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Abstract: Machine learning force fields (MLFFs) offer a promising balance between quantum mechanical (QM) accuracy and 

molecular mechanics efficiency. While MLFFs have shown strong performance in modeling short-range interactions and 

reproducing potential energy surfaces, their ability to capture long-range cooperative effects remains underexplored. In this study, 

we assess the ability of three MLFF models — ANI, MACE-OFF, and Orb — to reproduce cooperative interactions arising from 

environmental induction and dispersion, which are essential for many biomolecular processes. Using a recently proposed 

framework, we quantify hydrogen bond (H-bond) cooperativity in N-methylacetamide polymers. Our results show that all MLFFs 

capture cooperativity to some extent, with MACE-OFF yielding the closest agreement with QM data. These findings highlight 

the importance of evaluating many-body effects in MLFFs and suggest that H-bond cooperativity can serve as a useful benchmark 

for improving their physical fidelity.  
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1. Introduction 

Machine learning potentials (MLPs), sometimes also referred to as 
machine learning force fields (MLFFs), have emerged as a 
significant advancement in computational chemistry, offering a 
balance between the high accuracy of quantum mechanics (QM) and 
the computational efficiency of molecular mechanics (MM) [1,2]. 
By leveraging machine learning algorithms, MLPs learn the 
statistical relationship between molecular structures and their 
potential energies from large datasets. Various methodologies, 
including kernel-based approaches and neural network (NN) models, 
have demonstrated notable success in simulating and predicting the 
properties of complex chemical systems. 

NN potentials are particularly promising because deep NNs 
excel at fitting high dimensional data distributions, enabling them to 
capture intricate intra- and intermolecular interactions [3–8]. The 
seminal work of Behler and Parrinello introduced a scheme in which 
the total potential energy is decomposed into atomic contributions, 

each predicted by an NN that takes atom‑centered environment 
descriptors as input [9]. The field has progressed rapidly since then, 
with more advanced network architectures designed to better 
preserve physical symmetries and improve training efficiency [10–
14]. Whereas early MLPs were usually trained bespoke on data 
generated for the particular system studied, recent efforts have 
shifted toward pre‑training models for broad, off‑the‑shelf use — 
much like traditional force fields (FFs) that are carefully 
parametrized once and then distributed to end‑users. Resonating 
with the wider ML move toward “foundation models”, an increasing 
number of universal MLFFs covering substantial regions of 
chemical space are now becoming available. 

One of the most popular universal MLFFs is the ANI series 
developed by Roitberg and co-workers. The ANI-2x model, employs 
transfer learning: a network first trained on a large DFT dataset is 
fine‑tuned with a smaller, high‑level CCSD(T) dataset, achieving 
accuracy across a broad chemical space that includes C, H, N, O, S, 
F, and Cl [15], and performing well on a wide range of drug-like 
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molecules and small peptides. Another notable model, MACE, 
extends message-passing neural networks (MPNNs) by 
incorporating higher-order equivariant messages, boosting both 
efficiency and accuracy [13]. The MACE open force fields (MACE-
OFFs) were trained on diverse datasets including organic molecules, 
water clusters, small peptides and dipeptides, and have demonstrated 
state-of-the-art performance not only in reproducing potential 
energy surfaces (PES) and atomic forces, but also in predicting 
condensed-phase properties such as liquid densities and solvation 
free energies [16,17]. Meanwhile, the Orb model, designed for large-
scale simulations of inorganic and crystalline materials, employs a 
scalable graph NN architecture that preserves rotational invariance 
and allows efficient modeling of long-range dispersion interactions 
via diffusion pre-training and D3 correction 
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[14]. 
In classical FFs, non-bonded interactions are evaluated 

throughout the space. In particular, electrostatics are typically 
handled with the particle meshed Ewald (PME) method, and more 
recently the LJ-PME method has been adopted to fully account for 
the van der Waals interactions [18,19]. This contrasts with MLFFs, 
in which atomic energies are computed from the information 
contained within a direct cutoff (typically 4.0 Å to 6.0 Å). 
Interactions beyond this range are presumed to be captured indirectly, 
for example through multiple passes of message passing, yet the 
extent to which MLFFs reproduce full long range interaction 
remains to be systematically benchmarked [20]. Long-range 
interactions are essential in chemical and biological systems 
dominated by non-covalent forces, for example proteins. A prime 
example is the cooperative effects of hydrogen bonds (H-bonds) in 
stabilizing protein structures. Once a few H-bonds form between 
residues, subsequent H-bond formation becomes energetically more 
favorable, facilitating protein folding, assembly, and aggregation 
[21–23]. 

