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Abstract: Neural network quantum states represent a powerful approach for solving electronic structures in strongly correlated 

molecular and material systems. For a neural network ansatz to be accurate, it must effectively learn the phase of a complex wave 

function. In this work, we demonstrate several different network structures as the phase network for a Transformer-based neural 

network quantum state implementation. We compare the accuracy of ground state energies, the number of parameters, and 

computational time across several small molecules. Furthermore, we propose a phase network setup that combines cross attention 

and multilayer perceptron structures, with the number of parameters remaining constant across different systems. Such an 

architecture may help reduce computational costs and enable transfer learning to larger quantum chemical systems. 
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1. Introduction 

Solving the electronic structure of correlated molecular and material 
systems has long been an essential task in computational chemistry. 
In these systems, mean-field theories such as density functional 
theory (DFT) and the Hartree-Fock (HF) self-consistent field method 
fail to accurately describe the correlated electronic wave function, 
while the theoretically accurate full configuration interaction (FCI) 
method requires computational resources that scale exponentially 
with system size, making its application to large systems impractical. 

The past decade has faced an explosive growth of applications 
of neural networks in different fields, where it has demonstrated 
remarkable ability in representing complicated functions 
encountered in various situations. In the context of computational 
many-body problems, this expressive power has been leveraged to 
represent the highly correlated electronic wave function. This 
approach, introduced in 2017 by Carleo and Troyer, is known as 
neural network quantum states (NNQS) [1]. NNQS methods have 

been applied to both spin and Fermionic models, such as the J1-J2 
Heisenberg model and the Hubbard model [2–3]. In the context of 
computational chemistry, there have also been demonstrations in 
small molecular and material systems. Some of these works feature 
a real-space representation of the electronic wave function, in which 
a neural network takes the coordinates of electrons (𝒙!, 𝒙", 𝒙#, … ) 
as input, and outputs the wave function Ψ(𝒙!, 𝒙", 𝒙#, … ). Notable 
implementations of this method include FermiNet [4], PauliNet [5], 
LapNet [6], and DeepErwin [7]. Other works adopt a second-
quantization formulation of the electronic structure problem, 
expressing both the wave function and the Hamiltonian in the 
occupation number representation over a given set of single-particle 
orbitals [8–9]. These methods introduce a basis set that enables 
direct comparison with standard quantum chemistry approaches and 
allows for systematic accuracy improvements by selecting 
increasingly comprehensive basis sets. However, the basis set 
approximation introduces an error that is absent in the real-space 
representation of the wave function. 
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One essential difference between NNQS and other applications 
of neural networks is that the electronic wave function is complex-
valued, requiring a complex-valued network, whereas most deep 
learning applications focus on real-valued network outputs. This 
results in a lack of complex-valued network designs and limits the 
available choices for NNQS implementations. In many NNQS 
methods, this issue is circumvented by parameterizing the complex 
wave function using two separate real-valued networks: one for the 
amplitude and one for the phase. It has been shown in spin systems 
that learning the phase of the wave function is a challenging task for 
the network, and providing a reasonable initial guess based on the 
sign rule dramatically improves convergence behavior [2]. However, 
in quantum chemistry systems, no such simple rule exists for the 
phase, leaving it entirely up to the phase network to find the ground 
state. Therefore, choosing an appropriate structure for the phase 
network can improve both the energy landscape and the expressive 
ability of the NNQS wave function, leading to a faster convergence 
to the true wave function. 

In this work, we compare several different implementations of 
phase network in QiankunNet, a transformer based NNQS method 
[10]. We compare ground state energy results on 17 typical small 
molecules. We also compare the number of parameters and time 
costs for each of these structures, in searching for a phase network 
structure that is both numerically accurate and computationally 
efficient.  

 
2. Theoretical method 

2.1 Transformer-based neural network quantum states 

In computational chemistry, the wave function of a correlated 
system |Ψ⟩ can be expressed as a state vector consisting of 2$ 
complex coefficients, where 𝑛 is the number of spin orbitals used 
to define the system. NNQS method employs a neural network to 
represent such a state vector. The network takes the electron 
configuration on spin orbitals as input and returns the 
corresponding coefficients for each configuration. These 
coefficients are then used to calculate expectation values of 
operators, including the Hamiltonian. During a training process, 
one first sample a batch of configurations, then calculate the 
energy expectation values. The energy estimator serves as a loss 
function, whose gradient is calculated and used to update 
parameters in the network. Specifically, in our implementation, 
the wave function ansatz is of the following form: 

 
Ψ% = 𝐴%𝑒&'! 

