental data shows that the theoretical level we adopted can delineate the excited-state properties of

9-10-HBQ system well. Furthermore, as a well-known photochemical phenomenon, charge distribution over the studied molecule should be changed within the framework of photo excitation, which has an important effect on excited-state dynamical process [5-8]. Particularly, the frontier molecular orbitals (MOs) could provide information about properties of excited-state structures on qualitative discussion of charge distribution. For 9-10-HBQ, it can be assigned as a dominant $\pi\pi^*$ type transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) with the percentage of 95.42% as shown in **Figure 4**. It should be noticed that the electron density of N₅ atom increases, while those of both O₁ and O₃ atoms decreases upon the transition from HOMO to LUMO. That is to say, from the viewpoint of valence bond theory, the increased electron density of N₅ atom could enhance intramolecular hydrogen bond (O₃-H₄···N₅), which promotes the ESIPT process of 9-10-HBQ depicted in **Figure 2**.


Figure 4: View of frontier molecular orbitals (HOMO and LUMO) for 9-10-HBQ system.

It is noteworthy that even though the ESIPT process via O₃-H₄···N₅ is smooth without barrier; the charge variation on O₁ atom should not be neglected. Just as the changes of electron density on O₁ (see **Figure 4**), upon the excitation, charge population drops from HOMO to LUMO orbital. Therefore, it is also necessary to consider the second hydrogen bond (O₁-H₂···O₃) of 9-10-HBQ-PT1 structure. To judge whether the second proton transfer occurs, we have constructed the potential energy curve as function of O₁-H₂ bond length (shown in **Figure 5**). In the S₁-state potential curve, we found a barrier (around 7.69 kcal/mol) crossing the proton (H₂) from O₁ to O₃. This low potential barrier is reasonable for completing ESIPT process on the excited state potential energy surfaces. In addition, we optimized the 9-10-HBQ-PT2 form and found an about 819 nm fluorescence peak with low oscillator strength (0.0749). Noticing this little oscillator strength, we believe that it is different to be observed by experimental measurement. And we have to mention that the 819 nm fluorescence peak is close to the near infrared region, which is also a difficulty for experimental observations. Also, the previous experimental maximum UV-Vis region is 750

nm, we speculate it is not enough to detect the emission peak of 9-10-HBQ-PT2 form. Our calculation results here it to be proven by further experiments. Till now, we could show the excited state dynamical process of 9-10-HBQ system in **Figure 6**. It is confirmed that 9-10-HBQ could occur stepwise excited state dual proton transfer process, and then radiate back to the S₀ state with reversed ground state dual proton transfer reaction.

Figure 5: The constructed potential energy curves of both S₀ and S₁ states starting from 9-10-HBQ-PT1 form to 9-10-HBQ-PT2 form as functions with keeping O₁-H₂ bond length in steps of 0.05 Å.

Figure 6: A schematic diagram indicating the stepwise excited-state and ground-state dual proton transfer process.

In summary, in this present work, within the framework of DFT and TDDFT methods with B3LYP/TZVP theoretical level, we have investigated the ESIPT mechanism for 9-10-HBQ system. It is undeniable that the intramolecular hydrogen bond (O₃-H₄····N₅) is strengthened in the S₁ state, which facilitates the ESIPT reaction. Due to the ESIPT process without potential energy barrier, only the 9-10-HBQ-PT1 form can be optimized based on

9-10-HBQ structure. Then along with the hydrogen bond O₁-H₂···O₃, 9-10-HBQ-PT form occurs ESIPT process forming 9-10-HBQ-PT2 structure with a low potential energy barrier (7.69 kcal/mol). We put forward a new ESIPT mechanism for 9-10-HBQ system that double proton transfer process could occur step by step. After finishing excited state dynamical process, the 9-10-HBQ-PT2 radiates an around 819 nm fluorescence back to the S₀ state. Then the reversed ground-state double proton transfer takes place from S₀-state 9-10-HBQ-PT2 back to initial 9-10-HBQ structure.

Acknowledgement

This work was financially supported by National Natural Science Foundation of China (Grant No.11304135 and 11604333), and Shenyang Natural Science Foundation of China (F15-199-1–04). Liaoning Provincial Department of Education Project (Grant No. L2015200) and Natural Science Foundation of Liaoning Province (Grant No.201602345).