H-bond cooperativity arises mainly from electronic induction, 
reflecting the molecular polarizability in response to the surrounding 
environment. QM methods such as CCSD(T), MP2, and DFT can 
accurately capture these effects, as can polarizable MM force fields, 
which explicitly account for charge redistribution [24–27]. In 
contrast, additive force fields fail to reproduce such cooperative 
effects. The quantification of cooperative energy has historically 
varied due to differences in computational methods, model systems, 
and definitions of cooperativity. QM calculations of various H-
bonded polymers, including N-methylacetamide (NMA) [28], water 
[29], N-methylformamide (NMF) [30], formamide [31], and alanine 
peptides [32,33], have yielded cooperative energy estimates ranging 
from 3 to 26 kcal/mol, depending on the specific formulation used. 

Recent methodological advancements have enabled more 
rigorous quantification of cooperative effects and improved 
benchmark for classical MM force fields [34]. In this recent study, 
we introduced a general framework that defines cooperativity as the 
difference between the interaction energy of an isolated dimer (𝑉!-"!") 
and its interaction energy in the presence of a third molecule (𝑉!-"!"#) 
(Figure 1a). This cooperative energy is computed using the internal 
energies of optimized geometries (Equation 1). 

Δ𝑉!-" = −(𝑈!"#!"# − 𝑈"#!"# − 𝑈!#!"# + 𝑈#!"# − 𝑈!"!" + 𝑈!!" + 𝑈"!")	 (1) 

As the superscripts indicate, the first four terms (internal energies of 
ABC, BC, AC, and C) are computed using the geometry and basis set 
of complex ABC, while the remaining three terms (internal energies 
of AB, A, and B) are obtained using the geometry and basis set of 
complex AB. Here, A, B, and C represent any number of molecules. 

This framework accounts for the cooperative effects arising from 
both geometric distortion and electrostatic induction within 
molecules A and B in response to the addition of C, while explicitly 
excluding any contributions from the internal interactions or 
polarization of C itself. This formulation thus enables a systematic 
analysis of many-body effects in various molecular environments. 

Here, we apply this theoretical framework to evaluate the 
ability of MLFFs to capture H-bond cooperatives in MLFFs. We 
used the same model systems and QM references, where NMA 
chains were optimized at the ωB97XD/cc-pVTZ level and energies 
computed at the RI-MP2/aug-cc-pVTZ level. Our findings reveal 
that all MLFFs considered, including the ANI, MACE-OFF, and Orb 
models, capture cooperativity to some extent but with considerable 
variance in accuracy. Despite being trained on high-quality QM data 
covering chemical spaces, these MLFFs differ substantially in how 
they represent environment-dependent interactions. Our work 
provides a critical benchmark for MLFFs and sheds light on how 
these models capture complex cooperative effects. 
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Figure 1． The scheme of cooperativity calculation and models. 
(a) Cooperativity is the difference of dimer interaction between two-
body and three-body systems. (b) Two conformations of NMA dimer 
optimized at the ωB97XD/cc-pVTZ level of QM. (c) An arc decamer 
with exclusively syn conformation of dimer blocks. (d) A linear 
decamer with alternating syn and anti blocks. In (c) and (d), the water 
capping sites on termini are illustrated; and the cooperative energies 
calculated for the first, middle, and last H-bonds to evaluate the 
effect of NMAs extending on B-side, both sides and A-side, 
respectively, are highlighted with transparent boxes.

Method 

Homogeneous NMA polymers identical to the previous study were 
used [34], where NMAs oriented in parallel configuration were 
arranged to form hydrogen bonds (H-bonds) in a head-to-tail way. 
As the fundamental H-bonded block, an NMA dimer was used, in 
which a hydrogen bond was formed between the carbonyl oxygen of 
molecule A (𝑂!) and the amide nitrogen of molecule B (𝑁"). The 
dimer was constrained to remain planar. 

The NMA dimer adopted two distinct conformations. In the syn 
conformation, atoms 𝑁! and 𝑁" are positioned on the same side of 
the 𝐶!-𝑂! axis, corresponding to dihedral 𝜙$ (𝑁!-𝐶!-𝑂!-𝑁") of 0∘. 
In contrast, in the anti conformation, 𝑁!  and 𝑁"  lay on opposite 
sides of the 𝐶! -𝑂!  axis, with 𝜙$  at 180∘  (Figure 1b). Two well-
ordered NMA polymer patterns were examined: one in which 
identical dimers formed an arc pattern and another where alternating 
syn and anti dimers resulted in a linear pattern. All polymer 
structures were built starting from a syn dimer and extended up to 12  