 
Where 𝐴% is the network representing amplitude of the wave function. 
We use GPT-style decoder-like layers for the amplitude network. 
Such a structure not only shows ability to capture long-range 
dependencies, but also enables the adoption of autoregressive 
sampling. Compared to classical Malkov Chain Monte Carlo 
(MCMC) sampling, the BAS algorithm has been shown to accelerate 
the sampling process significantly, thereby facilitating application of 
NNQS methods to larger systems [11-12]. The 𝜙% part of the wave 
function ansatz is a network specifically designed to represent the 
phase of the wave function, which is the primary focus in this work. 

It is worth noting that for systems with open boundary 
conditions, such as molecules, the electronic wave function can be 
treated as a real-valued function. In this case, the phase term 𝑒&'! 
reduces to a simple ±1 sign before each amplitude coefficient. This 

raises the question of whether it is possible to directly represent the 
sign instead of the full phase, or even absorb the sign into the 
amplitude using a single real-valued network. However, directly 
optimizing the sign is challenging due to its inherently combinatorial 
nature. Moreover, absorbing the sign into the amplitude network 
leads to a rugged energy landscape, as the network must pass through 
zero to switch signs—potentially creating energy barriers that hinder 
optimization. Maintaining a separate phase network also enables 
extension to systems with periodic boundary conditions, where the 
wave function must remain genuinely complex-valued. 

 
2.2 Phase network structures 

In previous work, we used a simple multilayer perceptron (MLP) as 
the phase network. Such a structure consists only of fully-connected 
layers (FC) and can be expressed as 

 
logϕ = 𝐴$(⋯ (𝐴"(A!𝑥 + b!) + 𝑏")⋯ ) + 𝑏$ 

in which 𝐴& , 𝑏&  are learnable parameters, and 𝑥  is the input 
configuration. 4 hidden layers and a hidden layer dimension of 512 is 
used, thus the total number of trainable parameters is approximately 
789k + 512 × 𝑛 , where 𝑛  is the number of spin orbitals. This 
network structure is depicted in Figure 1(a). 

Since the decoder-like amplitude network has only about 50,000 
parameters, it raises the question of whether such a large number of 
parameters in the phase network is truly necessary. To address this, 
we test three alternative approaches that replace the MLP with 
networks containing fewer parameters. The first approach is directly 
inspired by the amplitude network. We use several encoder layers to 
represent the phase, as illustrated in Figure 1(b). In an encoder layer, 
the learnable parameters are located in the position-wise fully 
connected layers of dimension 𝑛()*(++,-. × 𝑛()*(++,-., as well as 
the position-wise feed forward network (FFN) [13]. By choosing 
embedding dimensions and FFN hidden dimensions smaller than the 
MLP hidden dimension (512), this structure can have significantly 
fewer parameters than an MLP. In our amplitude network 
implementation, the attention embedding dimensions are taken to be 
32 or 48, while the FFN hidden dimension is 128. This suggests that 
similar hyperparameters may be also applicable in the case of phase 
dimensions. 

Another approach is to use decoder layers as the phase ansatz. A 
typical decoder layer in the Transformer architecture consists of a 
self-attention layer, a cross attention layer, and a position-wise fully 
connected network. Since our task does not involve “transforming” 
one sequence into another, there are no encoder outputs available to 
serve as queries for the cross attention layer. Therefore, we use an 
array of zeros, with the same length as the input sequence, as the 
query for the cross attention layer. This structure is implemented 
directly using torch.nn.TransformerDecoderLayer, and a depiction 
can be found in Figure 1(c). It is important to note that this phase 
network—referred to as “decoder” layers below and in the figures—
is not the same as the decoder-like amplitude network. The amplitude 
network consists of GPT-style decoder-like Transformer layers, 
which, although commonly referred to as “decoder layers” in many 
contexts, are essentially encoder layers with masked self-attention 
modules. 

The third method is inspired by applications in multimodal 
learning. In a cross attention mechanism, the length of the output 
sequence matches that of the query sequence, which does not 
necessarily have to be the same as the key and value sequences. In the 


