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Abstract: Simulating non-Markovian quantum dissipative dynamics remains a major challenge in theoretical and computational 

chemistry. While traditional numerical methods such as hierarchical equations of motion are numerically exact, they suffer from 

prohibitive computational costs when modeling systems with complex environmental couplings or strong non-Markovian effects. 

To address this limitation, we propose a deep learning framework based on two-dimensional convolutional neural networks (2D-

CNN) for efficiently predicting long-time quantum dissipative dynamics using only short-time trajectory data. Our approach 

incorporates a 1D-to-2D feature reconstruction strategy, which transforms 1D time-series data into 2D images, and a multi-

timescale fusion network to resolve complex dynamical features. We validate the framework on two paradigmatic cases -- 

dissipative relaxation in a two-level system and Rabi oscillations in a dissipative spin system -- achieving prediction mean absolute 

errors of 10!" and 10!#, respectively. The results highlight the effectiveness of our 2D-CNN approach in capturing long-time 

temporal correlations, providing a computationally efficient pathway for simulating quantum dynamics in realistic open systems. 
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1. Introduction  

Non-Markovian quantum dissipative dynamics is widely observed 
in various fields ranging from photosynthesis to quantum computing 
[1-3]. Understanding these dynamics is essential to understand 
fundamental processes like quantum dissipation, decoherence and 
energy transfer [4-7]. Despite their universal significance, 
simulation of long-time open quantum dynamics remains an 
outstanding challenge, primarily due to the complex non-Markovian 
memory effects arising from strong system-environment correlations. 
This persistent theoretical bottleneck highlights the urgent need for 
developing accurate and computationally feasible methodologies 
that can simultaneously capture intricate memory effects while 
maintaining numerical tractability for practical applications. 

Over decades, significant progress has been made in developing 
theoretical methods for modeling non-Markovian quantum 
dissipative dynamics. Established approaches include: numerical 
renormalization group (NRG) method [8-12] and its time-dependent 
extension [13-17], quantum Monte Carlo (QMC) method [18-30], 
real-time path integral (PI) method [31-37], hierarchical equations 
of motion (HEOM) [38-46], multi-configuration time-dependent 
Hartree (MCTDH) [47, 48] and its multilayer extension (ML-
MCTDH) [49-53] and second-quantized version [54], density matrix 
renormalization group (DMRG) method [55-60] and its time-
dependent extension [55, 61-65], stochastic quantum dissipation 
theory methods [66-71], and steady-state density functional theory 
(i-DFT) method [72]. While these methods have advanced our 
understanding of open quantum systems, their computational 
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demands typically scale exponentially with both system size and 
complexity of environment. This inherent complexity barrier 
fundamentally restricts applications to large-scale, long-time 
quantum dynamics. To overcome these limitations, recent efforts 
have turned to data-driven methods to enhance the efficiency for 
simulating long-time quantum dissipative dynamics. For instance, 
the transfer tensor method (TTM) [73-75], pioneered by Cerillo and 
Cao in 2014, offers a dimensionality-reduction framework to capture 
the critical dynamics feature by encoding short-time historical 
evolution into non-Markovian transfer tensors, which can be used to 
propagate long-time dynamics. Building on this paradigm, machine 
learning techniques have emerged as promising alternatives for 
tackling similar challenges. 

Machine learning approaches for propagating long-time 
quantum dynamics can be conceptualized as time series prediction 
tasks [76], analogous to applications in weather forecasting or 
financial market modeling. However, quantum dissipative dynamics 
exhibits a critical distinction: its reduced system dynamics are 
governed by formally closed quantum dynamical equations rather 
than intricate real-world processes subjected to noise from countless 
external sources. The practical tractability stems from the fact that 
quantum memory effects arise from well-defined environmental 
interactions. For instance, within the HEOM framework, non-
Markovian memory is fully encoded in the environmental 
hybridization correlation functions.  