References

- [1] G. A. Jeffrey (1997). An Introduction of Hydrogen Bonding (Oxford University Press, New York)
- [2] S. Scheiner (1997). Hydrogen Bonding. A Theoretical Perspective (Oxford University Press, Oxford)
- [3] P. L. Geissler, C. Dellago, D. Chandler, J. Hutter and M. Parrinello, Autoionization in liquid water, Science, 291 (2001) 2121-2124.
- [4] M. E. Tuckerman, D. Marx and M. Perrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution, Nature, 417 (2002) 925-929.
- [5] J. Zhao and P. Li, The effect of acetonitrile solvent on excited-state dynamics for N,N-dimethylanilino-1,3-diketone, Commun. Comput. Chem., 3 (2015) 66-74.
- [6] G. Y. Li and T. S. Chu, TD-DFT study on fluoride-sensing mechanism of 2-(2'-phenylureaphenyl)benzoxazole: the way to inhibit the ESIPT process, Phys. Chem. Chem. Phys., 2011, 13, 20766.
- [7] P. Song and F. C. Ma, Intermolecular hydrogen-bonding effects on photophysics and photochemistry, Int. Rev. Phys. Chem., 32 (2013), 589-609.
- [8] J. Zhao, P. Song and F. Ma, A new excited-state intramolecular proton transfer mechanism for C2 symmetry of 10-hydroxybenzoquinoline, Commun. Comput. Chem., 2 (2014), 117-130.
- [9] G. J. Zhao and K. L. Han, Hydrogen bonding in the electronic excited state, Acc. Chem. Res., 45 (2012), 404-403.
- [10] Y. Cui, P. Li, J. Wang, P. Song and L. Xia, An investigation of excited-state intramolecular proton transfer mechanism of new chromophore, J. At. Mol. Sci., 6 (2015), 23-33.
- [11] J. Zhao and Y. Yang, A theoretical study on ESPT mechanism of DALL-AcOH complex, Commun. Comput. Chem., 4 (2016) 1-8.
- [12] G. J. Zhao, B. H. Northrop, P. J. Stang and K. L. Han, Photophysical properties of coordination-driven

- self-assembled metallosupramolecular rhomboids: Experimental and theoretical investigations, J. Phys. Chem. A, 114 (2010), 3418-3422.
- [13] Y. H. Liu, M. S. Mehata and J. Y. Liu, Excited-state proton transfer via hydrogen-bonded acetic acid (AcOH) wire for 6-hydroxyquinoline, J. Phys. Chem. A 115 (2011) 115, 19-24.
- [14] G. J. Zhao and K. L. Han, PH-controlled twisted intramolecular charge transfer (TICT) excited state via changing the charge transfer direction, Phys. Chem. Chem. Phys., 12 (2010), 8914-8918.
- [15] H. Beens, K. H. Grellmann, M. Gurr and A. H. Weller, Effect of solvent and temperature of proton transfer reactions of excited molecules, Discuss. Faraday Soc.. 39 (1965) 39, 183-193.
- [16] H. W. Tseng, J. Y. Shen, T. Y. Kuo, T. S. Tu, Y. A. Chen, A. P. Demchenko and P. T. Chou, Excited-state intramolecular proton-transfer reaction demonstrating anti-Kasha behavior, Chem. Sci.,7 (2016) 655-665.
- [17] G. J. Zhao and K. L. Han, Effects of hydrogen bonding on tuning photochemistry: Concerted hydrogen-bond strengthening and weakening, ChemPhysChem., 9 (2008), 1842-1846.
- [18] C. C. Hsieh, C. M. Jiang and P. T. Chou, Recent experimental advances on excited-state intramolecular proton coupled electron transfer reaction, Acc. Chem. Res., 43 (2010) 1364-1374.
- [19] A. P. Demchenko, K. C. Tang and P. T. Chou, Excited-state proton coupled charge transfer modulated by molecular structure and media polarization, Chem. Soc. Rev., 42 (2013) 1379-1408.
- [20] S. Chai, G. J. Zhao, P. Song, S. Q. Yang, J. Y. Liu and K. L. Han, Reconsideration of the excited-state double proton transfer (ESDPT) in 2-aminopyridine/acid systems: role of the intermolecular hydrogen bonding in excited states, Phys. Chem. Chem. Phys., 11 (2009), 4385-4390.
- [21] G. J. Zhao and K. L. Han, Ultrafast hydrogen bond strengthening of photoexcited fluorenone in alcohols for facilitating the fluorescence quenching, J. Phys. Chem. A, 111 (2007), 9218-9223.
- [22] P. T. Chou, S. L. Studer and M. L. Martinez, Practical and convenient 355 nm and 337 nm sharp-cut filters for multichannel raman spectroscopy, Appl. Spectrosc., 45 (1991) 513-515.
- [23] H. P. Ma, N. Liu and J. D. Huang, Ab initio study of the excited-state proton transfer mechanisms for 3-hydroxy-2-(thiophen-2-yl)chromen-4-one, RSC Adv., 6 (2016) 96147-96153.
- [24] A. Sytnik and I. Litvinyuk, Energy transfer to a proton-transfer fluorescence probe: tryptophan to a flavonol in human serum albumin, Proc. Natl. Acad. Sci. USA 93 (1996) 12959-12963.
- [25] N. Agmon, The grottuss mechanism, Chem. Phys. Lett., 1995, 244, 456-462.
- [26] K. C. Tang, C. L. Chen, H. H. Chuang, J. L. Chen, Y. J. Chen, Y. C. Lin, J. Y. Shen, W. P. Hu and P. T. Chou, A genuine intramolecular proton relay system undergoing excited-state double proton transfer reaction, J. Phys. Chem. Lett., 2 (2011) 3063-3068.
- [27] C. Y. Peng, J. Y. Shen, Y. T. Chen, P. J. Wu, W. Y. Hung, W. P. Hu and P. T. Chou, Optically triggered stepwise double-proton transfer in an intramolecular proton relay: a case study of 1,8-dihydroxy-2-naphthaldehyde, J. Am. Chem. Soc., 137 (2015) 14349-14357.
- [28] K. Y. Chen, H. Y. Tsai, W. C. Lin, H. H. Chu, Y. C. Weng and C. C. Chan, Synthesis, crystal structure, optical and electrochemical properties of 9,10-dihydroxybenzo[h]quinolilne, J. Chem. Sci., 126 (2014)