Recent advances in deep learning have driven a paradigm shift 
in simulating quantum dissipative dynamics [77-82]. Neural 
network approaches for time series prediction, including feed-
forward neural network (FFNN) [83, 84], recurrent neural networks 
(RNNs) such as gated recurrent units (GRUs) [85] and long short-
term memory networks (LSTMs) [86-88], convolutional neural 
networks (CNNs) [89-91], and hybrid CNN-LSTM (CNN-LSTM) 
[92], have demonstrated success in systems like spin-boson models 
[4, 93] and Fenna-Matthews-Olson (FMO) complexes [94-97]. For 
example, Lin et al. have applied LSTM to simulate excited-state 
energy-transfer dynamics, successfully predicting long-time 
behavior under strong coupling and non-Markovian conditions. By 
integrating bootstrap sampling with LSTM, they developed a 
statistical framework to quantify prediction uncertainty and assess 
model reliability in long-time quantum dynamics simulations [86]. 
Ullah and Dral have proposed the artificial intelligence quantum 
dynamics method [90], which uses machine learning to directly 
predict quantum dynamics trajectories, avoiding the high 
computational costs and error accumulation inherent to traditional 
recursive methods.  When validated on the FMO complex, the model 
captured long-time memory effects in quantum dynamics. They 
further developed a one-shot trajectory learning method [91] based 
on one-dimensional (1D) CNN, enabling single-step prediction of 
full trajectories while significantly reducing training time and 
memory usage. Wu et al. have proposed a 1D-CNN-LSTM based 
model with feature fusion network for predicting the long-time 

nonadiabatic quantum dynamics of spin-boson model, achieving 
high accuracy, robustness and transferability [92]. Furthermore, 
Zeng et al. have revealed the impact of memory time on the 
performance of TTM and deep learning approaches and proposed a 
practical method to estimate the effective memory time [98]. 
However, determining the appropriate length of short-time historical 
dynamics in machine learning remains an empirical process. The 
fundamental principle is to strike a balance between accuracy and 
efficiency: sufficiently long to encompass key characteristics while 
as short as possible to minimize resource consumption for training. 

By circumventing explicit treatment of system-environment 
interactions, these methods substantially reduce computational cost 
while demonstrating unique advantages in long-time dynamics 
prediction. However, existing methods face certain limitations. For 
example, their effectiveness in complex systems remains unverified 
[89-92], such as the Rabi oscillation of a local spin subject to Kondo 
exchange couplings with environmental spins -- a scenario 
experimentally demonstrated by Yang et al. [99] and Willke et al. 
[100] using scanning tunneling microscope-radio frequency (STM-
RF) protocols [100-102] to control coherent spin manipulation in 
hydrogenated Ti atoms and iron phthalocyanine molecules on 
surfaces. These Rabi oscillations exhibit multi-timescale 
characteristics, featuring low-frequency oscillations superimposed 
with high-frequency Larmor precession, and coherence times 
extending to several hundred nanoseconds (ns). For such complex, 
long-time quantum dissipative dynamics, RNN architectures risk 
substantial increases in training costs and complexity due to their 
inherently sequential nature, which precludes parallelization 
[103,104]. While 1D-CNNs avoid this issue [105], their long-time 
prediction accuracy diminishes significantly due to architectural 
constraints, as discussed in later sections. 

To address this challenge, we propose a deep learning 
framework based on two-dimensional (2D) CNN for accurate long-
time dynamics prediction in dissipative quantum systems, including 
the relaxation of a two-level system and the Rabi oscillations of a 
local spin. Our approach integrates a “1D-to-2D” temporal 
reconstruction strategy [106] coupled with multi-timescale feature 
fusion techniques [92], enhancing the model’s ability to capture 
complex quantum dissipative dynamics. 

The remainder of this paper is organized as follows: Section 2 
outlines the framework of the 2D-CNN model. Section 3 presents 
the results and discussion. Section 4 provides the conclusion. 

2. Theoretical method 

Our deep learning model focuses on long-time quantum dissipative 
dynamics exhibiting multi-timescale characteristics. The 
architecture of the proposed model is illustrated in Figure 1. The 
inputs consist of a series of reduced density matrix (RDM) elements 
of the system at discrete times (e.g., 𝑡$, 𝑡#, 𝑡", . . . , 𝑡%). First, the input 
undergoes preprocessing to construct datasets compatible with a 2D- 

Figure 1. Schematic of the quantum dissipative dynamics prediction framework. Reduced density matrix elements at discrete times 
(𝑡$, 𝑡#, 𝑡", . . . , 𝑡%) are input, preprocessed, and used to train the 2D-CNN model. The optimized model predicts the next discrete time point 𝑡%&$.
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