- 955-966.
- [29] T. Inazu, The synthesis of several gold chelates, J. Am. Chem. Soc., 39 (1966) 1065-1066.
- [30] P. T. Chou, Y. C. Chen, W. S. Yu, Y. H. Chou, C. Y. Wei and Y. M. Cheng, Excited-state intramolecular proton transfer in 10-hydroxybenzo[h[quinolone, J. Phys. Chem. A 105 (2001) 1731-1740.
- [31] P. T. Chou and C. Y. Wei, Photophysics of 10-hydroxybenzo[h]quinolone in aqueous solvent, J. Phys. Chem., 100 (1996) 17059-17066.
- [32] E. L. Roberts, P. T. Chou, T. A. Alexander, R. A. Agbaria and I. M. Warner, Effects of organized media on the excited-state intramolecular proton transfer of 10-hydroxybenzo[h]quinolone, J. Phys. Chem., 99 (1995) 5431-5437.
- [33] J. D. Huang, K. Yu, H. P. Ma, S. Chai and B. Dong, Theoretical investigation of excited-state single and double proton transfer mechanisms for 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol, Dyes and Pigments, 141 (2017) 441-447.
- [34] C. T. Lee, W. T. Wang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of electron-density, Phys. Rev. B, 37 (1988), 785-789.
- [35] W. Kolth, A. D. Becke and R. G. Parr, J. Phys. Chem., Density functional theory of electronic structure, 100 (1996) 12974-12980.
- [36] O. Treutler and R. Ahlrichs, Efficient molecular numerical integration schemes, J. Chem. Phys., 102 (1995) 346-354.
- [37] F. Furche and R. Ahlrichs, Adiabatic time-dependent density functional methods for excited state properties, J. Chem. Phys., 117 (2002) 7433-7447.
- [38] D. Feller, The role of databases in support of computational chemistry calculations, J. Comput. Chem., 17 (1996), 1571-1586.
- [39] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision C.01; Gaussian, Inc., Wallingford, CT, 2009.
- [40] R. Cammi and J. Tomasi, Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges, J. Comput. Chem., 16 (1995) 1449-1458.
- [41] B. Mennucci, E. Cances and J. Tomasi, Evaluation of solvent effects in isotropic and anisotropic

- dielectrics and in ionic solutions with a unified integral equation methods: Theoretical bases, computational implementation, and numerical applications, J. Phys. Chem. B 101 (1997), 10506-10517.
- [42] E. Cances, B. Mennucci and J. Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics, J. Chem. Phys., 107 (1997), 3032-3041.
- [43] Y. Saga, Y. Shibata and H. Tamiaki, Spectral properties of single light-harvesting complexes in bacterial photosynthesis, J. Photochem. Photobiol. C 11 (2010) 15-24.
- [44] P. Song and J. Zhao, A possible attributions of excited-state process for PIP and PIP-C system in methanol solvent, Commun. Comput. Chem., 5 (2017) 1-9.
- [45] L. Serrano-Andres and M. Merchan, Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective, J. Photochem. Photobiol. C 10 (2009) 21-32.